DTTF/NB479: Jouspevdujpo up Dszquphsbaiz

Nouu Cpvufimm
G-222 y8534 cpvufimm@sptf-ivmnbo.fev
(It should now be obvious whether or not you are in the right classroom...)

CSSE/MA479: Introduction to Cryptography

Matt Boutell
F-222 x8534
boutell@rose-hulman.edu

Agenda: Introductions to...

- The players
- The topic
- The course structure
- The course material

Introductions

- Roll call:
- Pronunciations and nicknames
- Help me learn your names quickly
- You'll share with classmates on discussion forum
- Me:
- Since 2005 (but in Zambia last year)
- Taught CSSE120, 120 Robotics, 220, 221, 230, Image Recognition, Android, Cryptography, Fractals, Mechatronics, Robotics senior design

What is Cryptography?

- Designing systems to communicate over non-secure channels

Trappe and Washington, p. 3

Sherlock Holmes, The Adventure of the Dancing Men (1898)

In a letter:

2 weeks later:
た

2 mornings later:

3 days later:

4 days later:

Non-secure channels

Trappe and Washington, p. 3

Agenda

- The players
- The topic
- The course stiructure
- The course material

What will we do?

Learn theory (lecture, text, written problems) What would happen if you used composite numbers as factors in RSA?

Make and break codes (programming)
DES Block cipher, classic crypto

Research something new (term project)
Quantum cryptography, TwoFish, PGP

Admin

- Syllabus
- Text: highly recommended by students
- Grading, attendance, academic integrity
- Angel: Please use the merged course:
- CSSE/MA479 Cryptography (Spring 12-13)
- The original csse479-01 and ma479-01 are empty
- Schedule
- Contains links to homeworks (first due Monday)
- Easy first week...
- Bookmark in browser:
- http://www.rose-hulman.edu/class/csse/csse479/201330/
- Post to piazza for questions

Agenda

- The players
- The topic
- The course structure
- The course material

Shift ciphers

- Attributed to Julius Caesar
- Letters represented as 0-25.
- $x \rightarrow x+k(\bmod 26)$
- Cryptography \rightarrow EUARVQIICRJA
- Weak cryptosystem.
- We learn it to show that "encryption" isn't useful if it's not secure.
- We also use it to study 4 typical attacks to find the decryption key:
- Ciphertext only (the discussion forums)
- Known plaintext
- Chosen plaintext
- Chosen ciphertext

1. Ciphertext only

Consider alszquphsboqiz
dszquphsbqiz etarvqitcrja fubswrjudskb gvctxskvetlc hwduytlwfumd ixevzumxgvne jyfwavnyhwof kzgxbwozixpg lahycxpajyqh mbizdyqbkzri ncjaezrclasj odkbfasdmbtk pelcgbtencul qfmdhcufodvm rgneidvgpewn shofjewhqfxo tipgkfxirgyp ujqhigyjshzq vkrimhzktiar wlsjnialujbs xmtkojbmvkct ynulpkenwldu zovmqldoxmev apwnrmepynfw bqxosnfqzogx cryptography

- How did you attack the cipher?
- Another trick for long ciphers...

2. Known plaintext

Say I know sample of plaintext and corresponding ciphertext.

How long does the sample need to be to find the key?

3. Chosen plaintext

Say I have access to the encryption machine and can choose a sample of plaintext to encode. How can I deduce the key?

Just encode a. That gives the encryption key

4. Chosen ciphertext

Say I can choose a sample of ciphertext to decode.
Just decode A. How does this give the encryption and decryption keys?

Homework due Monday

- See the schedule page

Where did you sit today?

WHERE YOU SIT IN CLASS/SEMINAR

And what it says about you:

http://www.phdcomics.com/comics/archive.php?comicid=1017

Affine ciphers

Somewhat stronger since scale, then shift:

$$
x \rightarrow \alpha x+\beta(\bmod 26)
$$

Say $y=5 x+3 ; x=$ 'hellothere'; Then $y=$ 'mxggv...'

(Hint: my table mapping the alphabet to 0-25 is really handy)

Affine ciphers: $x \rightarrow \alpha x+\beta(\bmod 26)$

Consider the 4 attacks:

1. How many possibilities must we consider in brute force attack?

a can't be just anything!

Consider $y=2 x, y=4 x$, or $y=13 x$

Is mapping unique?

The problem is that $\operatorname{gcd}(\alpha, 26)!=1$.
The function has no inverse.

Finding the decryption key

-What's the inverse of $y=5 x+3$?

- $\alpha=5$ is OK.
- In Integer (mod 26) World, of course...

Affine ciphers: $x \rightarrow \alpha x+\beta(\bmod 26)$

-Consider the 4 attacks:

1. Ciphertext only:

OHow long is brute force?
2. Known plaintext

OHow many characters do we need?
3. Chosen plaintext
owow, this is easy. Which plaintext easiest?
4. Chosen ciphertext

OAlso easy: which ciphertext?

