DTTF/NB479: Dszquphsboqiz

- Announcements:
- Ch 3 quiz Friday of week 5 . Will include fields (today)
- Upload electronic homeworks in pdf, preferably
- Direct HW questions directly to grader, then to me
- Today:
- Prep. for Rijndael and Discrete Logs: GF(28)
- Questions, like on DES?
- I pulled the key into the input file
- A good time to aim for would be $\sim 10 \mathrm{~s}$ for 1 M iterations.

DES round keys involve two permutations and a left shift
$K=\quad \begin{array}{llllllllllllllll}0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0\end{array}$
Grab 56 permuted bits:[57, 49, 41, 33 ...]
Get 1100...
In round 1, LS(1), so: 101 ... 1 *Careful!
Then grab 48 permuted bits:

$$
[14,17,11,24,1,5,3, \ldots]
$$

Get

$$
\ldots \quad 1 \quad 0 \ldots
$$

Rijndael is the 128-bit,

 Advanced Encryption Standard (AES)- 128-bit blocks
- Encrypted using functions of the 128-bit key for 10 rounds
- Versions exist for keys with 192 bits (12 rounds), 256 bits (14 rounds)
-The S-boxes, round keys, and MixColumn functions require the use of $\mathrm{GF}\left(2^{8}\right)$, so today we study fields...

A field is a set of numbers with special properties

- Addition, with identity: $a+0=a$ and inverse $a+(-a)=0$
- Multiplication with identity: $a^{*} 1=a$ and inverse ($a^{*} a^{-1}=1$ for all $a!=0$)
, Subtraction and division (using inverses)
- Commutative, associative, and distributive properties
- Closure over all four operations
- Examples:
- Real numbers
- $\mathrm{GF}(4)=\left\{0,1, \omega, \omega^{2}\right\}$ with these additional laws: $\mathrm{x}+\mathrm{x}$ $=0$ for all X and $\omega+1=\omega^{2}$.
- GF(p^{n}) for prime p is called a Galois Field.

Are these fields?

- A field is a set of numbers with the following properties:
- Addifion, with identity: $a+0=a$ and inverse $a+(-a)=0$
- Multiplication with identity: $a^{*} 1=a$, and inverse
($a^{*} a^{-1}=1$ for all $a!=0$)
- Subtraction and division (using inverses)
- Commutative, associative, and distributive properties
- Closure over all four operations
- Examples:
- Real numbers
- $\mathrm{GF}(4)=\left\{0,1, \omega, \omega^{2}\right\}$ with these additional laws: $\mathrm{x}+\mathrm{x}=0$ for all x and ω $+1=\omega^{2}$.
- GF(p^{n}) for prime p is called a Galois Field.

1. Positive integers

2. Integers
3. Rational numbers
4. Complex numbers
5. The set of 2×2 matrices of real numbers
6. Integers mod n (be careful here)

Cost or

A Galois field is a finite field with p^{n} elements

 for a prime p- Example: $G F(4)=G F\left(2^{2}\right)=\left\{0,1, \omega, \omega^{2}\right\}$
- There is only one finite field with p^{n} elements for every power of n and prime p.
- The integers $\left(\bmod \mathrm{p}^{n}\right)$ aren't a field.
. Why not?
$Z_{2}[X]$ is the set of polynomials with coefficients that are integers (mod 2)
- Example elements: $X+1, X^{4}+X^{2}+X+1$

Ils this a field?

- Does it have closure over add, subt, mull?

What about division?

- Almost a field. What about a closelyrelated finite field?
- Consider $Z_{2}[X] \bmod \left(X^{2}+X+1\right)$
\square

$Z_{2}[X]$ (moo elements)

-

$$
F
$$

er
o $\{0,1, x, x+1\}$
Qu,

CRC,

- What are they?

are they?
$x, x+1\}$
CRC,

$$
\geqslant
$$

$$
0
$$ are they?

$x, x+1\}$ are they?
$x, x+1\}$

$$
\$
$$

2
,
+
\square

$$
0
$$

,
$+$

\square

\qquad
\qquad
\square
\square
\square
1
$+$

$+$
\qquad
\qquad
\qquad
\qquad

$$
3
$$

\qquad
\qquad
\qquad
$\{0,1, x, x+1\}$

$$
7
$$

are they?

 1

 $-$

$$
3
$$

 - What

- $\{0,1$
-

ค) $\rho \rho \mathrm{f}$

Galois fields

If $Z_{p}[X]$ is set of polynomials with coefficients $(\bmod p)$
\ldots... and $P(X)$ is degree n and irreducible $(\bmod p)$ (Reminder: irreducible = can't be factored into lower order terms)

Then $G F\left(p^{n}\right)=Z_{p}[X](\bmod P(X))$ is a field with p^{n} elements.

Consider $\mathrm{GF}\left(2^{8}\right)$ with $\mathrm{P}(X)=X^{8}+X^{4}+X^{3}+X+1$ Rijndael uses this!

