DTTF/NB479: Dszquphsbqiz

Day 6

- Announcements:
 - Programming exam next Thursday on breaking codes from chapter 2
 - Written exam at start of week 4 on concepts from chapter 2
- Questions?

- This week: see schedule page
 - 2 days of chapter 3, then back to Hill cipher

Vigenere is more secure than affine cipher, but still breakable

- You should be able to answer:
 - What makes a Vigenere cipher more secure than a shift cipher?
 - 2. Why does the max of $dot(A_0,A_i)$ occur when i==0?
 - What are the advantages and disadvantages of using the dot product method (method 2) vs. max is 'e' (method 1) to decrypt the key?
 - 4. How do we find the key length?

Vigenere can be made secure with appropriate precautions

- From http://sharkysoft.com/misc/vigenere/
 - Key must be as long as the plaintext message.
 - Build the key from random characters.
 - Never use the key again.
 - Don't use text decorations (spaces, punctuations, capitalization).
 - Protect the key.

Vigenere trivia (if time at end)

- Consider Gadsby by Ernest Vincent Wright, February 1939:
 - http://www.spinelessbooks.com/gadsby/01.html
- What do you notice about it?

The Extended Euclidean algorithm is very important

- Why? A means to find GCD(a,b)
- How does the algorithm?
- How fast is it?
- Why does it work?
- How does it help?
 - Used to find inverses of very large numbers (mod n).

Back to Basics: 3. GCD

- gcd(a,b)=max_i (j|a and j|b).
- Def.: a and b are relatively prime iff gcd(a,b)=1
- gcd(14,21) easy....
- What about gcd(1856, 5862)?
- Or gcd(500267500347832384769, 12092834543475893256574665)?
- Do you really want to factor each one?
- What's our alternative?

Euclid's Algorithm

```
gcd(a,b) {
   if (a < b) swap (a,b)
   // a > b
   r = a % b
   while (r ~= 0) {
      a = b
      \mathbf{b} = \mathbf{r}
      r = a % b
   gcd = b // last r \sim = 0
Calculate gcd(1856, 5862)
```

Euclid's Algorithm

```
gcd(a,b) {
   if (a > b) swap (a,b)
   // a > b
   r = a % b
   while (r \sim = 0) {
       a = b
       b = r
       r = a % b
   gcd = b // last r \sim= 0
```

```
Assume a > b
Let q; and r; be the series
      of quotients and
      remainders, respectively,
      found along the way.
\mathbf{a} = \mathbf{q}_1 \mathbf{b} + \mathbf{r}_1
\mathbf{b} = \mathbf{q}_2 \mathbf{r}_1 + \mathbf{r}_2
\mathbf{r}_1 = \mathbf{q}_3 \mathbf{r}_2 + \mathbf{r}_3
\mathbf{r}_{i-2} = \mathbf{q}_i \mathbf{r}_{i-1} + \mathbf{r}_i
                                             r<sub>k</sub> is gcd(a,b)
\mathbf{r}_{k-2} = \mathbf{q}_k \mathbf{r}_{k-1} + \mathbf{r}_k
\mathbf{r}_{k-1} = \mathbf{q}_{k+1}\mathbf{r}_k
```

You'll prove this computes the gcd in Homework 3 (by induction)...

Fundamental result:

If
$$d = gcd(a,b)$$
 then $ax + by = d$

- For some integers x and y.
- These ints are just a by-product of the Euclidean algorithm!
- Allows us to find a⁻¹ (mod n) very quickly...
 - Choose b = n and d = 1.
 - If gcd(a,n) =1, then ax + ny = 1
 - ax = 1 (mod n) because it differs from 1 by a multiple of n
 - Therefore, $x \equiv a^{-1} \pmod{n}$.
- Why does the result hold?
- How do we find x and y?

Why does this work?

Given a,b ints, not both 0, and gcd(a,b) = d. Prove ax + by = d

Recall gcd(a,b,)=d = r_k is the last non-zero remainder found via Euclid.

We'll show the property true for all remainders r_j (by strong induction)

Assume a > b

Let q_i and r_i be the series of quotients and remainders, respectively, found along the way.

$$a = q_1b + r_1$$
 $b = q_2r_1 + r_2$
 $r_1 = q_3r_2 + r_3$
...
 $r_{i-2} = q_ir_{i-1} + r_i$
...
 $r_{k-2} = q_kr_{k-1} + r_k$

How to find x and y?

x and y swapped from book, which assumes that a < b on p. 69

To find x, take

$$x_0 = 1, x_1 = 0,$$

 $x_j = x_{j-2} - q_{j-1}x_{j-1}$

To find y, take

$$y_0 = 0, y_1 = 1,$$

 $y_j = y_{j-2} - q_{j-1}y_{j-1}$

Use to calculate x_k and y_k (the desired result)

Example: gcd(1856,5862)=2

Yields
$$x = -101$$
, $y = 319$

Assume a > b

Let q_i and r_i be the series of quotients and remainders, respectively, found along the way.

i	qi	$\underline{\mathbf{r}_{i}}$	Xi
0	-	_	1
1	3	294	0
2	6	92	= 1 - 3(0) = 1
3	3	18	
4	5	2	
5	9	0	

Check: 5862(-101) + 1856(319) = 2?

This gives us a way to find a⁻¹ (mod n)

- Solve ax + ny ≡1 using extended Euclid.
- o a⁻¹≡ n

If time,
 demo 89734⁻¹ mod(524287)
 using [g,x,y] = gcd(a,n)