
Announcements:
 Please pass in Assignment 1 now.
 Assignment 2 posted (when due?)

Questions?
Roll Call
Today: Vigenere ciphers

DTTF/NB479: Dszquphsbqiz Day 5

1. How many possibilities to brute force?
2. What idea is new?
Shift
Affine
Substitution

Vigenere ciphers

 Invented in 1553 by Bellaso
 A different type of complexity

Shift, Affine, and Substitution ciphers are related

Idea: the key is a vector of shifts
 The key and its length are unknown to Eve

Encryption:
 Repeat the vector as many times as needed to get

the same length as the plaintext
 Add this repeated vector to the plaintext.

Example:

Key = hidden (7 8 3 3 4 13).
 The recent development of various methods
 19 7 4 17 4 2 4 13 19 3…

 7 8 3 3 4 13 7 8 3 3 4 13 7 8 3 3 4 13 7 8 3 3 4 13 7 8 3 3 4 13 7 8 3 3 4 13
 0 15 7 20 8 15 1121 22 6 8 811191718161720 1 17 8 25132416172322 2511 11017 7 5

 aph uiplvw giiltrsqrub ri znyqrxw zlbkrhf

Vigenere Ciphers
(quiz # now at top) 1

Key

The shift vector isn’t known (of course)
1. With shift ciphers, the most frequent cipher letter is

probably e.
 But here, e maps to H, I, L, … (spread out!)

2. The vector’s length isn’t even known!
Consider 4 attacks:
 Known plaintext?
 Chosen plaintext?
 Chosen ciphertext?
 Ciphertext only? (most interesting)

Security
2-3

English letter frequencies
A 0.082
B 0.015
C 0.028
D 0.043
E 0.127
F 0.022
G 0.020

H 0.061
I 0.070
J 0.002
K 0.008
L 0.040
M 0.024
N 0.067

O 0.075
P 0.019
Q 0.001
R 0.060
S 0.063
T 0.091

U 0.028
V 0.010
W 0.023
X 0.001
Y 0.020
Z 0.001

Graph:

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Ciphertext-only attack

Assume you know the key length, L.
Make any other assumptions you need.
Take 5 min with a partner and devise a
method to break Vigenere.

4

Perhaps yours looks something like this?

Assume we know the key length, L, …
 We’ll see how to find it shortly

Method 1:
 Parse out the characters at positions p = i (mod L)

These have all been shifted the same amount
Do a frequency analysis to find shift

 The most frequent letter should be e, given enough text. Can
verify to see how shift affects other letters.

 This gives the first letter of the key
 Repeat for positions p = 1, p = 2, … p = L-1
 Problem: involves some trial and error.
 For brute force to work, would need to brute force all

letters of key simultaneously: _____ possibilities

Using the whole frequency distribution is more
robust than using a single letter

Do this via dot products of frequency
vectors.

Dot products

Consider A = (0.082 0.015 0.028 0.043 0.127 0.022 0.020 0.061 0.070 0.002
 0.008 0.040 0.024 0.067 0.075 0.019 0.001 0.060 0.063 0.091 .
 0.028 0.010 0.023 0.001 0.020 0.001);

Ai = A displaced i positions to the right
A0 = (0.082 0.015 0.028 … 0.001 0.020 0.001)

A1 = (0.001 0.082 0.015 0.028 … 0.023 0.001 0.020)

A2 = (0.020 0.001 0.082 0.015 0.028 … 0.023 0.001)

A0 .* A1 = 0.039
A0 .* A0 = 0.066
Ai .* Aj depends on _____ only.
Max occurs when _____.
Why?

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

∑==⋅
i

ii BABABA *.

5-6

Towards another method
Method 1
 Parse out the characters at positions p = 0

(mod L)
These have all been shifted the same amount
Do a frequency analysis to find shift

 The most frequent letter should be e, given enough text.
Can verify to see how shift affects other letters.

 This gives the first letter of the key
 Repeat for positions p = 1, p = 2, … p = L-1

Another method
Method 2
 Parse out the characters at positions p = 0

(mod L)
These have all been shifted the same amount
Get the whole freq. distribution W = (0.05, 0.002, …)

 W approximates A. Calculate
 Max occurs when we got the shift correct.

 This gives the first letter of the key
 Repeat for positions p = 1, p = 2, … p = L-1
 Demo

250 ≤≤⋅ iforAW i

Method 2 is more robust since it
uses the whole letter distribution

Find dot product of Ai:
 and W:

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

7-8

More robust than just using 1 letter (‘e’)…

…but harder to compute by hand.

Finding the key length also uses dot products

Just displace the ciphertext by various
amounts and look for the maximum dot
product

Finding the key length
What if the frequency of letters in the plaintext
approximates A?
Then for each k, the frequency of each group of letters in
position p = k (mod L) in the ciphertext approximates A.
Then loop, displacing the ciphertext by i, and counting
the number of matches.
 Get max when displace by correct key length
 So just look for the max number of matches!
 displacement
APHUIPLVWGIILTRSQRUBRIZNYQRXWZLBKRHFVN (0)
NAPHUIPLVWGIILTRSQRUBRIZNYQRXWZLBKRHFV (1) 1 match
VNAPHUIPLVWGIILTRSQRUBRIZNYQRXWZLBKRHF (2) 0 matches
…
KRHFVNAPHUIPLVWGIILTRSQRUBRIZNYQRXWZLB (6) 5 matches
…

Key length: an example
Take any random pair in the ciphertext:
 The letter in the top row is shifted by i (say 0)
 The letter in the bottom row is shifted by j (say 2)

Prob(both ‘A’) = P(‘a’)*P(‘y’) = 0.082 * 0.020
Prob(both ‘B’) = P(‘b’)*P(‘z’) = 0.015 * 0.001
Prob (both same (any letter)) is ___ or generally ___
Recall, this is maximum when ______
When are each letter in the top and bottom rows shifted

by same amount?

A0 = (0.082 0.015 0.028 … 0.001 0.020 0.001)

A2 = (0.020 0.001 0.082 0.015 0.028 … 0.023 0.001)

The text helps with implementation

Read it. Implement it. You’ll own it.
 You’ll do this on Homework 2:
 Week 3 programming test: use your program

to decrypt a vigenere-encrypted message

Exceptions

Consider Gadsby by Ernest Vincent
Wright, February 1939:
 http://www.spinelessbooks.com/gadsby/01.html

What do you notice about it?

http://www.spinelessbooks.com/gadsby/01.html

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	English letter frequencies
	Ciphertext-only attack
	Perhaps yours looks something like this?
	Using the whole frequency distribution is more robust than using a single letter
	Dot products
	Towards another method
	Another method
	Method 2 is more robust since it uses the whole letter distribution
	Finding the key length also uses dot products
	Finding the key length
	Key length: an example
	The text helps with implementation
	Exceptions

