
Announcements: 
1. Term project groups and topics due tomorrow 

midnight 
 Waiting for posts from most of you. 

 
Questions?  
 
This week: 
 Primality testing, factoring 
 Discrete Logs 

DTTF/NB479: Dszquphsbqiz  Day 23 



Factoring 

If you are trying to factor n=pq and know 
that p~q, use Fermat factoring: 
 Compute n + 12, n + 22, n + 32, until you reach 

a perfect square, say r2 = n + k2 
 Then n = r2 - k2 = (r+k)(r-k) 

Example: factor 2405597 
The moral of the story?  
 Choose p and q such that _____ 

 



(p-1) Algorithm 

Useful if p|n and (p-1) has only small 
factors 
Choose any a>1 (like a=2) and a bound B 
Compute b=aB!(mod n) (How?) 
Then compute d=gcd(b-1, n) 
 If 1<d<n, then d is a non-trivial factor 

 
Matlab example: n=5183. We’ll use a=2, B=6. 
Why does it work? 

1-3 



Moral of this story? 

To get a 100-digit number n=pq resistant 
to this attack: 
 Make sure (p-1) has at least 1 large prime 

factor:  
 Pick p0 = nextprime(1040) 
 Choose k~1060 such that p=(kp0+1)is prime 

How to test? 
 Repeat for q.  



Summary of known 
implementation mistakes 

Choosing p and q close to each other 
Choosing p and q such that (p-1) or (q-1) has only small 
prime factors 
Choosing e=3 (smallest e such that gcd(e,(f(n))=1 
(problem 6.8.10 and 6.9.14) 
Using a scheme such that ½ the digits of p or q are easy 
to find (6.2 Theorem 1) 
Choosing e too small (6.2 Theorem 2) 
Choosing d too small (d < 1/3 n1/4; 6.2 Theorem 3; 
exposes to continued fraction attack) 
Choosing plaintext much shorter than n 
 (But can pad plaintext; see scheme on p. 173) 

One of the factoring Bonus problems suffers from one 
such mistake 



Summary so far: Two of three factoring methods 

1. Fermat factoring: 
Compute n + 12, n + 22, n + 32, until you reach a perfect 
square, say r2 = n + k2 
Then n = r2 - k2 = (r+k)(r-k) 

2. (p-1) algorithm: 
If (p-1) has only small factors, one can factor n: 

   Compute b=aB!(mod n), then d=gcd(b-1, n) is a factor. 
How to avoid this? 

3. Quadratic sieve (next) 
 



http://xkcd.com/247/ 

I occasionally do this with mile markers on the highway 



Example 

Factor n = 3837523 
 
Concepts we will learn also apply to factoring 
really big numbers. They are the basis of the 
best current methods 
All you had to do a couple years ago to win 
$30,000 was factor a 212 digit number. 
This was the RSA Challenge: 
http://www.rsa.com/rsalabs/node.asp?id=2093#RSA704 

http://www.rsa.com/rsalabs/node.asp?id=2093


Quadratic Sieve (1) 

Factor n = 3837523 
Want x,y:        gcd(x-y, n) is a factor 
 
Step 1: Pick a factor base, just a set of small factors.  

 In our examples, we’ll use those < 20.  
 There are eight: 2, 3, 5, 7, 11, 13, 17, 19 

)(mod,22 nyxbutyx ±≠≡
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Factor n = 3837523 
Want x,y:         gcd(x-y, n) is a factor 
 
Step 2: We want squares that are congruent to products of 

factors in the factor base. 
 
For example, we note that 80772 mod(n) = 2 * 19 
 
Demo Matlab 

 
 

Quadratic Sieve (2) 

)(mod,22 nyxbutyx ±≠≡



Factor n = 3837523 
Want x,y:         gcd(x-y, n) is a factor 
 
Step 2: We want squares that are congruent to products of 

factors in the factor base. 
Our hope: Reasonably small numbers are more likely to be 

products of factors in the factor base. 
 
 

1. Then   which is small as long as k isn’t too big 
2. Loop over small ε, lots of k.  
3. A newer technique, the number field sieve, is somewhat faster 

Quadratic Sieve (2a) 

)(mod,22 nyxbutyx ±≠≡

 εε +=+= knxwitheapproximatsoknxWant ,2

22 2 εε ++≈ knknx



Factor n = 3837523 
Want x,y:        gcd(x-y, n) is a factor 
 
Step 2: We want squares that are congruent to products of 

factors in the factor base. 
Our hope: Reasonably small numbers are more likely to be 

products of factors in the factor base. 
 
