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2. Will'pick pres dates Friday.

* Questions?

«  This week:
« Discrete Logs, Diffie-Hellman, EIGamal
« Hash Functions, SHAL, Birthday attacks



ElGamal

Bob publishes (o, p; ), Where
1 <m<pandp=a?

Alice chooses secret k;,
computes and sends to
Bob the pair (r,t) where

r=oX (mod p)
t = Bm (mod p)

Bob finds: tr-2=m (mod p)

Notes:

Name:

Show that Bob's decryption works
Plug in values for t, r, and [5.

Eve would like to know k. Show that knowing k allows decrpytion.
Why?

m=p*t

\Why can’'t Eve compute k from r or t?

Need to calculate a discrete log to do so, which
IS hard when p is large

Challenge: Alice should randomize k each time. If not, and Eve
gets hold of a plaintext / ciphertext (my, ry, t;), she can decrypt
other ciphertexts (m,, r,, t;). Show how.

Use m;, t; to solve for . Then use f* and t, to
find m,

If Eve says she found m from (r,t), can we verify that she really
found it, using only the public key (and not k or a)? Explain.

Not easily (see next slide)



KRewn plaintext attack

Bob publishes (a, p, B), Where 1. <m
< p and f=a?

Alice chooses secret k, computes
and sends to Bob the pair (r,t)
Wwhere

= r=oX(mod p)
= t=pm (modp)

Bob finds: tré=m (mod p)
Why does this work?

¢ If Eve got hold of a plaintext/ciphertext
r,, t;), she can decrypt other
C|p]hertexts (M, 1y, t):

ANsSwer:
« r=oX (mod p), t; = B*m, (mod p), t, = Bm,
(mod'p)
« SO
t, "
L= =2 (mod p)
ml m2

« You can solve for m,, since everything
else in the proportion is known.

Alice should randomize k each time.



Tying everytning together

Bob publishes (o, p; ), Where 1 < m < p and =a?

Alice chooeses secret k, computes and sends to Bob the pair (r,t) where
= r=oX (mod p)
= b= Bm (mod p)

Bob finds: tF-2=m (mod p)
«  Why does this work?

« |f'Eve says she found m from (r,t), can we verify that she really found it,
using just m,r,t and the public key? Not easily!

Decision D-H <—>Validity of (mod p) ElIGamal ciphertexts.

Computational D-H <—>Decrypting (mod p) ElIGamal ciphertexts.



&

Cryptographic hash functions shrnk messages

INte a digest

Message m

Message digest, y

(long)

Cryptographic hash
Function, h

* (Shorter fixed length)

Shrinks data, so 2 messages can
have the same digest: m; |= m,, but
h(m,) = h(m,)

Goal: to provide a unique “fingerprint” of the message.



Crypiegraphic hash functions must satisty three
Proeperties to be useful and secure

Message m
(long)

Message digest, y

Cryptographic hash
Function, h

1. Fast to compute y from m.
2. One-way: given y = h(m), can't find any m’ satisfying h(m’) =y

easlly.

* (Shorter fixed length)

Shrinks data, so 2 messages can
have the same digest: m; |= m,, but
h(m,) = h(m,)

;. Strongly collision-free: Can’t find any pair m, # m, such that
h(m,)=h(m,) easily
. (Sometimes we can settle for weakly collision-free: given m, can’t
find m" # m with h(m) = h(m’).



IHash functions can be used for digital signatures and

error detection

1

2.

3 PrOpPErties:

[Fast te compute
One-way: given y =
h(m), can’t find any.
m’ satisfying h(m’) =
y easlly.

Strongly: collision-
free: Can't find m; #
m,, such that
h(my)=h(m,)

\Why do we care about these
properties?

Use #1.: Digital signatures

« |f Alice signs h(m), what if Bob
could find' m" # m, such that h(m) =
h(m’)?

*« He could claim Alice signed m’!

« Consider two contracts...

Use #2: Error detection — simple example:
Alice sends (m, h(m)), Bob receives (M, H). Bob checks if H=h(M). If not, there’s an error.



IHash function examples

3 Properties:
1 Fast to compute
2 One-way: given y = h(m),
can't find any m'’
satisfying h(m?) =y easily.
3 Strongly: collision-free:

Can't find m; # m, such
that h(m;)=h(m,)

4a-b

Examples:

1.

2,

h(m) = m (mod n)
h(m) = o™ (mod p) for large prime p, which
doesn’t divide o

Discrete log hash

Given large prime p, such that g=(p-1)/2 is also prime, and
primitive roots o and 3 for p:

h(m)=a™ g™ (mod p)

where m = mg + m;q

EHA (next)
SHA-1 (tomorrow)

MD4, MD5 (weaker than SHA; won'’t discuss)

For first 2 examples, please check properties 2-3.



Easy Hash Algenthm (EHA) I1sn’t very secure!

« Break m into n-bit blocks,
append zeros to get a
multiple of n.

« There are L of them, where
L =[m|/n

« [Fast! But not very secure.

* Does performing a left shift
on the rows first help?
= Define My as left-
shifting m by y bits
= Thenm =m. (i —1)

m =




Easy HashiAlgoerithm (EHA) Isn’t very secure!

3 PrOpPErties:
. Fastto compute ‘m] [m, m, - m,
> One-way: giveny =
h(m), can’t find any m=| 2 (=M M2 Man
m’ satisfying h(m’) = - :
y easily. - m, m, m, .- m
s Strongly collision- e
free: Can'’t find m, # ® & @ &P
m,, such that
h(m,)=h(m.,) W 5 Y
[Cl C, Cn] =,
Exercise:

1. Show that the basic (unrotated) version doesn’t satisfy properties 2 and 3.

2. What about the version that uses rotations?
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