DTTF/NB479: Dszquphsbqiz Day 17 Announcements: DES due Thursday. Careful with putting it off since Ch 3 test Friday too. Today: Finish GF(2⁸) Rijndael Questions?

AES (Rijndael)

The S-boxes, round keys, and MixColumn functions require the use of GF(2⁸), so

Fields (T&W, 3.11)

A field is a set of numbers with the following properties:

- Addition, with identity: a + 0 = a and inverse a+(-a)=0
- Multiplication with identity: a*1=a, and inverse (a * a⁻¹ = 1 for all a != 0)
- Subtraction and division (using inverses)
- Commutative, associative, and distributive properties
- Closure over all four operations

Examples:

- Real numbers
- GF(4) = {0, 1, ω , ω^2 } with these additional laws: x + x = 0 for all x and ω + 1 = ω^2 .
- GF(pⁿ) for prime p is called a Galois Field.

A Galois field is a finite field with pⁿ elements for a prime p

- There is only one finite field with pⁿ elements for every power of n and prime p.
- $GF(p^n) = Z_p[X] \pmod{P(X)}$ is a field with p^n elements.
- Wasn't Z²[X] (mod X² + X + 1) = GF(4)?
- Consider GF(2ⁿ) with P(X) = X⁸ + X⁴ + X³ + X + 1 Rijndael uses this!

Finish quiz.

Back to Rijndael/AES

Figure 5.1: The AES-Rijndael Algorithm

Parallels with DES?

- Multiple rounds
 - (7 is enough to require brute force)
- Diffusion
- XOR with round keys
- No MixColumn in last round
- Major differences
 - Not a Feistel system
 - Much quicker diffusion of bits (2 rounds)
 - Much stronger against linear, diffy. crypt., interpolation attacks

ByteSub (BS)

S-Box $124 \ 119 \ 123 \ 242 \ 107 \ 111 \ 197 \ 48$ 1 103 43 254 215 171 118 $130 \ 201 \ 125 \ 250$ -89 240 173 212 162 175 156 164 114 192 253 147 $165 \ 229$ $\mathbf{5}$ $\mathbf{7}$ 59 214 179 252 177 106 203 190 -57 $159 \ 168$ 56 245 188 182 218 -33 167 126 -115144 136 $\overline{70}$ 238 184 20 194 211 172 98 $145 \ 149 \ 228 \ 121$ 78 169 108 244 234 101 122 174 -8 166 180 198 232 221 116 75 189 139 138 -14 185 134 105 217 142 148 155 135 233 140 161 137 13 191 230 66 104 65 153 45 84 187 -176

Table 5.1: S-Box for Rijndael

1. Write 128-bit input *a* as matrix with 16 byte entries (column major ordering):

	$(a_{0,0})$	$a_{0,1}$	$a_{0,2}$	$a_{0,3}$
<i>a</i> =	$a_{1,0}$	$a_{1,1}$	$a_{1,2}$	$a_{1,3}$
	$a_{2,0}$	$a_{2,1}$	$a_{2,2}$	$a_{2,3}$
	$a_{3,0}$	$a_{3,1}$	<i>a</i> _{3,2}	$a_{3,3}$

For each byte, abcdefgh, replace with byte in location (abcd, efgh)
 Example: 00011111 → ____
 Example: 11001011 → ____

3. Output is a matrix called b

Why were these numbers chosen?

S-box Derivation

The S-box maps byte x to byte z via the function $z = Ax^{-1}+b$:

Input byte x: $x_7 x_6 x_5 x_4 x_3 x_2 x_1 x_0$

Compute the inverse in GF(2^8): $y_7y_6y_5y_4y_3y_2y_1y_0$ (use 0 as inverse of 0) (non-linear, vs. attacks)

Compute this linear function z in $GF(2^8)$:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} z_0 \\ z_1 \\ z_2 \\ z_3 \\ z_4 \\ z_5 \\ z_6 \\ z_7 \end{pmatrix}$$

(to complicate attacks)(A is simple to implement)b chosen so

 $z \neq x and z \neq \overline{x}$

ShiftRow (SR)

Shifts the entries of each row by increasing offset:

Gives resistance to newer attacks (truncated differentials, Square attack)

MixColumn (MC)

d

Multiply – via $GF(2^8)$ – with the fixed matrix shown.

	00000010	0011	001	001	$(c_{0,0})$	$C_{0,1}$	<i>C</i> _{0,2}	<i>C</i> _{0,3}
=	00000001	0010	0011	001	<i>C</i> _{1,0}	<i>C</i> _{1,1}	<i>C</i> _{1,2}	<i>C</i> _{1,3}
	00000001	001	0010	0011	<i>C</i> _{2,0}	$C_{2,1}$	<i>C</i> _{2,2}	<i>C</i> _{2,3}
	00000011	001	001	0010	C _{3,0}	<i>C</i> _{3,1}	<i>C</i> _{3,2}	<i>C</i> _{3,3}

Speed?

64 multiplications, each involving at most 2 shifts + XORs

Gives quick diffusion of bits

AddRoundKey (ARK)

Figure 5.1: The AES-Rijndael Algorithm

XOR the round key with matrix d.

$$e = d \oplus k_i$$

Key schedule on next slide

$$W_{10} = W(i - 4) \oplus \begin{cases} T(W(i - 1)) & if 4 \mid i \\ W(i - 1) & otherwise \end{cases}$$

$$W(i) = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \stackrel{\text{Shift and Sbox}}{\longrightarrow} \begin{pmatrix} e \\ f \\ g \\ h \end{pmatrix} \oplus \begin{pmatrix} r(i) \\ 0 \\ 0 \\ 0 \end{pmatrix} = T(W(i))$$
$$r(i) = (00000010)^{(i-4)/2} \text{ in } GF(2^8)$$

Highly non-linear. Resists attacks at finding whole key when part is known

192-, 256-bit versions similar

Figure 5.1: The AES-Rijndael Algorithm

Half-round structure:

Decryption E(k) is: (ARK₀, BS, SR, MC, ARK₁, ... BS, SR, MC, ARK₉, BS, SR, ARK₁₀) Each function is invertible: ARK; IBS; ISR; IMC $\left(\begin{array}{c} 00001110\\ 00001001\\ 00001101 \end{array} \begin{array}{c} 00001011\\ 00001001\\ 00001001 \end{array} \begin{array}{c} 00001011\\ 00001011\\ 00001101 \end{array} \right)$ 00001001 00001011 00001001 00001110 So D(k) is: ARK₁₀, ISR, IBS, ARK₉, IMC, ISR, IBS,

... ARK₁, IMC, ISR, IBS, ARK₀)

 Write E(k) = ARK, (BS, SR), (MC, ARK), ... (BS, SR), (MC, ARK), (BS, SR), ARK (Note that last MC wouldn't fit)
 D(k) = ARK, (ISR, IBS), (ARK, IMC), (ISR, IBS), ... (ARK, IMC), (ISR, IBS), ARK

Can write:

D(k) = ARK, (IBS, ISR), (IMC, IARK), ... (IBS, ISR), (IMC, IARK), (IBS, ISR), ARK

Wrap-up

Wikipedia's entry has some nice visuals
But this site has even nicer <u>animations</u>*