DTTF/NB479: Dszquphsbqiz

Day 15

Announcements:

- Ch 3 quiz Friday of week 5. Will include fields (today)
- Upload electronic homeworks in pdf, preferably
- Direct HW questions directly to grader, then to me

Today:

- Prep. for Rijndael and Discrete Logs: GF(2⁸)
- Questions, like on DES?
 - I pulled the key into the input file
 - A good time to aim for would be ~10 s for 1M iterations.

DES round keys involve two permutations and a left shift

Grab 56 permuted bits:[57, 49, 41, 33 ...] Get 1100... In round 1, LS(1), so: 100 ...1 *Careful! Then grab 48 permuted bits: [14, 17, 11, 24, 1, 5, 3, ...] Get ... 1 0... Rijndael is the 128-bit, Advanced Encryption Standard (AES)

128-bit blocks

Encrypted using functions of the 128-bit key for 10 rounds

Versions exist for keys with 192 bits (12 rounds), 256 bits (14 rounds)

The S-boxes, round keys, and MixColumn functions require the use of GF(2⁸), so today we study fields... A *field* is a set of numbers with special properties

Addition, with identity: a + 0 = a and inverse a+(-a)=0

Multiplication with identity: a*1=a and inverse

 $(a^* a^{-1} = 1 \text{ for all } a != 0)$

- Subtraction and division (using inverses)
- Commutative, associative, and distributive properties
- Closure over all four operations

Examples:

- Real numbers
- GF(4) = {0, 1, ω , ω^2 } with these additional laws: x + x = 0 for all x and ω + 1 = ω^2 .
- GF(pⁿ) for prime p is called a Galois Field.

Are these fields?

- A field is a set of numbers with the following properties:
 - Addition, with identity: a + 0 = a and inverse a+(-a)=0
 - Multiplication with identity: a*1=a, and inverse (a * a⁻¹ = 1 for all a != 0)
 - Subtraction and division (using inverses)
 - Commutative, associative, and distributive properties
 - Closure over all four operations
- Examples:
 - Real numbers
 - GF(4) = {0, 1, ω, ω²} with these additional laws: x + x = 0 for all x and ω + 1 = ω².
 - GF(pⁿ) for prime p is called a Galois Field.

- 1. Positive integers
- 2. Integers
- 3. Rational numbers
- 4. Complex numbers
- 5. The set of 2x2 matrices of real numbers
- 6. Integers mod n (be careful here)

A Galois field is a finite field with pⁿ elements for a prime p

Example: GF(4) = GF(2²) = {0, 1, ω, ω²}
 There is only one finite field with pⁿ elements for every power of n and prime p.

The integers (mod pⁿ) aren't a field.
 Why not?

 $Z_2[X]$ is the set of polynomials with coefficients that are integers (mod 2)

Example elements: X+1, X⁴ + X² + X + 1
Is this a field?
Does it have closure over add, subt, mult?
What about division?

Almost a field. What about a closelyrelated finite field?

• Consider $Z_2[X] \mod (X^2 + X + 1)$

 $Z_2[X] \pmod{(X^2 + X + 1)}$ is a finite field with only four ³⁻⁴ elements)

What are they?
{0, 1, x, x+1}

Galois fields

If $Z_p[X]$ is set of polynomials with coefficients (mod p)

...and P(X) is degree n and irreducible (mod p) (Reminder: irreducible = can't be factored into lower order terms)

Then $GF(p^n) = Z_p[X] \pmod{P(X)}$ is a field with p^n elements.

Consider GF(2⁸) with P(X) = $X^8 + X^4 + X^3 + X + 1$ Rijndael uses this!