DTTF/NB479: Dszquphsboqiz

- Announcements:

1. Congrats on reaching the halfway point once again!
2. Reminders:
3. HW5 due tomorrow
4. Term project groups and topics due by Friday.

- Questions?
- This week:
- Primality testing, factoring
- Discrete Logs

Term projects

- Use Ch $10-19$ as inspiration.
- Elliptic curves?
- Quantum crypto?
- Security protocols?
- Deliverables:
- A paper demonstrating your understanding of the topic
- A $20-\mathrm{min}$ in-class presentation $9^{\text {th/ }} / 10^{\text {th }}$ week - Groups of 4 to bound presentation time.
- Preliminary details posted

Plus-delta

-Please give me 5 minutes of your time for feedback on the course so far

Where were we?

- RSA: public-key system: n, e known
- Easy to encrypt
- But need factorization of $n(p q)$ to find d to decrypt.
- Factorization is a "one-way" function
- Builds on lots of ch 3 number theory, like Euclid, Fermat, and Euler.
- Slow, but can be used to send AES "session" keys
- You used Maple to send messages
- You looked at some "implementation mistakes" (for example, using small values for e)

Compositeness testing

Oops, did I say primality testing?
Today, we discuss three techniques that can guarantee a number is composite, and guess when one is prime.

1. Square Root Compositeness Theorem $+$
2. Fermat's Theorem

$$
=
$$

3. Miller-Rabin Compositeness Test

The Square Root Compositeness Theorem gives a
way to factor certain composite numbers
The Square Root Compositeness Theore
way to factor certain composite numbers

Given integers n, x, and y :
If $x^{2} \equiv y^{2}(\bmod n)$, but $x \neq \pm y(\bmod n)$
Then n is composite, and $\operatorname{gcd}(x-y, n)$ is a non-trivial factor

Proof: on board
Toy example showing 21 is composite using $\mathrm{x}=2$ and $\mathrm{y}=16$.
 $\bmod n)$

 ? \qquad

Review: Fermat can be used to test for

 compositeness, but doesn't give factors- Fermat's liftile theorem:
- If n is prime and doesn't divide a , then $a^{n-1} \equiv 1(\bmod n)$
- Contrapositive:
- If $a^{n-1} \neq 1(\bmod n)$ then n is composite
- In practice,
- If $a^{n-1} \equiv 1(\bmod n)$ then n is probably prime
- Rare counterexamples (15k of first 10B pos integers) called pseudoprimes
- Notes
- Never gives factors
- Compute using powermod

A is... $\backslash a^{n-1}$	$=1$	$\neq 1$
Prime	Usually true	None
Composite	Rare pseudoprime	All

Review: Primality testing schemes typically use the

contrapositive of Fermat

The Miller-Rabin Compositeness Test just reorders
the Fermat test's powermod to catch pseudoprimes
The Miller-Rabin Compositeness Test just reorders
the Fermat test's powermod to catch pseudoprimes

Observe: n is odd and $n>1$
Trick: write $n-1=2^{k} m$, where $k>=1$

Weill compute powers from inside out, checking if the
result is +1 or -1 at each step
Weill compute powers from inside out, checking if the
result is +1 or -1 at each step

$$
a^{n-1} \stackrel{?}{\equiv} 1(\bmod n)
$$ the Fermat test's powermod to ca $$
a^{n-1} \stackrel{?}{=} 1(\bmod n)
$$
 .

Tick wit er

$$
a^{n-1}=\left(\left(\left(a^{m}\right)^{2}\right) \cdot \cdot\right)^{2} \stackrel{?}{=} 1(\bmod n)
$$

 $a^{n-1}=\left(\left(\left(a^{m}\right)^{2}\right)\right)^{-\ddot{?}} \stackrel{?}{=} 1(\bmod n)$

 $a^{n-1}=\left(\left(\left(a^{m}\right)^{2}\right)\right)^{-\ddot{?}} \stackrel{?}{=} 1(\bmod n)$}$\qquad$?

 \qquad

 8

\qquad

$a^{n-1}=\left(\left(\left(a^{m}\right)^{2}\right) \cdot\right)^{2} \stackrel{?}{=} 1(\bmod n)$
if the
\qquad

$$
5
$$

\qquad
\qquad
\qquad

In, wile rio
\square+
 -

$$
\square
$$

$$
\rightarrow
$$

$$
\Delta
$$

$$
\square
$$

\qquad
\qquad

\qquad ?ese ate +2 - \square
\square
\qquad
\square
\qquad
+
\square

\rightarrow
-

$$
\begin{aligned}
& \text { rr } \\
& \text { - }
\end{aligned}
$$

It uses the Square Root Compositeness Theorem to catch most pseudoprimes

 \qquad
\qquad
\qquad
\qquad
。

 -

\qquad

\square

