CSSE 477

Name ____________Key______________

Biweekly Quiz

Tuesday, September 26, 2012
11 questions, 10 points each (total of 100 points = perfect)
Instructions: Closed book. These are all short answer questions, but explain each of them in enough depth to show convincingly that you understand the concepts involved.
1. Availability tactics: In terms of efficiency, one can rate messages that are sent between machines to know if the remote one's operations are normal or abnormal. That is, you need to send a lot more of some types of these messages than you do of others. Rate the following in terms of efficiency, with 1 meaning most efficient, and 3 meaning the least efficient:
	Message type
	Your efficiency rating

	Ping / echo
	3 or 2

	Heartbeat
	2 or 3

	Exception
	1

Answer: The last is definitely number 1 in efficiency, because it only sends messages when there is a problem. The variation in the ranking of the first two depends on how each is understood. You can argue that a heartbeat is sent only at the rate the sender feels is needed to alert the listeners, based on inside knowledge about how likely it is to go down, and so that has to be more efficient. Similar arguments hold for ping / echo.
Then answer the question - if the one you picked is the most efficient, why doesn't everyone use it all the time?

Answer: Exceptions won't be thrown by a system if it really crashes. Similarly for an application stuck in a loop or waiting for something that will never happen.
2. Availability problems: Suppose you have a distributed calendar system, and people can use it to book meetings with each other. The system actually doesn't have a central database, but uses each person's local calendar to log the information. Let's say the devices people use are something like Blackberries, which are turned on almost all the time. When you want to set up a meeting with, say, the 3 other people on your team, you simply propose a meeting to all of them, at a time which looks available for all of them. Then each one confirms that they can make the meeting, and it's a "go" when everyone confirms. What availability issue is this system susceptible to? Describe a specific scenario where there could be a problem it could not overcome:
Answer: The most outstanding problem is that, if one of the parties disappears partway through the confirmation process, you may not be able to roll forward or back. E.g., They think they said "yes" to the meeting, but you never got that message, and they are now not responding to additional tries. They might show up to the meeting, or not. And you can't cancel it. This is a classic issue for such a system, cited in the literature, and one for which doing multiple confirmations doesn't really help.
Other variations on this answer were given, which also sounded convincing, and I gave full credit for those. For example, clearly not everyone's going to be online all the time, which prevents you from even starting the meeting scheduling.
3. Architectural styles: Why is an architectural style considered (by Garlan and Shaw) to be "Components + Connectors + Constraints"?
Answer: It's all in the runtime activity that the architecture's quality attributes take effect - all the "-ilities." That is, the runtime activity pattern really IS the architectural style - how it works.
4. The OO style: In terms of an architectural style, what is one invariant of the OO (data abstraction) style?
Answer: Most likely answers were either the data hiding or the maintaining of integrity of a structure (the object). These are almost different ways to say the same thing - that there is inherent coherence to the way the system operates, at all conceptual levels (the various levels of the classes).
5. The Implicit Invocation style: What is one disadvantage of the Implicit Invocation style (like a Publisher - Subscriber system)? Be sure to note why this problem occurs in such architectures:
Answers: Could be one of the following:
Control: No way to know what will happen after event is announced - usually no confirmation back to the sender.
Data: May lead to performance problems, because of the need for a distributor in the middle. And, may have to send fairly general attributes that all receivers could process.
Correctness: Meaning of procedure is context dependent - what do the receivers actually do?
6. Creating an architecture: In Bass's "Attribute-driven" design process, you choose attributes one at a time - either a feature or a quality attribute - and then pick an architectural pattern or tactic to handle that. Contrast this design style with what we learned in CSSE 374, as traditional OO design practice:
Answers: In traditional OO design only features / classes are selected for consideration this way, not also quality attributes. Larman, for example, has Iterations whose content depend on the priorities for building the features.
In 374 we also did not pick architectural tactics and styles to match any of this. It was assumed to be OO style (modeling the domain and/or adding special objects as helpers where needed, like for indirection), as if it were assumed we were running on a single machine (even if some things went to servers).
7. The Flight Simulator: Describe how the "n-Square" charts were used in the design of the Flight Simulator software, in Ch 8 of Bass's book:
Answer: The n-Square charts dictated which inputs and outputs were allowed to any one partition of the coding.
8. Availability calculations: Suppose that, in Musa's terms, the "failure intensity" of a system is one failure in 1000 hours. Then what (either in terms of common sense or using Musa's formula) should the "reliability" be for running your system 100 hours?
Answer: Common sense: 90% - with 1 chance in 10 of failing over 1/10th of the time.
With Musa's formula,

 (= - ln R

 t

we'd have (=1/1000, and t = 100, so R would be exp(-0.10) = 0.90 .
9. Modifiability scenarios: Complete the scenario below, for a Modifiability requirement in which we want 90% of the parameter changes made by systems engineers, on installed machines running Release 2.0 the field, to be done without any side effects:
Answer:

Source: External
Stimulus: Parameter changes by systems engineers
Artifact: Installed Release 2.0 machines
Environment: Machines needing parameter changes
Response: One change is the complete modification.
Response Measure: 90% of the time.
10. Modifiability tactics: Describe how you would use an intermediary to improve the modifiability on a Larman's "NextGen POS" system from CSSE 374, so as to enable easy installation of the system in different states (like Ohio versus Indiana)
:
Answer: The intermediary would isolate the parts of the system that varied from one state to another, such as taxation policies. It would provide a generic target for the rest of the system to communicate with.
11. Documenting an architecture: In a software architecture document, what other kind of "view" do pictures of interfaces most look like, and why?

Answer: These look most like component and connector pictures. The reason is that they show interactions between entities.
� This is a retail "point of sale" system that does scanning and records transactions, in a store like Walmart. From one state to another there would be differences such as a different sales tax rate, and variations in which items were taxable.

