## DTTF/NB479: Dszquphsboqiz <br> Day 14

- Announcements:
- Homework 3 due now
- Homework 4 posted
- Today:
- Attacks on DES
- Questions?

DES has been showing signs of weakness from the

## 19751987199320002013 HI HI HI HI <br> 1977 1992 .

## DES has beginning

I
 -

# Only $2^{56}=72,057,594,037,927,936$ keys, so it was brute forced using parallelism <br> Only $2^{56}=72,057,594,037,927,936$ keys so it was brute forced using parallelism 

- 1997: DES Challenge issued. \$10K prize
. Found after 5 months, searching ___ \% of keyspace
$\qquad$
- 1998: DES Challenge II
- Down to 39 days, $85 \%$ of keyspace! - Also in 1998...

据
keyspace! 0 0
4 0

4

[^0]- Found after 5 months, searching - - or 0 , , 4
- Found after 5 months, searching

 $-$ 3

,


$\qquad$
 of keyspace
 3
 e $\angle$
$\square$
$\square$

DES Cracker used a mixture of software and
DES Cracker used a
speciallized hardware

- Budget of only $\$ 200,0001998$ dollars
- vs \$20,000,000 1977 dollars
- Result?
ult?


## Post-DES

- Brute force attacks that take O(N) DES computations are now reasonable.
, $N$ is size of keyspace $=2^{56}$
- Can we just double encrypt to get $\mathrm{O}\left(\mathrm{N}^{2}\right)$ computations?
- Use k1, k2
- $C=E_{k 2}\left(E_{k 1}(P)\right)$, so $P=D_{k 1}\left(D_{k 2}(C)\right)$ ?


## Meet-in-the-middle attack

Assume $k$ completely determines $E_{k}$ and $D_{k}$ Know $P$ and $C=E_{k 2}\left(E_{k 1}(P)\right)$

c

Time complexity?
$\mathrm{O}(\mathrm{n})$ DES computations, $\mathrm{O}\left(\mathrm{n}^{2}\right)$ comparisons $\mathrm{O}(\mathrm{n})$ memory

## Triple-DES?

| Type | DES <br> computations | Comparisons | Memory | Brute <br> force <br> DES |
| :--- | :--- | :--- | :--- | :--- |
| Double <br> $C=E_{k 2}\left(E_{k 1}(P)\right)$ | $O(N)$ | $O\left(N^{2}\right)$ | $O(N)$ | $O\left(N^{2}\right)$ |
| Triple1 <br> $C=E_{k 3}\left(E_{k 2}\right.$ <br> $\left.\left(E_{k 1}(P)\right)\right)$ |  |  |  |  |
| Triple2 <br> $C=E_{k 1}\left(E_{k 2}\left(E_{k 1}(P)\right)\right)$ |  |  |  |  |
| Triple3 <br> $C=E_{k 2}\left(E_{k 1}\left(E_{k 1}(P)\right)\right)$ |  |  |  |  |

Describe attacks on triple 1-3, fill out chart, and order by level of security

## Triple-DES?

| Type | DES <br> computations | Comparisons | Memory | Brute force DES |
| :---: | :---: | :---: | :---: | :---: |
| (3) Double $C=E_{k_{2}}\left(E_{k_{1}}(P)\right)$ | $\mathrm{O}(\mathrm{N})$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ | $\mathrm{O}(\mathbb{N})$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ |
| (1) Triple1 $\left.\mathrm{C}=\mathrm{E}_{k 3}\left(\mathrm{E}_{\mathrm{k} 2}\left(\mathrm{E}_{\mathrm{k} 1}(\mathrm{P})\right)\right)\right)$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ | $\mathrm{O}\left(\mathrm{N}^{3}\right)$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ | $O\left(N^{3}\right)$ |
| (2) Triple2 $\mathrm{C}=\mathrm{E}_{\mathrm{k}_{1}}\left(\mathrm{E}_{\mathrm{k} 2}\left(\mathrm{E}_{\mathrm{k} 1}(\mathrm{P})\right)\right)$ |  |  |  |  |
| (3) Triple3 $C=E_{k 2}\left(E_{k 1}\left(E_{k 1}(P)\right)\right)$ |  |  |  |  |

