DTTF/NB479: Dszquphsbqiz

Announcements:

Please pass in Assignment 1 now.
Assignment 2 posted (when due?)
Questions?
Roll Call
Today: Vigenere ciphers

Shift, Affine, and Substitution ciphers are related

How many possibilities to brute force?
 What idea is new?
 Shift
 Affine
 Substitution

Vigenere ciphers
Invented in 1553 by Bellaso
A different type of complexity

(quiz # now at top) 1

Vigenere Ciphers

Idea: the key is a vector of shifts

The key and its length are unknown to Eve

Encryption:

- Repeat the vector as many times as needed to get the same length as the plaintext
- Add this repeated vector to the plaintext.

• Example:

Key = *hidden (7 8 3 3 4 13)*.

The recent development of various methods 19 7 4 17 4 2 4 13 19 3...

 Key
 7
 8
 3
 4
 13
 7
 8
 3
 4
 13
 7
 8
 3
 4
 13
 7
 8
 3
 4
 13
 7
 8
 3
 3
 4
 13
 7
 8
 3
 3
 4
 13
 7
 8
 3
 3
 4
 13
 7
 8
 3
 3
 4
 13
 7
 8
 3
 3
 4
 13
 7
 8
 3
 3
 4
 13
 7
 8
 3
 3
 4
 13
 7
 8
 3
 4
 13
 7
 8
 3
 4
 13
 7
 8
 3
 4
 13
 7
 8
 3
 4
 13
 7
 8
 3
 4
 13
 7
 8
 3
 4
 13
 7
 8
 3
 4
 13
 7
 8
 3
 4
 13
 7
 8
 3

Security

The shift vector isn't known (of course)

- With shift ciphers, the most frequent cipher letter is probably e.
 - But here, e maps to H, I, L, ... (spread out!)
- 2. The vector's length isn't even known!
- Consider 4 attacks:
 - Known plaintext?
 - Chosen plaintext?
 - Chosen ciphertext?
 - Ciphertext only? (most interesting)

English letter frequencies

O 0.075

A 0.082 B 0.015 C 0.028 D 0.043 E 0.127 F 0.022 G 0.020 H 0.061 I 0.070 J 0.002 K 0.008 L 0.040 M 0.024 N 0.067

P 0.019 Q 0.001 R 0.060 S 0.063 T 0.091 U 0.028 V 0.010 W 0.023 X 0.001 Y 0.020 Z 0.001

Graph:

Ciphertext-only attack

Assume you know the key length, L.
Make any other assumptions you need.
Take 5 min with a partner and devise a method to break Vigenere.

Perhaps yours looks something like this?

Assume we know the key length, L, …

We'll see how to find it shortly

- Method 1:
 - Parse out the characters at positions p = i (mod L)
 - These have all been shifted the same amount
 - Do a frequency analysis to find shift
 - The most frequent letter should be c, given enough text. Can verify to see how shift affects other letters
 - This gives the first letter of the key
 - Repeat for positions p = 1, p = 2, ... p = L-1
 - Problem: involves some trial and error.
 - For brute force to work, would need to brute force all letters of key simultaneously: _____ possibilities

Using the whole frequency distribution is more robust than using a single letter

Do this via dot products of frequency vectors.

Dot products

Why?

$$A \cdot B = A \cdot B = \sum_{i} A_{i} B_{i}$$

Consider A = (0.082 0.015 0.028 0.043 0.127 0.022 0.020 0.061 0.070 0.002 0.008 0.040 0.024 0.067 0.075 0.019 0.001 0.060 0.063 0.091 . 0.028 0.010 0.023 0.001 0.020 0.001);

- $A_i = A$ displaced *i* positions to the right
- $A_0 = (0.082 \quad 0.015 \quad 0.028 \dots$ 0.001 0.020 0.001) $\bullet A_1 = (0.001 \ 0.082 \ 0.015 \ 0.028 \dots)$ 0.023 0.001 0.020) • $A_2 = (0.020 \ 0.001 \ 0.082 \ 0.015 \ 0.028 \dots$ 0.023 0.001)• $A_0 \cdot A_1 = 0.039$ • $A_0 : A_0 = 0.066$ A_i .* A_i depends on _____ only. Max occurs when

Towards another method Method 1

- Parse out the characters at positions p = 0 (mod L)
 - These have all been shifted the same amount
 - Oo a frequency analysis to find shift
 - The most frequent letter should be e, given enough text.
 Can verify to see how shift affects other letters.
- This gives the first letter of the key
 Repeat for positions p = 1, p = 2, ... p = L-1

Another method

Method 2

 Parse out the characters at positions p = 0 (mod L)

These have all been shifted the same amount

• Get the whole freq. distribution W = (0.05, 0.002, ...)

• W approximates A. Calculate $W \cdot A_i$ for $0 \le i \le 25$

Max occurs when we got the shift correct.

- This gives the first letter of the key
- Repeat for positions p = 1, p = 2, ... p = L-1
 Demo

Method 2 is more robust since it uses the whole letter distribution

Find dot product of A_i: and W:

More robust than just using 1 letter ('e')...

...but harder to compute by hand.

Finding the key length also uses dot products

 Just displace the ciphertext by various amounts and look for the maximum dot product

Finding the key length

- What if the frequency of letters in the plaintext approximates A?
- Then for each k, the frequency of each group of letters in position p = k (mod L) in the ciphertext approximates A.
- Then loop, displacing the ciphertext by i, and counting the number of matches.
 - Get max when displace by correct key length
 - So just look for the max number of matches!

	displacement	
APHUIPLVWGIILTRSQRUBRIZNYQRXWZLBKRHFVN	(0)	
NAPHUIPLVWGIILTRSQRUBRIZNYQRXWZLBKRHFV	(1)	1 match
VNAPHUIPLVWGIILTRSQRUBRIZNYQRXWZLBKRHF	(2)	0 matches
 KRHFVNAPHUIPLVWGIILTRSQRUBRIZNYQRXWZLB	(6)	5 matches

Key length: an example

Take any random pair in the ciphertext: The letter in the top row is shifted by i (say 0) The letter in the bottom row is shifted by j (say 2)

Prob(both 'A') = P('a')*P('y') = 0.082 * 0.020
Prob(both 'B') = P('b')*P('z') = 0.015 * 0.001
Prob (both same (any letter)) is ____ or generally ____
Recall, this is maximum when _____
When are each letter in the top and bottom rows shifted
by same amount?

$$A_0 = (0.082 \quad 0.015 \quad 0.028 \dots$$
 $0.001 \quad 0.020 \quad 0.001)$ $A_2 = (0.020 \quad 0.001 \quad 0.082 \quad 0.015 \quad 0.028 \dots$ $0.023 \quad 0.001)$

The text helps with implementation

Read it. Implement it. You'll own it.

- You'll do this on Homework 2:
- Week 3 programming test: use your program to decrypt a vigenere-encrypted message

Consider Gadsby by Ernest Vincent Wright, February 1939:

<u>http://www.spinelessbooks.com/gadsby/01.html</u>

What do you notice about it?