DTTF/NB479: Dszquphsbqiz

Day 14

- Announcements:
 - Homework 3 due now
 - Homework 4 posted
- Today:
 - Attacks on DES

Questions?

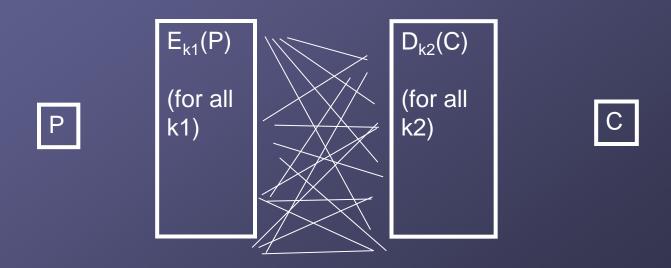
DES has been showing signs of weakness from the beginning

Only $2^{56} = 72,057,594,037,927,936$ keys, so it was brute forced using parallelism

- 1997: DES Challenge issued. \$10K prize
 - Found after 5 months, searching ____% of keyspace
- 1998: DES Challenge II
 - Down to 39 days, 85% of keyspace!
- Also in 1998...

DES Cracker used a mixture of software and specialized hardware

- Budget of only \$200,000 1998 dollars
 - vs \$20,000,000 1977 dollars


Result?

Post-DES

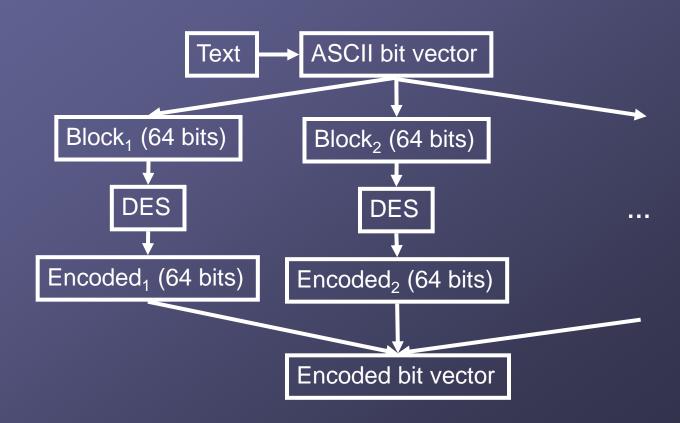
- Brute force attacks that take O(N) DES computations are now reasonable.
 - N is size of keyspace = 2⁵⁶
- Can we just double encrypt to get O(N²) computations?
 - Use k1, k2
 - $C = E_{k2}(E_{k1}(P))$, so $P = D_{k1}(D_{k2}(C))$?

Meet-in-the-middle attack

Assume k completely determines E_k and D_k Know P and C = $E_{k2}(E_{k1}(P))$

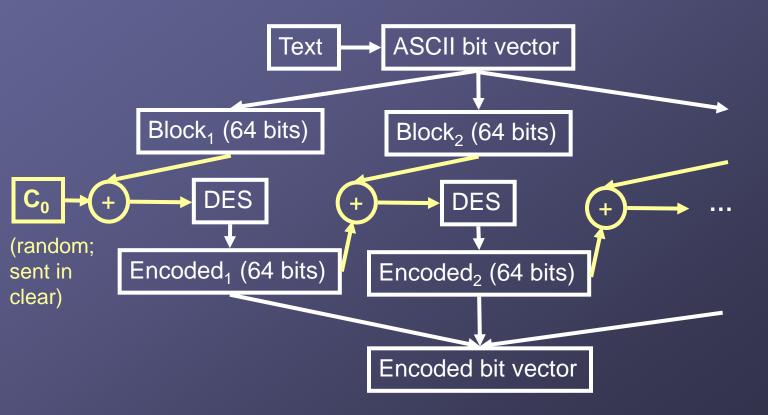
Time complexity? O(n) DES computations, $O(n^2)$ comparisons O(n) memory

Type	DES computations	Comparisons	Memory	Brute force DES
Double	O(N)	$O(N^2)$	O(N)	$O(N^2)$
$C=E_{k2}(E_{k1}(P))$				
Triple1				
$C=E_{k3}(E_{k2}(E_{k1}(P)))$				
Triple2				
$C=E_{k1}(E_{k2}(E_{k1}(P)))$				
Triple3				
$C=E_{k2}(E_{k1}(E_{k1}(P)))$				


Type	DES computations	Comparisons	Memory	Brute force DES
(3) Double $C=E_{k2}(E_{k1}(P))$	O(N)	O(N ²)	O(N)	O(N ²)
(1) Triple1 C= $E_{k3}(E_{k2}(E_{k1}(P)))$	O(N ²)	O(N ³)	O(N ²)	O(N ³)
(2) Triple2 C= $E_{k1}(E_{k2}(E_{k1}(P)))$				
(3) Triple3 $C=E_{k2}(E_{k1}(E_{k1}(P)))$				

Type	DES computations	Comparisons	Memory	Brute force DES
(3) Double $C=E_{k2}(E_{k1}(P))$	O(N)	O(N ²)	O(N)	O(N ²)
(1) Triple1 C= $E_{k3}(E_{k2}(E_{k1}(P)))$	O(N ²)	O(N ³)	O(N ²)	O(N ³)
(2) Triple2 C= $E_{k1}(E_{k2}(E_{k1}(P)))$	O(N ²)	O(N ³)	O(N ²)	O(N ²)
(3) Triple3 C= $E_{k2}(E_{k1}(E_{k1}(P)))$				

Туре	DES computations	Comparisons	Memory	Brute force DES
(3) Double $C=E_{k2}(E_{k1}(P))$	O(N)	O(N ²)	O(N)	O(N ²)
(1) Triple1 C= $E_{k3}(E_{k2}(E_{k1}(P)))$	O(N ²)	O(N ³)	O(N ²)	O(N ³)
(2) Triple2 C= $E_{k1}(E_{k2}(E_{k1}(P)))$	O(N ²)	O(N ²)	O(N ²)	O(N ²)
(3) Triple3 C= $E_{k2}(E_{k1}(E_{k1}(P)))$	O(N)	O(N ²)	O(N)	O(N ²)


DES Modes of Operation

• Electronic codebook: Each block is encoded independently

DES Modes of Operation

- Cipher-block chaining: Each plaintext block is XOR'ed with the previous ciphertext before going into DES
 - We will do a simpler version of this in HW4 (set $C_0 = 0$)

DES Modes of Operation

Others:

- Cipher feedback: similar, but 64-bit blocks overlap, giving k bits at a time (like 8 for 1 character at a time)
 - Uses pseudorandom bits like LFSR
- Output feedback: similar but helps catch errors before propagate.
- Counter: Some output can be computed independently, so better for parallelizing
- I trust you could implement these if needed. Not part of HW4...

HW4: DES Implementation

- Encryption and decryption.
- Cipher-block chaining to prevent speedups due to embarrassing parallelism
- Correctness:
 - Can use one to test the other.
- Efficiency:
 - In addition, it'd be nice to use a language that's closer to the hardware for efficiency, like C or non-OO Java.
 - Part of your grade will depend on this
 - There will also be a competition to see whose implementation is quickest!

Questions so far on DES?