
Announcements:
1. Term project groups and topics due tomorrow

midnight
 Waiting for posts from most of you.

Questions?

This week:
 Primality testing, factoring
 Discrete Logs

DTTF/NB479: Dszquphsbqiz Day 23

Factoring

If you are trying to factor n=pq and know
that p~q, use Fermat factoring:
 Compute n + 12, n + 22, n + 32, until you reach

a perfect square, say r2 = n + k2
 Then n = r2 - k2 = (r+k)(r-k)

Example: factor 2405597
The moral of the story?
 Choose p and q such that _____

(p-1) Algorithm

Useful if p|n and (p-1) has only small
factors
Choose any a>1 (like a=2) and a bound B
Compute b=aB!(mod n) (How?)
Then compute d=gcd(b-1, n)
 If 1<d<n, then d is a non-trivial factor

Matlab example: n=5183. We’ll use a=2, B=6.
Why does it work?

1-3

Moral of this story?

To get a 100-digit number n=pq resistant
to this attack:
 Make sure (p-1) has at least 1 large prime

factor:
 Pick p0 = nextprime(1040)
 Choose k~1060 such that p=(kp0+1)is prime

How to test?
 Repeat for q.

Summary of known
implementation mistakes

Choosing p and q close to each other
Choosing p and q such that (p-1) or (q-1) has only small
prime factors
Choosing e=3 (smallest e such that gcd(e,(f(n))=1
(problem 6.8.10 and 6.9.14)
Using a scheme such that ½ the digits of p or q are easy
to find (6.2 Theorem 1)
Choosing e too small (6.2 Theorem 2)
Choosing d too small (d < 1/3 n1/4; 6.2 Theorem 3;
exposes to continued fraction attack)
Choosing plaintext much shorter than n
 (But can pad plaintext; see scheme on p. 173)

One of the factoring Bonus problems suffers from one
such mistake

Summary so far: Two of three factoring methods

1. Fermat factoring:
Compute n + 12, n + 22, n + 32, until you reach a perfect
square, say r2 = n + k2
Then n = r2 - k2 = (r+k)(r-k)

2. (p-1) algorithm:
If (p-1) has only small factors, one can factor n:

 Compute b=aB!(mod n), then d=gcd(b-1, n) is a factor.
How to avoid this?

3. Quadratic sieve (next)

http://xkcd.com/247/

I occasionally do this with mile markers on the highway

Example

Factor n = 3837523

Concepts we will learn also apply to factoring
really big numbers. They are the basis of the
best current methods
All you had to do a couple years ago to win
$30,000 was factor a 212 digit number.
This was the RSA Challenge:
http://www.rsa.com/rsalabs/node.asp?id=2093#RSA704

http://www.rsa.com/rsalabs/node.asp?id=2093

Quadratic Sieve (1)

Factor n = 3837523
Want x,y:  gcd(x-y, n) is a factor

Step 1: Pick a factor base, just a set of small factors.

 In our examples, we’ll use those < 20.
 There are eight: 2, 3, 5, 7, 11, 13, 17, 19

)(mod,22 nyxbutyx ±≠≡

4

Factor n = 3837523
Want x,y:  gcd(x-y, n) is a factor

Step 2: We want squares that are congruent to products of

factors in the factor base.

For example, we note that 80772 mod(n) = 2 * 19

Demo Matlab

Quadratic Sieve (2)

)(mod,22 nyxbutyx ±≠≡

Factor n = 3837523
Want x,y:  gcd(x-y, n) is a factor

Step 2: We want squares that are congruent to products of

factors in the factor base.
Our hope: Reasonably small numbers are more likely to be

products of factors in the factor base.

1. Then which is small as long as k isn’t too big
2. Loop over small ε, lots of k.
3. A newer technique, the number field sieve, is somewhat faster

Quadratic Sieve (2a)

)(mod,22 nyxbutyx ±≠≡

 εε +=+= knxwitheapproximatsoknxWant ,2

22 2 εε ++≈ knknx

Factor n = 3837523
Want x,y:  gcd(x-y, n) is a factor

Step 2: We want squares that are congruent to products of

factors in the factor base.
Our hope: Reasonably small numbers are more likely to be

products of factors in the factor base.

