DTTF/NB479: Dszquphsbqiz

- Announcements:
- DES due now
- Chapter 3 Exam tomorrow
- No cheat sheets allowed
- Term project groups and topics due end of next week - Use ch 10 - 19 as inspiration
- Today
- Using RSA: practical considerations
- Questions?

RSA (Rivest - Shamir - Adelman)

For Alice to send a message to Bob.

- Bob chooses primes p,q (large, ~100 digjits each)
- He publishes his public key (n, e):
- $n=p q$
e, a large number such that $\operatorname{gcd}(e,(p-1)(q-1))=1$
- Alice has a message $m<n$.
- Otherwise (if $m>n$), break message into chunks $<n$
- Alice sends $c=m^{e}(\bmod n)$
- Bob computes $c^{d}(\bmod n)=\left(m^{e}\right)^{d}=m(\bmod n)$.
- What does he use for d?

The security of RSA lies in the difficulty of factoring products of large primes

Are there any shortcuts to decryption?
Consider:

1. Can we find the $e^{\text {th }}$ root of $c=m^{e}$ quickly?

No, since mod n
2. Is $\phi(n)$ as hard to find as factors p and q ? Yesterday: yes, using $n-\phi(n)+1$ and the quadratic formula
3. Is finding d directly is as hard to do as finding p and q ?

Next week: yes!

Toy example

- Alice - $(\mathrm{m}) \rightarrow$ Bob
- Bob's key:
, $n=p q=(13)(17)=221$
, $e=35: \operatorname{gcd}(e,(p-1)(q-1))=1$
, $d=e^{-1} \bmod 192$ exists: $d=$ \qquad
- $m=20$ (letter t)
- 1-based, so leading 'a' = 1 not ignored
- $c=m^{e}(\bmod n)=-197$
- $c^{d}(\bmod n)=20$

Issues:

How to compute $20^{35}(\bmod 221)$? Efficiency is $\mathrm{O}(\log \mathrm{e})$

How to compute d?
Extended Euclidean alg.

- And why is this secure?
- Why can't Eve calculate d herself?

Example with larger numbers

- Maple's worksheet mode
- For some reason, inert power ($\& \wedge$) only works for me when entering in the red (single-line exponents) entry-mode; press F5 (or |> button) to toggle.
- myConcatenator is a lambda expression.
msg $:=$ convert ("hello", bytes);
$>$ myConcatenator $:=\operatorname{arr} \rightarrow \operatorname{sum}\left(\operatorname{arr}[i] \cdot 1000^{(i-1)}, i=1 \ldots \operatorname{nops}(\operatorname{arr})\right)$;

$$
\text { myConcatenator }:=\operatorname{arr} \rightarrow \sum_{i=1}^{\text {nops (arr) }} \operatorname{arr}_{i} 1000^{(i-1)}
$$

$>m=$ myConcatenator (msg);

$$
m:=111108108101104
$$

$$
p:=100000000000000000039
$$

$q:=$ nextprime $\left(10^{21}\right) ;$

$$
q:=1000000000000000000117
$$

$n:=p \cdot q ;$
$n:=100000000000000000050700000000000000004563$
$e:=65537$,

$$
e:=65537
$$

$\phi:=100000000000000000049600000000000000004408$
$c:=41172530747560554631603662398453570506594$
$d:=45366739399118055472095262218288905505761$

$$
d e c:=111108108101104
$$

[104, 101, 108, 108, 111]
convert (\%, bytes);

