DTTF/NB479: Dszquphsboqiz

- Announcements:

1. Pass in Homework 5 now.
2. Term project groups and topics due by Friday
3. Can use discussion forum to find teammates
4. HW6 posted

- Questions?
- This week:
- Primality testing, factoring
- Discrete Logs

The Square Root Compositeness Theorem gives a
way to factor certain composite numbers
The Square Root Compositeness Theore
way to factor certain composite numbers

Given integers n, x, and y :
If $x^{2} \equiv y^{2}(\bmod n)$, but $x \neq \pm y(\bmod n)$
Then n is composite, and $\operatorname{gcd}(x-y, n)$ is a non-trivial factor

1 non-trivial factor

8
()
\qquad
 0
\qquad

[^0]

- $4-1$ \square \square

[^1]

.

$2+2$
 non-inivial factor

The Miller-Rabin Compositeness Test just reorders
the Fermat test's powermod to catch pseudoprimes
The Miller-Rabin Compositeness Test just reorders
the Fermat test's powermod to catch pseudoprimes

Observe: n is odd and $n>1$
Trick: write $n-1=2^{k} m$, where $k>=1$

Weill compute powers from inside out, checking if the
result is +1 or -1 at each step
Weill compute powers from inside out, checking if the
result is +1 or -1 at each step

$$
a^{n-1} \stackrel{?}{\equiv} 1(\bmod n)
$$ the Fermat test's powermod to ca $$
a^{n-1} \stackrel{?}{=} 1(\bmod n)
$$
 .

Tick wit er

$$
a^{n-1}=\left(\left(\left(a^{m}\right)^{2}\right) \cdot \cdot\right)^{2} \stackrel{?}{=} 1(\bmod n)
$$

 $a^{n-1}=\left(\left(\left(a^{m}\right)^{2}\right)\right)^{-\ddot{?}} \stackrel{?}{=} 1(\bmod n)$

 $a^{n-1}=\left(\left(\left(a^{m}\right)^{2}\right)\right)^{-\ddot{?}} \stackrel{?}{=} 1(\bmod n)$}$\qquad$?

 \qquad

 8

\qquad

$a^{n-1}=\left(\left(\left(a^{m}\right)^{2}\right) \cdot\right)^{2} \stackrel{?}{=} 1(\bmod n)$
if the
\qquad

$$
5
$$

\qquad
\qquad
\qquad

In, wile rio
\square+
 -

$$
\square
$$

$$
\rightarrow
$$

$$
\Delta
$$

$$
\square
$$

\qquad
\qquad

\qquad ?ese ate +2 - \square
\square
\qquad
\square
\qquad
+
\square

\rightarrow
-

$$
\begin{aligned}
& \text { dor } \\
& \text { - }
\end{aligned}
$$

If $b_{k}=1(\bmod n)$, stop. n is composite by

It uses the Square Root Compositeness Theorem to catch most pseudoprimes

k
\qquad
\qquad
\qquad

[^2]\qquad

 . H)
Els

[^3]\qquad

\qquad

\square
\square

$$
\square
$$

\square
\square

\qquad

\qquad

 I \checkmark C

$$
\begin{align*}
& \text { Given odd } n>1 \text {, write } n-1=2 k m \text {, where } k>=1 \text {. } \\
& \text { Choose a base a randomly (or just pick } a=2 \text {) } \\
& \text { Let } b_{0}=a^{m}(\bmod n) \\
& \text { If } b_{0}=+/-1, \text { stop. } n \text { is probably prime by } \\
& \text { Fermat } \\
& \text { For } i=1 . . k-1 \\
& \text { Compute } b_{j}=b_{i-1}{ }^{2} \text {. } \\
& \text { If } b_{0}=1(m o d n), \text { stop. } n \text { is composite by } \\
& S R C T, \text { and } g c d\left(b_{i-1}-1, n\right) \text { is a factor. } \\
& \text { If } b_{i}=-1(m o d n), \text { stop. } n \text { is probably } \\
& \text { prime by Fermat. }
\end{align*}
$$

$$
5-10-10
$$

Examples of Miller-Rabin

Given odd $n>1$, write $n-1=2 k m$, where $k>=1$.
Choose a base a randomly (or just pick $\mathrm{a}=2$)
Let $b_{0}=a^{m}(\bmod n)$
If $b_{0}=+/-1$, stop. n is probably prime by Fermat
For $\mathrm{i}=1 . . \mathrm{k}-1$
Compute $b_{j}=b_{i-1}{ }^{2}$.
If $b=1(\bmod n)$, stop. n is composite by SRCT, and
$\operatorname{gcd}\left(b_{i-1}-1, n\right)$ is a factor. If $b_{i}=-1(\bmod n)$, stop. n is probably prime by Fermat.

If $b_{k}=1(\bmod n)$, stop. n is composite by SRCT
Else n is composite by Fermat.

1. $\mathrm{n}=189$
2. $n=561$ (recall Fermat says prob prime)
3. Complete the table on your quiz

Fermat's contrapositive is OK, but Miller-Rabin is better!

Fermat's contrapositive is OK, but Miller-Rabin is better!

- Finding large probable primes
- \#primes $<x=\pi(x) \rightarrow \frac{x}{\ln (x)}$

Density of primes: $\sim 1 / \ln (x)$
For 100 -digit numbers, $\sim 1 / 230$.
So $\sim 1 / 115$ of odd 100 -digit numbers are prime

Can start with a random large odd number and iterate, applying M-R to remove composites. We'll soon find one that is a likely prime.
Can repeat with different bases to improve probability that it's prime.
Maple's nextprime() appears to do this, but also runs the Lucas test: httip://www.mathpages.com/home/k math473.htim

div by other small primes?
no
Pass M-R?

Prime by Factoring/ advanced techn.?
prime

Factoring

Off you are trying to factor $n=p q$ and know that p and q are close, use Fermat factoring:

- Compute $n+1^{2}, n+2^{2}, n+3^{2}$, until you reach a perfect square, say $r^{2}=n+k^{2}$
- Then $n=r^{2}-k^{2}=(r+k)(r-k)$
- Example: factor 2405597
- The moral of the story?
- Choose p and q such that

(p-1) Algorithm

- Useful if p|n and ($\mathrm{p}-1$) has only small factors
- Choose any $a>1$ (like $a=2$) and bound B
- Compute $b=a^{B 1}(\bmod n)$ (How?)
- Then compute $d=\operatorname{gcd}(b-1, n)$
- If $1<d<n$, then d is a non-trivial factor
- Matlab example: $\mathrm{n}=5183$. We'll use $\mathrm{a}=2, \mathrm{~B}=6$.
- Why does it work?

Moral of this story?

- To get a 100 -digjit number $n=$ pq resistant to this attack:
- Make sure ($\mathrm{p}-1$) has at least 1 large prime factor:
- Pick $p_{0}=$ nextprime $\left(10^{40}\right)$
- Choose $\mathrm{k} \sim 10^{60}$ such that $\mathrm{p}=\left(\mathrm{kp} p_{0}+1\right)$ is prime
-How to test?
- Repeat for q.

Example

Factor $n=3837523$

- Concepts we will learn also apply to factoring really big numbers. They are the basis of the best current methods
- All you had to do to win \$30,000 was factor a 212 digjit number.
- This is the RSA Challenge: hitti:///Www.rsa.com//ssalabs/node.asp?id=2093\#RSA704

[^0]:

[^1]: \qquad

[^2]: Else n is composite by Fermat.

 $$
 +.+2+-1
 $$

 \qquad
 L

[^3]:
 \qquad

