DTTF/NB479: Dszquphsboqiz
 Day 26

Announcements:

1. HW6 due now
2. HW7 posted

	Chapter	Topic	People			
16-Apr	---	Bitcoin	kampernj	mcdonamp	oliverr	shinnsm
18-Apr		Elliptic cur	richarnj	strullsd	wallersb	yochmake
18-Apr	$10 ?$	Protocols	abdelroh	hopkinaj	mercermt	michaeaj
19-Apr	15	Info Theory	kraevam	reynolza	taos	trammin
19-Apr		Dig Cash	chenaurj	dingx	graetzer	riechelp
19-Apr	19	Quantum	earlesja	gartzkds	kessledi	priceha
Late	14/18	OKnow, EC	cooperra	zhangr1		

3. Will pick pres dates Friday

- Questions?
- This week:
- Discrete Logs, Diffie-Hellman, ElGamal
- Hash Functions, SHA1, Birthday attacks

Name: \qquad

ElGamal

Bob publishes (α, p, β), where $1<m<p$ and $\beta=\alpha^{a}$
Alice chooses secret k, computes and sends to Bob the pair (r, t) where
$r=\alpha^{k}(\bmod p)$
$\mathrm{t}=\beta^{\mathrm{k}} m(\bmod \mathrm{p})$
Bob finds: $t r^{-a}=m(\bmod p)$

Notes:

1. Show that Bob's decryption works Plug in values for t, r, and β.
2. Eve would like to know k. Show that knowing k allows decrpytion. Why?

$$
m=\beta^{-k t}
$$

3. Why can't Eve compute k from r or t ?

Need to calculate a discrete log to do so, which is hard when p is large
4. Challenge: Alice should randomize k each time. If not, and Eve gets hold of a plaintext / ciphertext $\left(m_{1}, r_{1}, t_{1}\right)$, she can decrypt other ciphertexts $\left(m_{2}, r_{2}, t_{2}\right)$. Show how.

Use m_{1}, t_{1} to solve for β^{k}. Then use β^{-k} and t_{2} to find m_{2}
5. If Eve says she found m from (r, t), can we verify that she really found it, using only the public key (and not k or a)? Explain.

Not easily (see next slide)

Known plaintext attack

Bob publishes (α, p, β), where $1<m$ $<p$ and $\beta=\alpha^{\mathrm{a}}$
Alice chooses secret k, computes and sends to Bob the pair (r, t) where

- $r=\alpha^{k}(\bmod p)$
- $t=\beta^{k} m(\bmod p)$

Bob finds: $t r^{-a}=m(\bmod p)$

- Why does this work?
- If Eve got hold of a plaintext/ciphertext $\left(m_{1}, r_{1}, t_{1}\right)$, she can decrypt other ciphertexts $\left(m_{2}, r_{2}, t_{2}\right)$:

Answer:

- $r=\alpha^{k}(\bmod p), t_{1}=\beta^{k} m_{1}(\bmod p), t_{2}=\beta^{k} m_{2}$ (mod p)
- So

$$
\frac{t_{1}}{m_{1}} \equiv \beta^{k} \equiv \frac{t_{2}}{m_{2}}(\bmod p)
$$

- You can solve for m_{2}, since everything else in the proportion is known.

Alice should randomize k each time.

Tying everything together

Bob publishes (α, p, β), where $1<m<p$ and $\beta=\alpha^{a}$
Alice chooses secret k, computes and sends to Bob the pair (r, t) where

- $r=\alpha^{k}(\bmod p)$
- $t=\beta^{*} m(\bmod p)$

Bob finds: tr-a $=m(\bmod p)$

- Why does this work?
- If Eve says she found m from (r, t), can we verify that she really found it, using just m, r, t and the public key?

Not easily!

Decision D-H \leftrightarrow Validity of (mod p) ElGamal ciphertexts.
Computational D-H \leftrightarrow Decrypting (mod p) ElGamal ciphertexts.

Cryptographic hash functions shrink messages into a digest

Message m Message digest, y
Cryptographic hash (Shorter fixed length)
Function, h
Shrinks data, so 2 messages can have the same digest: $m_{1}!=m_{2}$, but $h\left(m_{1}\right)=h\left(m_{2}\right)$
Goal: to provide a unique "fingerprint" of the message.

Cryptographic hash functions must satisfy three properties to be useful and secure

Message m (long)	Cryptographic hash Function, h
Shrinks data, so 2 messages can have the same digest: $m_{1}!=m_{2}$, but $h\left(m_{1}\right)=h\left(m_{2}\right)$	

1. Fast to compute y from m.
2. One-way: given $y=h(m)$, can't find any m ' satisfying $h\left(m^{\prime}\right)=y$ easily.
3. Strongly collision-free: Can't find any pair $m_{1} \neq m_{2}$ such that $h\left(m_{1}\right)=h\left(m_{2}\right)$ easily
4. (Sometimes we can settle for weakly collision-free: given m, can't find $m^{\prime} \neq m$ with $h(m)=h\left(m^{\prime}\right)$.

