DTTF/NB479: Dszquphsboqiz

- Announcements:

」 Programming exam next Thursday on breaking codes from chapter 2

- Written exam at start of week 4 on concepts from chapter 2
- Questions?
- This week: see schedule page
- 2 days of chapter 3, then back to Hill cipher

Vigenere is more secure than affine cipher, but still breakable

- You should be able to answer:

1. What makes a Vigenere cipher more secure than a shift cipher?
2. Why does the max of $\operatorname{dot}\left(\mathrm{A}_{0}, \mathrm{~A}_{\mathrm{i}}\right)$ occur when $\mathrm{j}==0$?
3. What are the advantages and disadvantages of using the dot product method (method 2) vs. max is 'e' (method 1) to decrypt the key?
4. How do we find the key length?

Vigenere can be made secure with appropriate precautions

- From hitip://sharkysoft.com/misc/vigenere/
- Key must be as long as the plaintext message.
- Build the key from random characters.
- Never use the key again.
- Don't use text decorations (spaces, punctuations, capitalization).
- Protect the key.

Vigenere trivia (if time at end)

- Consider Gadsby by Ernest Vincent Wright, February 1939:
- httip://www.spinelessbooks.com/gadsby/01.html
- What do you notice about it?

The Extended Euclidean algorithm is very important
-Why? A means to find GCD (a, b)

- How does the algorithm?
- How fast is it?
- Why does it work?
- How does it help?
- Used to find inverses of very large numbers $(\bmod n)$.

Back to Basics: 3. GCD

$\operatorname{ogcd}(a, b)=\max _{j}(j|a \operatorname{and} j| b)$.

- Def.: a and b are relatively prime iff $\operatorname{gcd}(a, b)=1$
- $\operatorname{gcd}(14,21)$ easy...
- What about gcd(1856, 5862)?
- Or gcd(500267500347832384769, 12092834543475893256574665)?
- Do you really want to factor each one?
o What's our alternative?

Euclid's Algorithm

```
gcd(a,b) {
    if (a<b) swap (a,b)
    // a > b
    r = a % b
    while (r ~= 0) {
            a = b
                b}=\textrm{r
            r = a % b
    }
    gcd = b // last r ~= 0
}
```

Calculate gcd(1856, 5862)
=2

Euclid's Algorithm

```
gcd(a,b) {
    if (a>b) swap (a,b)
    |/ a \geqslant b
    r = a % b
    while (r ~= 0) {
        a=b
        b}=
        r = a % b
    }
    gcd = b // last r ~= 0
```

\}

Assume $a \geqslant b$
Let q_{i} and r_{i} be the series of quotients and remainders, respectively, found along the way.

$$
\begin{aligned}
& a=q_{1} b+r_{1} \\
& b=q_{2} r_{1}+r_{2} \\
& r_{1}=q_{3} r_{2}+r_{3} \\
& \cdots \\
& r_{i-2}=q_{i} r_{i-1}+r_{i}
\end{aligned}
$$

$$
r_{k-2}=q_{k} r_{k-1}+r_{k} \quad r_{k} \text { is } \operatorname{gcd}(a, b)
$$

$$
r_{k-1}=q_{k+1} r_{k}
$$

You'll prove this computes the gcd in Homework 3 (by induction)...

Fundamental result:

 If $d=\operatorname{gcd}(a, b)$ then $a x+b y=d$- For some integers x and y.
- These ints are iust a by-product of the Euclidean algorithmy
- Allows us to find a^{-1} (mod n) very quickly...
- Choose $b=n$ and $d=1$.
- If $\operatorname{gcd}(a, n)=1$, then $a x+n y=1$
- $a x \equiv 1(\bmod n)$ because it differs from 1 by a multiple of n
- Therefore, $x=a^{-1}(\bmod n)$.
- Why does the result hold?
- How do we find x and y ?

Why does this work?

Given a, b ints, not both 0 , and $\operatorname{gcd}(a, b)=d$.
Prove $a x+b y=d$
Assume $a \geqslant b$
Let q_{i} and r_{i} be the series of quotients and remainders, respectively, found along the way.

$$
\begin{aligned}
& a=q_{1} b+r_{1} \\
& b=q_{2} r_{1}+r_{2} \\
& r_{1}=q_{3} r_{2}+r_{3} \\
& \ldots \\
& r_{i-2}=q_{i} r_{i-1}+r_{i}
\end{aligned}
$$

We'll show the property true for all remainders r_{j} (by strong induction)

How to find x and y ?

x and y swapped from book, which assumes that $a<b$ on p. 69

To find x, take
$x_{0}=1, x_{1}=0$,

$$
x_{j}=x_{j-2}-q_{j-1} x_{j-1}
$$

To find y, take
$y_{0}=0, y_{1}=1$,

$$
y_{j}=y_{j-2}-q_{j-1} y_{j-1}
$$

Use to calculate x_{k} and y_{k} (the desired result)
Example:
$\operatorname{gcd}(1856,5862)=2$
Yields $x=-101, y=319$

i	q_{i}	r_{i}	x_{i}
0	-	-	1
1	3	294	0
2	6	92	$=1-3(0)=1$
3	3	18	\cdots
4	5	2	
5	9	0	

Check: $5862(-101)+1856(319)=2$?

- Solve $a x+n y=1$ using extended Euclid.
- $a^{-1}=n$
of time,
demo $89734^{-1} \bmod (524287)$
using $[g, x, y]=\operatorname{gcd}(a, n)$

.

$$
1
$$

+

\square

$a x+n y=1$ using extended Euclid
$a x+n y=1$ using extended Euclid

.

$+$
$(-2+5$

This gives us a way to find $a^{-1}(\bmod n)$

 1 1

 .
valid
\qquad

