- Announcements:
  - Homework 2 due now
  - Computer quiz Thursday on chapter 2
- Questions?

- Today:
  - Wrap up congruences
  - Fermat's little theorem
  - Euler's theorem
  - Both really important for RSA pay careful attention!

# The Chinese Remainder Theorem establishes an equivalence

- A single congruence mod a composite number is equivalent to a system of congruences mod its factors
- Two-factor form
  - Given gcd(m,n)=1. For integers a and b, there exists exactly 1 solution (mod mn) to the system:

$$x \equiv a(\bmod m)$$
$$x \equiv b(\bmod n)$$

# CRT Equivalences let us use systems of congruences to solve problems

Solve the system:

$$x \equiv 3 \pmod{7}$$

$$x \equiv 5 \pmod{15}$$

- How many solutions?
  - Find them.

$$x^2 \equiv 1 \pmod{35}$$

#### Chinese Remainder Theorem

- n-factor form
  - Let m<sub>1</sub>, m<sub>2</sub>,... m<sub>k</sub> be integers such that gcd(m<sub>i</sub>, m<sub>j</sub>)=1 when i ≠ j. For integers a<sub>1</sub>, ... a<sub>k</sub>, there exists *exactly* 1 solution (mod m<sub>1</sub>m<sub>2</sub>...m<sub>k</sub>) to the system:

$$x \equiv a_1 \pmod{m_1}$$

$$x \equiv a_2 \pmod{m_2}$$
...
$$x \equiv a_k \pmod{m_k}$$

Modular Exponentiation is extremely efficient since the partial results are always small

Compute the last digit of 3<sup>2000</sup>

- Compute 3<sup>2000</sup> (mod 19)
   Idea:
  - Get the powers of 3 by repeatedly squaring 3, BUT taking mod at each step.

Q

### Modular Exponentiation Technique and Example

- Compute 3<sup>2000</sup> (mod 19)
- Technique:
  - Repeatedly square
     3, but take mod at each step.
  - Then multiply the terms you need to get the desired power.
- Book's powermod()

(All congruences are mod 19)

$$3^{2} \equiv 9$$

$$3^{4} = 9^{2} \equiv 81 \equiv 5$$

$$3^{8} = 5^{2} \equiv 25 \equiv 6$$

$$3^{16} = 6^{2} \equiv 36 \equiv 17(or - 2)$$

$$3^{32} = 17^{2} \equiv 289 \equiv 4$$

$$3^{64} = 4^{2} \equiv 16$$

$$3^{128} \equiv 16^{2} \equiv 256 \equiv 9$$

$$3^{256} \equiv 5$$

$$3^{512} \equiv 6$$

$$3^{1024} \equiv 17$$

$$3^{2000} \equiv (3^{1024})(3^{512})(3^{256})(3^{128})(3^{64})(3^{16})$$

$$3^{2000} \equiv (17)(6)(5)(9)(16)(17)$$

$$3^{2000} \equiv (1248480)$$

$$3^{2000} \equiv 9 \pmod{19}$$

### Modular Exponentiation Example

Compute 3<sup>2000</sup> (mod 152)

$$3^{2} \equiv 9$$
  
 $3^{4} = 9^{2} \equiv 81$   
 $3^{8} = 81^{2} \equiv 6561 \equiv 25$   
 $3^{16} = 25^{2} \equiv 625 \equiv 17$   
 $3^{32} = 17^{2} \equiv 289 \equiv 137$   
 $3^{64} = 137^{2} \equiv 18769 \equiv 73$   
 $3^{128} \equiv 9$   
 $3^{256} \equiv 81$   
 $3^{512} \equiv 25$   
 $3^{1024} \equiv 17$ 

$$3^{2000} \equiv (3^{1024})(3^{512})(3^{256})(3^{128})(3^{64})(3^{16})$$

$$3^{2000} \equiv (17)(25)(81)(9)(73)(17)$$

$$3^{2000} \equiv (384492875)$$

$$3^{2000} \equiv 9 \pmod{152}$$

Fermat's Little Theorem: If p is prime and gcd(a,p)=1, then a<sup>(p-1)</sup>≡1(mod p)

## Fermat's Little Theorem: If p is prime and gcd(a,p)=1, then a<sup>(p-1)</sup>≡1(mod p)



Example: a=2, p=7

#### **Examples:**

- $2^2=1 \pmod{3}$
- $\bullet$  6<sup>4</sup> =1(mod ???)
- $(3^{2000}) \pmod{19}$

#### The converse when a=2 usually holds

- Fermat: If p is prime and doesn't divide a,  $a^{p-1} \equiv 1 \pmod{p}$
- Converse:
- If  $a^{p-1} \equiv 1 \pmod{p}$ , then p is prime and doesn't divide a.
- This is almost always true when a = 2. Rare counterexamples:
  - n = 561 = 3\*11\*17, but  $2^{560} \equiv 1 \pmod{561}$
  - n = 1729 = 7\*13\*19
  - Can do first one by hand if use Fermat and combine results with Chinese Remainder Theorem

Primality testing schemes typically use the contrapositive of Fermat



# Primality testing schemes typically use the contrapositive of Fermat

Use Fermat as a filter since it's faster than factoring (if calculated using the powermod method).

Fermat: p prime  $\rightarrow 2^{p-1} \equiv 1 \pmod{p}$ Contrapositive?

Why can't we just compute 2<sup>n-1</sup>(mod n) using Fermat if it's so much faster?



Euler's Theorem is like Fermat's, but for composite moduli

If gcd(a,n)=1, then

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

So what's  $\phi(n)$ ?

 $\phi(n)$  is the number of integers a, such that  $1 \le a \le n$  and gcd(a,n) = 1.

### Examples:

- 1.  $\phi(10) = 4$ .
- When p is prime,  $\phi(p) =$
- When n =pq (product of 2 primes),  $\phi(n) =$ \_\_\_\_\_

### The general formula for $\phi(n)$

$$\phi(n) = n \prod_{p|n} \left( \frac{p-1}{p} \right)$$

p are distinct primes

Example:  $\phi(12)=4$ 

Euler's Theorem can also lead to computations that are more efficient than modular exponentiation

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

as long as gcd(a,n) = 1

#### Basic

Principle: when working mod n, view the exponents mod  $\phi(n)$ .

#### **Examples:**

- <sub>1.</sub> Find last 3 digits of 7<sup>803</sup>
- $_{2}$  Find  $3^{2007}$  (mod 12)
- s. Find 2<sup>6004</sup> (mod 99)
- 4. Find 2<sup>6004</sup> (mod 101)