Hash functions can be used for digital signatures and error detection

3 properties:

1. Fast to compute
2. One-way: given $\mathrm{y}=$ $h(m)$, can't find any m^{\prime} satisfying $h\left(m^{\prime}\right)=$ y easily.
Strongly collisionfree: Can't find $m_{1} \neq$ m_{2} such that $h\left(m_{1}\right)=h\left(m_{2}\right)$

Why do we care about these properties?

Use \#1: Digital signatures

- If Alice signs $h(m)$, what if Bob could find $m^{\prime} \neq m$, such that $h(m)=$ $h\left(m^{\prime}\right) ?$
- He could claim Alice signed m '!
- Consider two contracts...

Use \#2: Error detection - simple example:
Alice sends $(m, h(m)$), Bob receives (M, H). Bob checks if $H=h(M)$. If not, there's an error.

Hash function examples

3 properties:

1. Fast to compute

2 One-way: given $\mathrm{y}=\mathrm{h}(\mathrm{m})$, can't find any m' satisfying $h\left(m^{\prime}\right)=y$ easily.
3. Strongly collision-free:

Can't find $m_{1} \neq m_{2}$ such that $h\left(m_{1}\right)=h\left(m_{2}\right)$

Examples:

1. $\quad h(m)=m(\bmod n)$
2. $h(m)=\alpha^{m}(\bmod p)$ for large prime p, which doesn't divide α
3. Discrete log hash

Given large prime p, such that $q=(p-1) / 2$ is also prime, and primitive roots α and β for p :

$$
\begin{aligned}
& h(m) \equiv \alpha^{m_{0}} \beta^{m_{1}}(\bmod p) \\
& \text { where } m=m_{0}+m_{1} q
\end{aligned}
$$

- EHA (next)
- SHA-1 (tomorrow)
- MD4, MD5 (weaker than SHA; won't discuss)

For first 2 examples, please check properties 2-3.

Easy Hash Algorithm (EHA) isn't very secure!

- Break m into n-bit blocks, append zeros to get a multiple of n.
- There are L of them, where $L=|\mathrm{m}| / \mathrm{n}$
- Fastl But not very secure.

$$
\left.\begin{array}{r}
m=\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\cdots \\
m_{1}
\end{array}\right]=\left[\begin{array}{cccc}
m_{11} & m_{12} & \cdots & m_{11} \\
m_{21} & m_{22} & \cdots & m_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
m_{11} & m_{12} & \cdots & m_{1 n}
\end{array}\right] \\
\\
\oplus
\end{array} \begin{array}{c}
\oplus \\
\hline
\end{array}\right)
$$

- Does performing a left shift on the rows first help?
- Define $m \downarrow \downharpoonleft y$ as leftshifting m by y bits
- Then $m_{i}^{\prime}=m_{i} \downarrow(i-1)$
$\left[\begin{array}{cccc}m_{11} & m_{12} & \cdots & m_{1 n} \\ m_{22} & m_{23} & \cdots & m_{21} \\ \vdots & \vdots & \ddots & \vdots \\ m_{l l} & m_{l, l+1} & \cdots & m_{l, l-1}\end{array}\right]$

Easy Hash Algorithm (EHA) isn't very secure!

3 properties:

1. Fast to compute
2. One-way: given $y=$ $h(m)$, can't find any m^{\prime} satisfying $h\left(m^{\prime}\right)=$ y easily.
Strongly collision-
free: Can't find $m_{1} \neq$ m_{2} such that $h\left(m_{1}\right)=h\left(m_{2}\right)$

$$
\left.\begin{array}{rl}
m= & {\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\cdots \\
m_{l}
\end{array}\right]=}
\end{array} \begin{array}{cccc}
{\left[\begin{array}{cccc}
m_{11} & m_{12} & \cdots & m_{1 n} \\
m_{21} & m_{22} & \cdots & m_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
m_{l 1} & m_{l 2} & \cdots & m_{\ln }
\end{array}\right]} \\
\oplus & \oplus & \oplus & \oplus \\
\Downarrow & \Downarrow & \Downarrow & \Downarrow
\end{array}\right]=\mathrm{h}(\mathrm{~m}) \text { }
$$

Exercise:

1. Show that the basic (unrotated) version doesn't satisfy properties 2 and 3.
2. What about the version that uses rotations?
