
Announcements:
1. Congrats on reaching the halfway point once again!
2. Reminders:

1. HW5 due tomorrow
2. Term project groups and topics due by Friday.

Questions?

This week:
 Primality testing, factoring
 Discrete Logs

DTTF/NB479: Dszquphsbqiz Day 21

Use Ch 10 – 19 as inspiration.
 Elliptic curves?
 Quantum crypto?
 Security protocols?

Deliverables:
 A paper demonstrating your understanding of

the topic
 A 20-min in-class presentation 9th/10th week

Groups of 4 to bound presentation time.
 Preliminary details posted

Term projects

Plus-delta

Please give me 5 minutes of your time for
feedback on the course so far

Where were we?

RSA: public-key system: n, e known
 Easy to encrypt
 But need factorization of n (pq) to find d to decrypt.
 Factorization is a “one-way” function
 Builds on lots of ch 3 number theory, like Euclid,

Fermat, and Euler.
 Slow, but can be used to send AES “session” keys

You used Maple to send messages
You looked at some “implementation mistakes”
(for example, using small values for e)

Compositeness testing

Oops, did I say primality testing?
Today, we discuss three techniques

that can guarantee a number is
composite, and guess when one is
prime.

1. Square Root Compositeness Theorem
 +
2. Fermat’s Theorem
 =
3. Miller-Rabin Compositeness Test

The Square Root Compositeness Theorem gives a
way to factor certain composite numbers

Given integers n, x, and y:

Then n is composite, and gcd(x-y, n) is a

non-trivial factor

Proof: on board
Toy example showing 21 is composite

using x=2 and y=16.

)(mod),(mod22 nyxbutnyxIf ±≠≡

1

Review: Fermat can be used to test for
compositeness, but doesn’t give factors

Fermat’s little theorem:
 If n is prime and doesn’t divide a, then

Contrapositive:
 If then n is composite

In practice,
 If then n is probably prime

 Rare counterexamples (15k of first 10B pos integers) called

pseudoprimes

Notes
 Never gives factors
 Compute using powermod

A is… \ an-1 =1 ≠1
Prime Usually true None
Composite Rare pseudoprime All

)(mod11 nan ≡−

)(mod11 nan ≡−

)(mod11 nan ≠−

2

1)(mod2
?

1 ≡− nn

Even?

div by other small primes?

Prime by Factoring/
advanced techn.?

n

no

no

yes

yes

prime

)(mod12
?

1 nn ≡−

Review: Primality testing schemes typically use the
contrapositive of Fermat

The Miller-Rabin Compositeness Test just reorders
the Fermat test’s powermod to catch pseudoprimes

Observe: n is odd and n>1
Trick: write n-1=2km, where k >=1

b0

()())(mod1
2...21 naa mn ≡

=− ?

)(mod11 nan ≡− ?

We’ll compute powers from inside out, checking if the
result is +1 or -1 at each step

It uses the Square Root Compositeness Theorem to
catch most pseudoprimes
Given odd n>1, write n-1=2km, where k >=1.

Choose base a randomly (or just pick a=2)

Let b0=am(mod n)
If b0=+/-1, stop. n is probably prime by

Fermat
For i = 1..k-1
 Compute bi=bi-1

2.
 If bi=1(mod n), stop. n is composite by

SRCT, and gcd(bi-1-1,n) is a factor.
 If bi=-1(mod n), stop. n is probably

prime by Fermat.

If bk=1 (mod n), stop. n is composite by

SRCT
Else n is composite by Fermat.

k

b0

b1

bk

()() 2...21

=− mn aa

b0

	Slide Number 1
	Slide Number 2
	Plus-delta
	Where were we?
	Compositeness testing
	The Square Root Compositeness Theorem gives a way to factor certain composite numbers
	Review: Fermat can be used to test for compositeness, but doesn’t give factors
	Review: Primality testing schemes typically use the contrapositive of Fermat
	The Miller-Rabin Compositeness Test just reorders the Fermat test’s powermod to catch pseudoprimes
	It uses the Square Root Compositeness Theorem to catch most pseudoprimes

