- Announcements:

」 Please use pencil on quizzes if possible

- Questions?
- Today:
- Congruences
- Chinese Remainder Theorem
- Modular Exponents

Hill Cipher implementation

- Encryption
- Easy to do in MATLAB.
- Or find/write a matrix library for language X.
- Decryption
- Uses matrix inverse.
- How do we determine if a matrix is invertible mod 26?

How to break via known plaintext?

- Good work on last session's quiz.

Idea:
Assume you know the matrix size, n.
Then grab n sets of n plaintext chars \leftrightarrow ciphertext
This gives n^{2} equations and n^{2} unknowns.
Then solve using basic linear algebra, but mod n.

Caveat: sometimes it doesn't give a unique solution, so you need to choose a different set of plaintext.

Hmm. This could make a nice exam problem...

Substitution ciphers

- Each letter in the alphabet is always replaced by another one.
- Which ciphers have we seen are substitution ciphers?
- Which aren't and why?
- Breaking ciphertext only uses linguistic structure. Frequencies of:
- Single letters
- Digrams (2-letter combinations)
- Trigrams
- Where do T\&W get their rules like " 80% of letters preceding n are vowels"? (p. 26)
- See hitto://keithbriggs.info/documents/english latin.pdf
- Lots of trial and error when done by hand.
- Could automate with a dictionary.

Fairy Tales

MY MOM IS ONE OF THOSE
PEOPLE WHO FALLS ASLEEP
WHLE READING, BUT KEEPS
TALKING. SHE'S A MATH
PROFESSOR, SO SHED START
RAMBLNG ABOUTHER WORK.

BUT WHILE THE ANT GATHERED FCOD... ... ZZZZ ...

YOU DION' NOTICE THE DRASTIC SUBJECTCHANGES?

WEL SOMETMES HER VERSIONS WERE BETIER. WE LOVED INOCTNE LHITE AND THE ($N-1$) DWARES.

WEIRD TOWARD THE END...

HTTP://XKCD.COM/872/

Goldilocks' discovery of Newton's method of approximation required surprisingly few changes.

Basics 4: Congruence

- Def: $a \equiv b(\bmod n)$ iff $(a-b)=n k$ for some int k
- Properties

$$
\begin{aligned}
& \text { Consider } a, b, c, d \in Z, n \neq 0 \\
& a \equiv b(\bmod n) \text { if } \exists k \in Z \text { s.t. } a=b+n k \\
& a \equiv 0(\bmod n) \text { iff } n \mid a \\
& a \equiv a(\bmod n) \\
& a \equiv b(\bmod n) \text { iff } b \equiv a(\bmod n) \\
& a \equiv b, b \equiv c(\bmod n) \Rightarrow a \equiv c(\bmod n)
\end{aligned}
$$

- You can easily solve congruences ax三b (mod n) if $\operatorname{gcd}(a, n)=1$.
- For small numbers, do by hand
- For larger numbers, compute a^{-1} using Euclid

Solving $\operatorname{ax} \equiv b(\bmod n)$ when $\operatorname{gcd}(a, n) \neq 1$

- Let $\operatorname{gcd}(a, n)=d$
- If d doesn't divide b then no solution
- Else divide everything by d and solve $(a / d) x=(b / d)(\bmod (n / d))$
\&Example: $2 x \equiv 7(\bmod 10)$

Example:
$3 x \equiv 3(\bmod 6)$

- Get solution x_{0}
- Multiple solutions: $x_{0}, x_{0}+n / d, x_{0}+2 n / d, \ldots x_{0}+(d-1) n / d$
- Always write solution with the original modulus
- This is an easy program to code once you have Euclid...
- How could we write $x \equiv 16(\bmod 35)$ as a system of congruences with smaller moduli?