Describe attacks on triple 1-3, fill out chart, and order by level of security

## Triple-DES?

| Type | DES <br> compurations | Comparisons | Memory | $\begin{array}{\|l\|} \hline \begin{array}{l} \text { Brute } \\ \text { force } \\ \text { DES } \end{array} \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| (3) Double $\mathrm{C}=\mathrm{E}_{\mathrm{k} 2}\left(\mathrm{E}_{\mathrm{k} 1}(\mathrm{P})\right)$ | $\mathrm{O}(\mathrm{N})$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ | $\mathrm{O}(\mathrm{N})$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ |
| $\begin{aligned} & \text { (1) Triple1 } \\ & \mathrm{C}=\mathrm{E}_{k 3}\left(\mathrm{E}_{k 2}\left(\mathrm{E}_{k 1}(\mathrm{P})\right)\right) \end{aligned}$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ | $\mathrm{O}\left(\mathrm{N}^{3}\right)$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ | $\mathrm{O}\left(\mathrm{N}^{3}\right)$ |
| $\begin{aligned} & \text { (2) Triple2 } \\ & \mathrm{C}=\mathrm{E}_{\mathrm{k} 1}\left(\mathrm{E}_{k 2}\left(\mathrm{E}_{k 1}(\mathrm{P})\right)\right) \end{aligned}$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ | $\mathrm{O}\left(\mathrm{N}^{3}\right)$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ |
| (3) Triple3 $C=E_{k 2}\left(E_{k 1}\left(E_{k 1}(P)\right)\right)$ |  |  |  |  |

Describe attacks on triple 1-3, fill out chart, and order by level of security

## Triple-DES?

| Type | DES computation | Comparisons | Memory | $\begin{aligned} & \begin{array}{l} \text { Brute } \\ \text { force } \\ \text { DES } \end{array} \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| (3) Double $\mathrm{C}=\mathrm{E}_{\mathrm{k}}\left(\mathrm{E}_{\mathrm{k} 1}(\mathrm{P})\right)$ | $\mathrm{O}(\mathrm{N})$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ | $\mathrm{O}(\mathrm{N})$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ |
| $\begin{aligned} & \text { (1) Triple1 } \\ & \mathrm{C}=\mathrm{E}_{k 3}\left(\mathrm{E}_{k 2}\left(\mathrm{E}_{k 1}(\mathrm{P})\right)\right) \end{aligned}$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ | $\mathrm{O}\left(\mathrm{N}^{3}\right)$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ | $\mathrm{O}\left(\mathrm{N}^{3}\right)$ |
| $\begin{aligned} & \text { (2) Triple2 } \\ & \mathrm{C}=\mathrm{E}_{\mathrm{k} 1}\left(\mathrm{E}_{k 2}\left(\mathrm{E}_{k 1}(\mathrm{P})\right)\right) \end{aligned}$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ |
| $\begin{aligned} & \text { (3) Triple3 } \\ & \mathrm{C}=\mathrm{E}_{k 2}\left(\mathrm{E}_{k 1}\left(\mathrm{E}_{k 1}(\mathrm{P})\right)\right) \end{aligned}$ | $\mathrm{O}(\mathrm{N})$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ | $\mathrm{O}(\mathrm{N})$ | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ |

Describe attacks on triple 1-3, fill out chart, and order by level of security

## DES Modes of Operation

- Electronic codebook: Each block is encoded independently



## DES Modes of Operation

- Cjpher-block chaining: Each plaintext block is XOR'ed with the previous ciphertext before going into DES
. We will do a simpler version of this in HW4 (set $\mathrm{C}_{0}=0$ )



## DES Modes of Operation

- Others:
- Cjpher feedback: similar, but 64-bit blocks overlap, giving $k$ bits at a time (like 8 for 1 character at a time)
- Uses pseudorandom bits like LFSR
- Output feedloack: similar but helps catch errors before propagate.
- Counter: Some output can be computed independently, so better for parallelizing
- I trust you could implement these if needed. Not part of HW4...


## HW4: DES Implementation

- Encryption and decryption.
- Cipher-block chaining to prevent speedups due to embarrassing parallelism
- Correctness:
- Can use one to test the other.
- Efficiency:
- In addition, ittd be nice to use a language that's closer to the hardware for efficiency, like C or non-OO Java.
- Part of your grade will depend on this
- There will also be a competition to see whose implementation is quickest!


## Questions so far on DES?


[^0]:    

