DTTF/NB479: Dszquphsboqiz
 Day 25

- HW6 due tomorrow
- Teams T will get to pick their avg lateDaysLeft (p) presentation day in the order $\quad p \in T$
- Teams mostly formed. One team of 2 or two teams of 3 ?
- Questions?
- Review of mid-term feedback
- This week:
- Discrete Logs, Diffie-Hellman, ElGamal
- Hash Functions

Discrete Logs

given $\beta=\alpha^{x}(\bmod p)$

Find x

We denote this as $x=L_{\alpha}(\beta)$

Why is this hard?

Some things we won't cover in class about Discrete Logs

- 7.2.2 Baby step, Giant Step (worth reading)
- 7.2.3 Index Calculus: like sieve method of factoring primes
- The equation on p. 207 might help with some of homework 7.

$$
\begin{aligned}
& \alpha^{k} \equiv \prod p_{i}^{a_{i}}(\bmod p) \\
& \Rightarrow k \equiv \sum a_{i} L_{\alpha}\left(p_{i}\right)(\bmod p-1)
\end{aligned}
$$

- Discrete logs mod 4 and bit commitment

Diffie-Hellman is an alternative to RSA for key exchange, but is based on discrete logs
 Diffie-Hellman is an alternative to RSA f exchange, but is based on discrete logs

- Publish large prime p, and a primitive root α
- Alice's secret exponent: x
- Bob's secret exponent: y
- $0<x, y<p-1$
- Alice sends $\alpha^{x}(\bmod p)$ to Bob
- Bob sends $\alpha^{y}(\bmod p)$ to Alice
- Each know key $\mathrm{K}=\alpha^{x y}$
- Eve sees $p, \alpha^{x}, \alpha^{y} \ldots$ why can't she determine $\alpha^{x y}$?

Diffie-Hellman Key Exchange involves three computational problems

- Publish large prime p, primitive root α
- Alice's secret exponent: x
- Bob's secret exponent: y
- $0<x, y<p-1$
- Alice sends $\alpha^{x}(\bmod p)$ to Bob
- Bob sends $\alpha^{y}(\bmod p)$ to Alice
- Each know key $K=\alpha^{x y}$
- Eve sees $\alpha, p, \alpha^{x}, \alpha^{y}$; why can't she determine α xy?
- Discrete logs:
"Given $\alpha^{x}=\beta(\bmod p)$, find x
- Computational Diffie-Hellman problem:
"Given $\alpha, p, \alpha^{x}(\bmod p), \alpha^{y}(\bmod p)$, find $\alpha^{x y}(\bmod p) "$
- Decision Diffie-Hellman problem:
"Given $\alpha, p, \alpha^{x}(\bmod p), \alpha^{y}(\bmod p)$, and $c \neq 0(\bmod p)$.
Verify that $\mathrm{c}=\alpha^{x y}(\bmod p)^{\prime \prime}$

The EIGamal Cryptosystem is an entire public-key

 cryptosystem like RSA, but based on discrete logsp large so secure and > m = message
\downarrow
Bob chooses prime p, primitive root α, integer a
Bob computes $\beta \equiv \alpha^{a}(\bmod p)$
Bob publishes (α, p, β) and holds a secret

Alice chooses secret k, computes and sends to Bob the pair (r, t) where

- $r \equiv \alpha^{k}(\bmod p)$
- $t \equiv \beta^{k} m(\bmod p)$

Bob calculates: tra \equiv m $(\bmod p)$

Why does this decrypt?

ElGamal Cryptosystem

Bob publishes ($\alpha, \mathrm{p}, \beta \equiv \alpha^{\mathrm{a}}$)
Alice chooses secret k, computes and sends to Bob the pair (r, t) where

- $r \equiv \alpha^{k}(\bmod p)$
- $\quad t \equiv \beta^{k} m(\bmod p)$

Bob finds: tr-a $\equiv \mathrm{m}(\bmod \mathrm{p})$
. Why does this work?

- Multiplying m by β^{k} scrambles it.
- Eve sees α, p, β, r, t. If she only knew a or k!
- Knowing a allows decryption.
- Knowing k also allows decryption. Why?
- Can't find k from r or t. Why?

ElGamal

Bob publishes $\left(\alpha, p, \beta \equiv \alpha^{a}\right)$ Alice chooses secret k, computes and sends to Bob the pair (r, t) where

- $r \equiv \alpha^{k}(\bmod p)$
- $t \equiv \beta^{k} m(\bmod p)$

Bob finds: $t^{-a} \equiv m(\bmod p)$

1. Show that Bob's decryption works $\sqrt{ }$
2. Eve would like to know k. Show that knowing k allows decryption. Why? $\sqrt{ }$
3. Why can't Eve compute k from r or t ? $\sqrt{ }$
4. Challenge: Alice should randomize k each time. If not, and Eve gets hold of a plaintext / ciphertext (m_{1}, $\left.r_{1}, t_{1}\right)$, she can decrypt other ciphertexts $\left(m_{2}, r_{2}, t_{2}\right)$. Show how.
5. If Eve says she found m from (r, t), can we verify that she really found it, using only m, r, t, and the public key (and not k or a)? Explain.
6. (For HW: Create a public key (α, p, β), encrypt a message as (r, t), and decrypt it using the private key. You may do this with a friend as we did for RSA, or do it on your own.)