 
Examples: 

 
 

Quadratic Sieve (2b) 

Hmm. Both have a  
common “19” 

)(mod,22 nyxbutyx ±≠≡

 εε +=+= knxwitheapproximatsoknxWant ,2

)(mod195593759398;4239398

)(mod192388077;1178077
52
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Factor n = 3837523 
Want x,y:        gcd(x-y, n) is a factor 
 
Step 3: Pair x’s: try to find two non-congruent perfect squares 
 
Example: 
 This is close, but all factors need to be paired 
 

 
Recall: 

Quadratic Sieve (3) 

)(mod,22 nyxbutyx ±≠≡

2252 )195(52195192)93988077( ⋅⋅⋅=⋅⋅⋅≡⋅
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Factor n = 3837523 
Want x,y:        gcd(x-y, n) is a factor 
 
Step 3: Pair x’s: try to find two non-congruent perfect squares 
 
Example: 
 This is close, but all factors need to be paired 
 
Generate lots of # and experiment until all factors are paired. 
 

 
 

Quadratic Sieve (3b) 

So what? 

SRCT tells us: 
gcd(1147907-17745, n)=1093 
 
Other factor = n/1093=3511 

)(mod,22 nyxbutyx ±≠≡
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Factor n = 3837523 
Want x,y:        gcd(x-y, n) is a factor 
 
Step 4: Automate finding two non-congruent perfect squares 
 
Example: 
 This is close, but all factors need to be paired 
 
Generate lots of # and experiment until all factors are paired. 
To automate this search:  
 Can write each example as a row in a matrix, where 

each column is a prime in the number base 
 Then search for dependencies among rows mod 2. 
 May need extra rows, since sometimes we get x=+/-y.  

Quadratic Sieve (4) 

)(mod,22 nyxbutyx ±≠≡

2252 )195(52195192)93988077( ⋅⋅⋅=⋅⋅⋅≡⋅



Factor n = 3837523 
To automate this search:  

 
Each row in the matrix is 
a square 
 
Each column is a prime 
in the number base 
 
Search for 
dependencies among 
rows mod 2. 
 
For last one (green) 
 
 
 

So we can’t use the square 
root compositeness 
theorem 

My code 

Sum:        0   2   2   2   0  4   0    0 
Sum:        8   4   6   0   2  4   0    2 Sum:        6   0   6   0   0  2   0    2 

)191352(
)339780779398(

33 ⋅⋅⋅−

≡⋅⋅

 



Factoring Summary 

1. Fermat factoring: 
Compute n + 12, n + 22, n + 32, until you reach a perfect 
square, say r2 = n + k2 
Then n = r2 - k2 = (r+k)(r-k) 

2. (p-1) algorithm: 
If (p-1) has only small factors, one can factor n: 

   Compute b=aB!(mod n), then d=gcd(b-1, n) is a factor. 
How to avoid this? 

3. Quadratic sieve 
Generate lots of squares that can be expressed as products of 
small primes 
Pairs = linear dependencies (mod 2) 
Speed? See http://www.crypto-world.com/FactorRecords.html 

 

http://www.crypto-world.com/FactorRecords.html


Discrete logs… 
But first, some humor: 

Bruce Schneier is a genius in the crypto field, the author of the 
authoritative book on crypto. 

 
Bruce Schneier writes his books and essays by 

generating random alphanumeric text of an 
appropriate length and then decrypting it.  



Discrete logs… 
…are the basis of the ElGamal 

cryptosystem 
…can be used for digital signatures  



Discrete Logs 

)(βαLx =

Find x 
 
We denote this as  
 
 
 
Why is this hard? 

Given )(mod pxαβ =

5 



Consider this… 

Solve 9=2x (mod 11) 
We denote the answer as L2(9) 
 
Are there other solutions for x? 
 
By convention, x is defined to be the 
minimum of all such. 
It must be < (p-1). Why? 
 

6 



But consider this… 
Solve 2150=3621x (mod p) where 
p=1775754…74581 (100 digits) 
 
How long will exhaustive search take? 
 Up to p-2 if 3621 is a primitive root of n. 

 
What’s a primitive root? 
 
Please read section 3.7 (1 page) tonight if you 
haven’t 

7 



One-way functions 

Take y=f(x) 
If y is easy to find given x, but x is hard to 
find given y, f is called a one-way function. 
Examples: 
 Factoring (easy to multiply, hard to factor) 
 Discrete logs (easy to find powers mod n, 

even if n is large, but hard to find discrete log) 
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