CSSE 477

Name _____________Key______________

Biweekly Quiz

Friday, October 28, 2011
11 questions, 10 points each

Instructions: Closed book. These are all short answer questions, but explain each of them in enough depth to show convincingly that you understand the concepts involved.
1. What does secure mean? According to Bass, an attack can come in any of three forms. One is unauthorized access. Describe one of the other two:
Answer: The other two are denying services to legitimate users, and corrupting the system (or its data).
Also accepted (1) legitimate users doing unauthorized things, and (2) privilege escalation, and (3) hijacking code.
2. Deciding who's who: Two key defenses against unauthorized access are authenticating users and authorizing users. What's the difference between these two security goals?
Answer: Authenticating is verifying who they are. Authorizing is knowing what can each class of users is allowed to do and controlling that.
3. The collusion problem: One big issue in handling assets is the possibility that two people collaborate in a fraudulent way. For example, a retail cashier voids a sale, then their supervisor authorizes this action, and the two of them pocket the money. How can we best defend against this collusion possibility:
Answer: One would have an audit trail of these activities, and could create a system that detects patterns, such as a larger number of voids by the particular cashier, always authorized by the same supervisor.
4. Making a product line: Suppose you want to create a product line for different key customers
, so as to avoid having really separate products for each of them. Where would you start looking, in order to make good decisions about what to put in the "core" product versus what had to go into separate developments?
Answer: Here I was hoping you would apply the general methods, like deciding what's general and what's unique, to this particular situation. A problem with key customers would be that their products, with the special features, can't be delivered after the regular product goes on the general market - they would not like that at all! Therefore, testing, etc., has to be done at the same time as for the general release. This means the differences for the key customers should be handled in ways that automatically fit with the general release, like parameters or code which links to "hooks" in that general code.
5. Dealing with variation points: Once you know what can be the same and what has to be different for products in your product line, there are some ways you can deal with the variations. One is to include or omit software elements, based on what a customer needs. Describe another way to deal with variation points, and how it differs from this one:
Answer: The general options noted in the book include:
1. Inclusion of a different number of replicated elements

2. Selection of versions of elements that have the same interface but different behavioral or quality attribute characteristics
For OO systems we noted, on our slides, more specifically:

1. Specializing or generalizing of classes

2. Building extension points

3. Introducing build-time parameters

4. A need for reflective programs, which analyze their data & situation

5. Overloading of types (good and bad)
6. Learning and usability: Bass believes that learning is one of the five essential aspects of usability. It makes sense to do everything to make a system as easy as possible for a beginner to learn how to use it. Yet doing this can get in the way of system use by experts. Describe one good trick that enables users to learn while not slowing down the experts:
Answer: The standard solution to this is providing extra ways that experts can use the interface, which require longer to learn but which are more efficient to use. A good example is special combinations of shortcut keys to do the things they would do most often. Another is providing a command-line style interface instead of a menu system for making the system do things.
7. The user model across cultures: You are developing an application in collaboration with an engineering group in China. The group in each country is responsible for certain classes of code, and, in the end, these classes all have to work together. At the same time, you want to design a common problem reporting system for the two groups involved, to use as they develop the application. You know that Americans are more "task oriented" and are more willing to confront and criticize others directly. Chinese people, in general, are "relationship oriented" and likely to avoid direct confrontation, open criticism, or controversial topics. How would you design this problem reporting system so that it somehow took into account the conflicting approaches that the two cultures have, in reporting issues during their joint development of the application?
Answer: I was looking for you to address actual features in the system here, versus how the groups themselves would interact, though the latter could be important to discuss on the way to answering how the system should work. One aspect I wanted to see was that the "relationship" and "lack of conflict" values would lead to having a system that passed information up trusted channels, like into their own management, on its way to the other group. This would give more of those people, with whom the person finding a problem had a trusted relationship, a chance to re-express and verify the nature of the problem in an acceptable way. Similarly, comments coming from the American organization could be sent to the management of the Chinese organization, for possible rephrasing or reconsidering before going to their developers. To us, this seems like a system in which there would be a serious data loss. But that's because of our own cultural values.
There were a variety of carefully considered answers to this - like making the problem reporting anonymous, or having the two organizations decide together on the right way to do it.
8. Amman and Offutt: These authors say the model of Testability is, "If a program has a fault, how difficult will it be to find a test that causes a failure?" Then they immediately claim that this is impractical to measure. Why do they say that? Describe the practical test they recommend in place of this theoretical one:

Answer: The question is asking partly about something that you can't know - How many faults go undetected? They recommend the RIP model, where R = the % of inputs that reach a coding line, I = the % of these that cause a fault, and P = the % of those that propagate to output (give a visible failure). The product R*I*P for each coding line then is combined to give a Testability measure for a whole module.
9. Bass's usability: On your daily quiz, you dealt with lots of issues about cancelling an operation. This isn't quite the same as "undo." Describe how "cancel" and "undo" are the same and different, in terms of what you would have to program to enable them as user features:
Answer: "Undo" comes after an operation, while "Cancel" comes during. So, in a way, Undo is easier - the system is otherwise at rest (or more likely to be). Of course, Undo could come after additional actions which compound doing that Undo, like reversing a banking transaction after other things have been done based on the resulting balance, etc.
10. User models: What do we care about the user's thinking!? How could we possibly know!? Describe (a) why we do care about that, as systems architects, and, (b) Five dimensions of user modeling which might be important to experiment about. Hint - Thinking in terms of a metaphor is one of them:
(a) We care because:

Answer: We want to be able to model that thinking in the OO model of the user, just like modeling other things in the real world in the OO system that deals with those things.
(b) Dimensions that matter:

1. Thinking in terms of a metaphor.
Answer: Any four of the following were good. Note, this is the list everyone worked from for creating your own mental models in the project:
1. How they will understand the problem space.

2. What they will say their usability goals are?

3. What design principles are a part of your interface, which you think users will notice or like?

4. Which of the four interaction types did you use, and why did you believe this was a good choice, based on the problem space?

5. What aspects of cognition will predominate in user activity?

6. How do aspects of Norman's mental model apply?

7. Ease of use: How readily you believe they will be able to work with your system, with minimal help. What mistakes do you think they will make, if any?
Many of your choices were either very specific things, or not really about what the user is "thinking" (like how accurate the users were), or generalities not matching the ID book's conceptual models (like "level of expertise"). I thought giving one from the project assignment was a giveaway that this was what I was looking for.
11. "I never metaphor I didn't like" department: Metaphors actually have good and bad points, for any particular use. Describe three criteria you would use in deciding the suitability of, oh, the trash can symbol for a new use - to have your users to highlight and delete content out of files they are viewing:
Answer: From "ID mental models summary.ppt", slide 11, there are actually four considerations:
1. Is the interface similar enough to the physical entity depicted by the metaphor? (A place to throw things away.) Are different or additional properties too far away? (E.g., does the highlighting before drag-and-drop feel like crumpling or aiming the object being tossed in a trash can?)
2. Is it based on activity done, the object, or a combination of both?
3. Does this exploit the user’s familiar knowledge, helping them to understand ‘the unfamiliar’? E.g., will it be close enough to other computer uses of the trash can icon?

4. Does the trash can conjure-up the essence of the new, unfamiliar activity, enabling users to leverage this to understand more aspects of the unfamiliar functionality?
� Key customers are like the few major customers for an application. They notoriously want features beyond what you offer in your standard application. And each one wants different things!