Examples:

Quadratic Sieve (2b)

Hmm. Both have a
common “19”

)(mod,22 nyxbutyx ±≠≡

 εε +=+= knxwitheapproximatsoknxWant ,2

)(mod195593759398;4239398

)(mod192388077;1178077
52

2

nn

nn

⋅=≡+=

⋅=≡+=

Factor n = 3837523
Want x,y:  gcd(x-y, n) is a factor

Step 3: Pair x’s: try to find two non-congruent perfect squares

Example:
 This is close, but all factors need to be paired

Recall:

Quadratic Sieve (3)

)(mod,22 nyxbutyx ±≠≡

2252)195(52195192)93988077(⋅⋅⋅=⋅⋅⋅≡⋅

)(mod195593759398
)(mod192388077

52

2

n
n

⋅=≡

⋅=≡

Factor n = 3837523
Want x,y:  gcd(x-y, n) is a factor

Step 3: Pair x’s: try to find two non-congruent perfect squares

Example:
 This is close, but all factors need to be paired

Generate lots of # and experiment until all factors are paired.

Quadratic Sieve (3b)

So what?

SRCT tells us:
gcd(1147907-17745, n)=1093

Other factor = n/1093=3511

)(mod,22 nyxbutyx ±≠≡

2252)195(52195192)93988077(⋅⋅⋅=⋅⋅⋅≡⋅

()
22

222

222

322

177451147907
13753)142621954(

)(mod137514262
)(mod1331964

≡

⋅⋅⋅≡⋅

⋅⋅≡

⋅≡

n
n

Factor n = 3837523
Want x,y:  gcd(x-y, n) is a factor

Step 4: Automate finding two non-congruent perfect squares

Example:
 This is close, but all factors need to be paired

Generate lots of # and experiment until all factors are paired.
To automate this search:
 Can write each example as a row in a matrix, where

each column is a prime in the number base
 Then search for dependencies among rows mod 2.
 May need extra rows, since sometimes we get x=+/-y.

Quadratic Sieve (4)

)(mod,22 nyxbutyx ±≠≡

2252)195(52195192)93988077(⋅⋅⋅=⋅⋅⋅≡⋅

Factor n = 3837523
To automate this search:

Each row in the matrix is
a square

Each column is a prime
in the number base

Search for
dependencies among
rows mod 2.

For last one (green)

So we can’t use the square
root compositeness
theorem

My code

Sum: 0 2 2 2 0 4 0 0
Sum: 8 4 6 0 2 4 0 2 Sum: 6 0 6 0 0 2 0 2

)191352(
)339780779398(

33 ⋅⋅⋅−

≡⋅⋅

Factoring Summary

1. Fermat factoring:
Compute n + 12, n + 22, n + 32, until you reach a perfect
square, say r2 = n + k2
Then n = r2 - k2 = (r+k)(r-k)

2. (p-1) algorithm:
If (p-1) has only small factors, one can factor n:

 Compute b=aB!(mod n), then d=gcd(b-1, n) is a factor.
How to avoid this?

3. Quadratic sieve
Generate lots of squares that can be expressed as products of
small primes
Pairs = linear dependencies (mod 2)
Speed? See http://www.crypto-world.com/FactorRecords.html

http://www.crypto-world.com/FactorRecords.html

Discrete logs…
But first, some humor:

Bruce Schneier is a genius in the crypto field, the author of the
authoritative book on crypto.

Bruce Schneier writes his books and essays by

generating random alphanumeric text of an
appropriate length and then decrypting it.

Discrete logs…
…are the basis of the ElGamal

cryptosystem
…can be used for digital signatures

Discrete Logs

)(βαLx =

Find x

We denote this as

Why is this hard?

Given)(mod pxαβ =

5

Consider this…

Solve 9=2x (mod 11)
We denote the answer as L2(9)

Are there other solutions for x?

By convention, x is defined to be the
minimum of all such.
It must be < (p-1). Why?

6

But consider this…
Solve 2150=3621x (mod p) where
p=1775754…74581 (100 digits)

How long will exhaustive search take?
 Up to p-2 if 3621 is a primitive root of n.

What’s a primitive root?

Please read section 3.7 (1 page) tonight if you
haven’t

7

One-way functions

Take y=f(x)
If y is easy to find given x, but x is hard to
find given y, f is called a one-way function.
Examples:
 Factoring (easy to multiply, hard to factor)
 Discrete logs (easy to find powers mod n,

even if n is large, but hard to find discrete log)

	Slide Number 1
	Factoring
	(p-1) Algorithm
	Moral of this story?
	Summary of known implementation mistakes
	Summary so far: Two of three factoring methods
	Slide Number 7
	Example
	Quadratic Sieve (1)
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Factoring Summary
	Discrete logs…
	Discrete logs…
	Discrete Logs
	Consider this…
	But consider this…
	One-way functions

