DTTF/NB479: Dszquphsboqiz
 Day 24

- Announcements:

1. Term project groups and topics due midnight
2. HW6 due next Tuesday.

- Questions?
- This week:
- Primality testing, factoring
- Discrete Logs, Computing Discrete Logs

Discrete logs...

But first, some humor:
Bruce Schneier is a genius in the crypto field, the author of the authoritative book on crypto.

Bruce Schneier writes his books and essays by generating random alphanumeric text of an appropriate length and then decrypting it.

Discrete logs...

...are the basis of the ElGamal cryptosystem
...can be used for digital signatures

Discrete Logs

given $\beta=\alpha^{x}(\bmod p)$

Find x
We denote this as $x=L_{\alpha}(\beta)$

Why is this hard?

Consider this...

- Solve 9=2x (mod 11)
- We denote the answer as $L_{2}(9)$
-Are there other solutions for x ?
- By convention, x is defined to be the minimum of all such.
olt must be < $(\mathrm{p}-1)$. Why?

But consider this...

- Solve $2150=3621^{x}(\bmod p)$ where $p=1775754 \ldots 74581$ (100 digits)
- How long will exhaustive search take?
- Up to p-2 if 3621 is a primitive root of n.
- What's a primitive root?
- Please read section 3.7 (1 page) tonight if you haven't

One-way functions

- Take $y=f(x)$
- If y is easy to find given x, but x is hard to find given y, f is called a one-way function.
- Examples:
- Factoring (easy to multiply, hard to factor)
- Discrete logs (easy to find powers mod n, even if n is large, but hard to find discrete log)

Factoring vs. Discrete Logs

- Sizes of primes required are roughly similar
- We will encounter a number of discrete log algorithms that are analogs to factoring algorithms:
o(p-1) algorithm \rightarrow Pollig-Hellman
- Quadratic sieve \rightarrow Index calculus
- RSA \rightarrow EIGamal

Finding x in $\beta \equiv \alpha^{x}$ is hard, but finding $x(\bmod 2)$ isn't.

Assume a is a primitive root $(\bmod p)$. So $p-1$ is the smallest n such that $a^{n} \equiv 1$
By Fermat, $\left(\alpha^{\frac{p-1}{2}}\right)^{2} \equiv a^{p-1} \equiv 1(\bmod p)$
So $\alpha^{\frac{p-1}{2}} \equiv-1(\bmod p)$ (Can't be 1 since prim root)
To solve $\beta \equiv \alpha^{x}(\bmod p)$,

$$
\beta^{\frac{p-1}{2}} \equiv\left(\alpha^{\frac{p-1}{2}}\right)^{x} \equiv(-1)^{x}(\bmod p)
$$

$\left(\beta^{\frac{p-1}{2}}\right)^{2} \equiv-1(\bmod p)$ iff $\mathrm{x} \equiv 0(\bmod 2)$

Pollig-Hellman (section 7.2)

- Useful to solve $\beta \equiv \alpha^{x}(\bmod p)$ when $(p-1)$ has only small prime factors
- Let $p-1=\Pi_{i} q_{i}^{r_{i}}$
- Find x mod each q^{r} and combine using the Chinese Remainder Theorem
- Each one involves solving a discrete log problem, but over a very small domain: $0 . . \mathrm{q}_{j}-1$.
- HW problem:
solve $2^{\mathrm{x}=12}(\bmod 19)$ using Pollig-Hellman