Chinese Remainder Theorem

- Equivalence between a single congruence mod a composite number and a system of congruences mod its factors
- Two-factor form
- Given $\operatorname{gcd}(m, n)=1$. For integers a and b, there exists exactly 1 solution (mod mn) to the system:
$x \equiv a(\bmod m)$
$x \equiv b(\bmod n)$

CRT Equivalences let us use systems of congruences to solve problems

- Solve the system:

$$
\begin{aligned}
& x \equiv 3(\bmod 7) \\
& x \equiv 5(\bmod 15)
\end{aligned}
$$

- How many solutions?
- Find them.

$$
x^{2} \equiv 1(\bmod 35)
$$

Chinese Remainder Theorem

o n-factor form

- Let $m_{1}, m_{2}, \ldots m_{k}$ be integers such that $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ when $\mathrm{i} \neq \mathrm{j}$. For integers $\mathrm{a}_{1}, \ldots \mathrm{a}_{\mathrm{k}}$, there exists exactly 1 solution (mod $m_{1} m_{2} \ldots m_{k}$) to the system:

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right) \\
& x \equiv a_{2}\left(\bmod m_{2}\right) \\
& \cdots \\
& x \equiv a_{k}\left(\bmod m_{k}\right)
\end{aligned}
$$

Modular Exponentiation

- Compute last digit of $3^{\wedge} 2000$
- Compute $3^{\wedge 2000 ~(m o d ~ 19) ~}$

Idea:

- Get the powers of 3 by repeatedly squaring 3, BUT taking mod at each step.

Modular Exponentiation

(All congruences are mod 19)

- Compute 3^2000 (mod 19)
- Technique:
- Repeatedly square 3, but take mod at each step.
- Then multiply the terms you need to get the desired power.

$$
\begin{aligned}
& 3^{2} \equiv 9 \\
& 3^{4}=9^{2} \equiv 81 \equiv 5 \\
& 3^{8}=5^{2} \equiv 25 \equiv 6 \\
& 3^{16}=6^{2} \equiv 36 \equiv 17(\text { or }-2) \\
& 3^{32}=17^{2} \equiv 289 \equiv 4 \\
& 3^{64}=4^{2} \equiv 16 \\
& 3^{128} \equiv 16^{2} \equiv 256 \equiv 9 \\
& 3^{256} \equiv 5 \\
& 3^{512} \equiv 6 \\
& 3^{1024} \equiv 17
\end{aligned}
$$

$$
\begin{aligned}
& 3^{2000} \equiv\left(3^{1024}\right)\left(3^{512}\right)\left(3^{256}\right)\left(3^{128}\right)\left(3^{64}\right)\left(3^{16}\right) \\
& 3^{2000} \equiv(17)(6)(5)(9)(16)(17) \\
& 3^{2000} \equiv(1248480) \\
& 3^{2000} \equiv 9(\bmod 19)
\end{aligned}
$$

Modular Exponentiation

- Compute 3^2000 (mod 152)

$$
\begin{aligned}
& 3^{2} \equiv 9 \\
& 3^{4}=9^{2} \equiv 81 \\
& 3^{8}=81^{2} \equiv 6561 \equiv 25 \\
& 3^{16}=25^{2} \equiv 625 \equiv 17 \\
& 3^{32}=17^{2} \equiv 289 \equiv 137 \\
& 3^{64}=137^{2} \equiv 18769 \equiv 73 \\
& 3^{128} \equiv 9 \\
& 3^{256} \equiv 81 \\
& 3^{512} \equiv 25 \\
& 3^{1024} \equiv 17 \\
& 3^{2000} \equiv\left(3^{1024}\right)\left(3^{512}\right)\left(3^{256}\right)\left(3^{128}\right)\left(3^{64}\right)\left(3^{16}\right) \\
& 3^{2000} \equiv(17)(25)(81)(9)(73)(17) \\
& 3^{2000} \equiv(384492875) \\
& 3^{2000} \equiv 9(\bmod 152)
\end{aligned}
$$

