DTTF/NB479: Dszquphsbojiz

- Announcements:
- Please pass in Assignment 1 now.
- Assignment 2 posted (when due?)
- Questions?
- Roll Call
- Today: Vigenere ciphers

Shift, Affine, and Substitution ciphers are related

1. How many possibilities to brute force?
2. What idea is new?

Shift
Affine

Substitution

Vigenere ciphers

- Invented in 1553 by Bellaso
- A different type of complexity

Vigenere Ciphers

- Idea: the key is a vector of shifts
- The key and its length are unknown to Eve
- Encryption:
- Repeat the vector as many times as needed to get the same length as the plaintext
- Add this repeated vector to the plaintext.
- Example:

Key = hidden (7 8334 13).
The recent development of various methods $\begin{array}{lllllllll}19 & 7 & 4 & 17 & 4 & 2 & 4 & 13 & 19\end{array}$ 3...

Security

- The shift vector isn't known (of course)

1. With shift ciphers, the most frequent cipher letter is probably e.

But here, e maps to H, I, L, \ldots (spread out!)
2. The vector's length isn't even known!

- Consider 4 attacks:
- Known plaintext?
- Chosen plaintext?
- Chosen ciphertext?
- Ciphertext only? (most interesting)

English letter frequencies

A 0.082
B 0.015
C 0.028
D 0.043
E 0.127
F 0.022
G 0.020

O 0.075	U 0.028
P 0.019	V 0.010
Q 0.001	W 0.023
R 0.060	X 0.001
S 0.063	Y 0.020
T 0.091	Z 0.001

Ciphertext-only attack

- Assume you know the key length, L.
- Make any other assumptions you need.
- Take 5 min with a partner and devise a method to break Vigenere.

Perhaps yours looks something like this?

- Assume we know the key length, L, ...
. We'll see how to find it shortly
- Method 1:
- Parse out the characters at positions $p=i(\bmod \mathrm{~L})$
- These have all been shifted the same amount
- Do a frequency analysis to find shift
- The most frequent fetter shoulde be g, given enough text. Can verify to see how shift affects other letiers
- This gives the first letter of the key
- Repeat for positions $p=1, p=2, \ldots p=L-1$
- Problem: involves some trial and error.
- For brute force to work, would need to brute force all letters of key simultaneously: possibilities
- Do this via dot products of frequency vectors.

Using the whole frequency distribution is more
 Using the whole frequency distri robust than using a single letter

Dot products

$$
A \cdot B=A \cdot{ }^{*} B=\sum_{i} A_{i} B_{i}
$$

- Consider $A=\quad(0.0820 .0150 .0280 .0430 .1270 .0220 .0200 .0610 .0700 .002$ 0.0080 .0400 .0240 .0670 .0750 .0190 .0010 .0600 .0630 .091 . 0.0280 .0100 .0230 .0010 .0200 .001);
- $A_{i}=A$ displaced i positions to the right
- $A_{0}=\left(\begin{array}{llll}0.082 & 0.015 & 0.028 & \ldots\end{array}\right.$

0.001	0.020	$0.001)$

- $A_{1}=\left(\begin{array}{lllll}0.001 & 0.082 & 0.015 & 0.028 & \ldots\end{array}\right.$ $0.023 \quad 0.001 \quad 0.020)$
- $A_{2}=\left(\begin{array}{llllll}0.020 & 0.001 & 0.082 & 0.015 & 0.028 & \ldots\end{array}\right.$
- $A_{0} \cdot * A_{1}=0.039$
- $A_{0} \cdot * A_{0}=0.066$
- A_{i}.* A_{j} depends on \qquad only.
- Max occurs when . Why?

Towards another method

- Method 1
- Parse out the characters at positions $p=0$ $(\bmod L)$
-These have all been shifted the same amount
- Do a frequency analysis to find shift
- The most frequent letter should be e, given enough text. Can verify to see how shift affects other letters.
- This gives the first letter of the key
- Repeat for positions $p=1, p=2, \ldots p=L-1$

Another method

- Method 2

- Parse out the characters at positions $p=0$ (mod L)
-These have all been shifted the same amount
- Get the whole freq. distribution $\mathrm{W}=(0.05,0.002, \ldots)$
- W approximates A. Calculate W • A_{i} for $0 \leq i \leq 25$
- Max occurs when we got the shift correct.
- This gives the first letter of the key
- Repeat for positions $p=1, p=2, \ldots p=L-1$
- Demo

Method 2 is more robust since it uses the whole letter distribution

- Find dot product of A_{i} : and W :

More robust than just using 1 letter ('e')...

... but harder to compute by hand.

Finding the key length also uses dot products

- Just displace the ciphertext by various amounts and look for the maximum dot product

Finding the key length

- What if the frequency of letters in the plaintext approximates A?
- Then for each k, the frequency of each group of letters in position $p=k$ (mod L) in the ciphertext approximates A.
- Then loop, displacing the ciphertext by i, and counting the number of matches.
- Get max when displace by correct key length
- So just look for the max number of matches!

APHUIPLVWGIILTRSQRUBRIZNYQRXWZLBKRHFVN
displacement

NAPHUIPLVWGIILTRSQRUBRIZNYQRXWZLBKRHFV VNAPHUIPLVWGIILTRSQRUBRIZNYQRXWZLBKRHF (0)
(1) 1 match
(2) 0 matches

KRHFVNAPHUIPLVWGIILTRSQRUBRIZNYQRXWZLB (6) 5 matches

Key length: an example

Take any random pair in the ciphertext:
The letter in the top row is shifted by i (say 0)
The letter in the bottom row is shifted by j (say 2)
Prob(both 'A') $=P\left(\left(^{\prime} a^{\prime}\right) * P\left({ }^{\prime} y^{\prime}\right)=0.082\right.$ * 0.020
Prob(both 'B') $=P\left({ }^{\prime} b\right.$ ')*P('z') $=0.015$ * 0.001
Prob (both same (any letter)) is ___ or generally
Recall, this is maximum when \qquad
When are each letter in the top and bottom rows shifted by same amount?

$$
\left.\begin{array}{llllllll}
A_{0}=\left(\begin{array}{lllllll}
0.082 & 0.015 & 0.028 & \ldots & & 0.001 & 0.020 \\
0.001
\end{array}\right) \\
A_{2}=\left(\begin{array}{llllll}
0.020 & 0.001 & 0.082 & 0.015 & 0.028 & \ldots
\end{array}\right. & & 0.023 & 0.001
\end{array}\right)
$$

The text helps with implementation

o Read it. Implement it. You'll own it.

- You'll do this on Homework 2:
- Week 3 programming test: use your program to decrypt a vigenere-encrypted message

Exceptions

- Consider Gadsby by Ernest Vincent Wright, February 1939:
- httip://www.spinelessbooks.com/gadsby/01.htm]
- What do you notice about it?

