DTTF/NB479: Dszquphsbojiz

- Announcements:
. Homework 2 due now
- Computer quiz Thursday on chapter 2
- Questions?
- Today:
- Wrap up congruences
- Fermat's little theorem
- Euler's theorem
- Both really important for RSA - pay careful attention!

The Chinese Remainder Theorem establishes an equivalence

- A single congruence mod a composite number is equivalent to a system of congruences mod its factors
- Two-factor form
- Given $\operatorname{gcd}(m, n)=1$. For integers a and b, there exists exactly 1 solution $(\bmod \mathrm{mn})$ to the system:

$x \equiv a(\bmod m)$

$x \equiv b(\bmod n)$

CRT Equivalences let us use systems of congruences to solve problems

- Solve the system:

$$
\begin{aligned}
& x \equiv 3(\bmod 7) \\
& x \equiv 5(\bmod 15)
\end{aligned}
$$

- How many solutions?
- Find them.

Chinese Remainder Theorem

- n-factor form
- Let $m_{1}, m_{2}, \ldots m_{k}$ be integers such that $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ when $\mathrm{i} \neq \mathrm{j}$. For integers $\mathrm{a}_{1}, \ldots \mathrm{a}_{\mathrm{k}}$, there exists exactly 1 solution (mod $m_{1} m_{2} \ldots m_{k}$) to the system:

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right) \\
& x \equiv a_{2}\left(\bmod m_{2}\right) \\
& \cdots \\
& x \equiv a_{k}\left(\bmod m_{k}\right)
\end{aligned}
$$

Modular Exponentiation is extremely efficient since the partial results are always small

- Compute the last digit of 3^{2000}
- Compute $3^{2000}(\bmod 19)$ Idea:
- Get the powers of 3 by repeatedly squaring 3, BUT taking mod at each step.

Modular Exponentiation Technique and Example

(All congruences are mod 19)

- Compute 3^{2000} (mod 19)
- Technique:
- Repeatedly square 3, but take mod at each step.
- Then multiply the terms you need to get the desired power.

$$
\begin{aligned}
& 3^{2} \equiv 9 \\
& 3^{4}=9^{2} \equiv 81 \equiv 5 \\
& 3^{8}=5^{2} \equiv 25 \equiv 6 \\
& 3^{16}=6^{2} \equiv 36 \equiv 17(\text { or }-2) \\
& 3^{32}=17^{2} \equiv 289 \equiv 4 \\
& 3^{64}=4^{2} \equiv 16 \\
& 3^{128} \equiv 16^{2} \equiv 256 \equiv 9 \\
& 3^{256} \equiv 5 \\
& 3^{512} \equiv 6 \\
& 3^{1024} \equiv 17
\end{aligned}
$$

$$
\begin{aligned}
& 3^{2000} \equiv\left(3^{1024}\right)\left(3^{512}\right)\left(3^{256}\right)\left(3^{128}\right)\left(3^{64}\right)\left(3^{16}\right) \\
& 3^{2000} \equiv(17)(6)(5)(9)(16)(17) \\
& 3^{2000} \equiv(1248480) \\
& 3^{2000} \equiv 9(\bmod 19)
\end{aligned}
$$

Modular Exponentiation Example

- Compute 3^{2000} (mod 152)

$$
\begin{aligned}
& 3^{2} \equiv 9 \\
& 3^{4}=9^{2} \equiv 81 \\
& 3^{8}=81^{2} \equiv 6561 \equiv 25 \\
& 3^{16}=25^{2} \equiv 625 \equiv 17 \\
& 3^{32}=17^{2} \equiv 289 \equiv 137 \\
& 3^{64}=137^{2} \equiv 18769 \equiv 73 \\
& 3^{128} \equiv 9 \\
& 3^{256} \equiv 81 \\
& 3^{512} \equiv 25 \\
& 3^{1024} \equiv 17 \\
& 3^{2000} \equiv\left(3^{1024}\right)\left(3^{512}\right)\left(3^{256}\right)\left(3^{128}\right)\left(3^{64}\right)\left(3^{16}\right) \\
& 3^{2000} \equiv(17)(25)(81)(9)(73)(17) \\
& 3^{2000} \equiv(384492875) \\
& 3^{2000} \equiv 9(\bmod 152)
\end{aligned}
$$

1-2 If p is prime and $\operatorname{gcd}(a, p)=1$, then $a^{(p-1)} \equiv 1(\bmod p)$

Fermat's Little Theorem:

Fermat's Little Theorem:
If p is prime and $\operatorname{gcd}(a, p)=1$, then $a^{(p-1)} \equiv 1(\bmod p)$

Example: $a=2, p=7$

Examples:

- $2^{2}=1(\bmod 3)$
- $6^{4}=1(\bmod$???)
- $\left(3^{2000}\right)(\bmod 19)$

The converse when $a=2$ usually holds

- Fermat:

If p is prime and doesn't divide $a, a^{p-1} \equiv 1(\bmod p)$

- Converse:
- If $a^{p-1} \equiv 1(\bmod p)$, then p is prime and doesn't divide a.
- This is almost always true when $\mathrm{a}=2$. Rare counterexamples:
- $n=561=3 * 11 * 17$, but

$2^{560} \equiv 1(\bmod 561)$

- $n=1729=7 * 13^{*} 19$
- Can do first one by hand if use Fermat and combine results with Chinese Remainder Theorem

Primality testing schemes typically use the contrapositive of Fermat

Primality testing schemes typically use the

Use Fermat as a filter since it's faster than factoring (if calculated using the powermod method).

Fermat: p prime $\rightarrow 2^{p-1} \equiv 1(\bmod p)$ Contrapositive?

Why can't we just compute $2^{\mathrm{n}-1}(\bmod \mathrm{n})$ using Fermat if it's so much faster?

Euler's Theorem is like Fermat's, but for composite moduli

If $\operatorname{gcd}(a, n)=1$, then
$a^{\phi(n)} \equiv 1(\bmod n)$

So what's $\phi(n) ?$

$\phi(n)$ is the number of integers a,

 such that $1 \leq a \leq n$ and $\operatorname{gcd}(a, n)=1$.Examples:

$$
\phi(10)=4 .
$$

2. When p is prime, $\phi(p)=$ \qquad
3. When $n=p q$ (product of 2 primes), $\phi(n)=$

The general formula for $\phi(n)$

Example: $\phi(12)=4$

Euler's Theorem can also lead to computations that are more efficient than modular exponentiation

$a^{\phi(n)} \equiv 1(\bmod n)$

as long as $\operatorname{gcd}(a, n)=1$

Basic

Principle: when working mod n, view the exponents $\bmod \phi(n)$.

Examples:

1. Find last 3 digits of 7^{803}
2. Find $3^{2007}(\bmod 12)$
3. Find $2^{6004}(\bmod 99)$
4. Find $2^{6004}(\bmod 101)$
