
Announcements: 
1. HW6 due now 
2. HW7 posted 
3. Will pick pres dates Friday 
 
Questions?  
 
This week: 
 Discrete Logs, Diffie-Hellman, ElGamal 
 Hash Functions, SHA1, Birthday attacks 
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ElGamal 
Bob publishes (α, p, β), where 

1 < m < p and β=αa 
Alice chooses secret k, 

computes and sends to 
Bob the pair (r,t) where 

r=αk (mod p)  
t = βkm (mod p) 

 
Bob finds: tr-a=m (mod p) 

1. Show that Bob’s decryption works 
  Plug in values for t, r, and β.  

 
2. Eve would like to know k. Show that knowing k allows decrpytion. 

Why?  
  m=β-kt 

 
3. Why can’t Eve compute k from r or t?  

 Need to calculate a discrete log to do so, which 
is hard when p is large 

 
4. Challenge: Alice should randomize k each time. If not, and Eve 

gets hold of a plaintext / ciphertext (m1, r1, t1), she can decrypt 
other ciphertexts (m2, r2, t2). Show how. 
 Use m1, t1 to solve for βk. Then use β-k  and t2 to 

find m2  
 

5. If Eve says she found m from (r,t), can we verify that she really 
found it, using only the public key (and not k or a)? Explain. 
 
 Not easily (see next slide) 

Name: ______________________ 

Notes: 



Known plaintext attack 
Bob publishes (α, p, β), where 1 < m 

< p and β=αa 
Alice chooses secret k, computes 

and sends to Bob the pair (r,t) 
where 
 r=αk (mod p)  
 t = βkm (mod p) 

 
Bob finds: tr-a=m (mod p) 

Why does this work? 

If Eve got hold of a plaintext/ciphertext 
(m1, r1, t1), she can decrypt other 
ciphertexts (m2, r2, t2): 
 

Answer: 
r=αk (mod p), t1 = βkm1 (mod p), t2 = βkm2 
(mod p) 
So 
 
 
 
 
You can solve for m2, since everything 
else in the proportion is known.  

 
Alice should randomize k each time. 
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Tying everything together 
Bob publishes (α, p, β), where 1 < m < p and β=αa 
Alice chooses secret k, computes and sends to Bob the pair (r,t) where 

 r=αk (mod p)  
 t = βkm (mod p) 

 
Bob finds: tr-a=m (mod p) 

Why does this work? 

If Eve says she found m from (r,t), can we verify that she really found it, 
using just m,r,t and the public key?  

 
 
Decision D-H Validity of (mod p) ElGamal ciphertexts. 

 
Computational D-H Decrypting (mod p) ElGamal ciphertexts. 

Not easily! 



Cryptographic hash functions shrink messages 
into a digest 

Goal: to provide a unique “fingerprint” of the message. 
 

Message m 
(long) 

Message digest, y 
(Shorter fixed length) Cryptographic hash  

Function, h 
Shrinks data, so 2 messages can  
have the same digest: m1 != m2, but  
h(m1) = h(m2) 
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Cryptographic hash functions must satisfy three 
properties to be useful and secure 

 
 

1. Fast to compute y from m. 
2. One-way: given y = h(m), can’t find any m’ satisfying h(m’) = y 

easily. 
3. Strongly collision-free: Can’t find any pair m1 ≠ m2 such that 

h(m1)=h(m2) easily 
4. (Sometimes we can settle for weakly collision-free: given m, can’t 

find m’ ≠ m with h(m) = h(m’). 

Message m 
(long) 

Message digest, y 
(Shorter fixed length) Cryptographic hash  

Function, h 
Shrinks data, so 2 messages can  
have the same digest: m1 != m2, but  
h(m1) = h(m2) 
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Hash functions can be used for digital signatures and 
error detection 

Why do we care about these 
properties?  

 
Use #1: Digital signatures 

If Alice signs h(m), what if Bob 
could find m’ ≠ m, such that h(m) = 
h(m’)? 
He could claim Alice signed m’! 
Consider two contracts… 

3 properties: 
1. Fast to compute 
2. One-way: given y = 

h(m), can’t find any 
m’ satisfying h(m’) = 
y easily. 

3. Strongly collision-
free: Can’t find m1 ≠ 
m2 such that 
h(m1)=h(m2) 

Use #2: Error detection – simple example: 
Alice sends (m, h(m)), Bob receives (M, H). Bob checks if H=h(M). If not, there’s an error.  
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Hash function examples 

Examples: 
1. h(m) = m (mod n) 
2. h(m) = αm (mod p) for large prime p, which 

doesn’t divide α 
 

3. Discrete log hash 
Given large prime p, such that q=(p-1)/2 is also prime, and 

primitive roots α and β for p: 
 
 
 
where m = m0 + m1q 

 
 EHA (next) 

 
 SHA-1 (tomorrow) 

 
 MD4, MD5 (weaker than SHA; won’t discuss) 

 
 
 

3 properties: 
1. Fast to compute 
2. One-way: given y = h(m), 

can’t find any m’ 
satisfying h(m’) = y easily. 

3. Strongly collision-free: 
Can’t find m1 ≠ m2 such 
that h(m1)=h(m2) 

For first 2 examples, please check properties 2-3.  
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Easy Hash Algorithm (EHA) isn’t very secure! 

Break m into n-bit blocks, 
append zeros to get a 
multiple of n. 
There are L of them, where 
L =|m|/n 
 
Fast! But not very secure. 
Does performing a left shift 
on the rows first help? 
 Define  as left-

shifting m by y bits 
 Then 
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Exercise: 
1. Show that the basic (unrotated) version doesn’t satisfy properties 2 and 3. 

 
2. What about the version that uses rotations?  

3 properties: 
1. Fast to compute 
2. One-way: given y = 

h(m), can’t find any 
m’ satisfying h(m’) = 
y easily. 

3. Strongly collision-
free: Can’t find m1 ≠ 
m2 such that 
h(m1)=h(m2) 
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4c Easy Hash Algorithm (EHA) isn’t very secure! 
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