CSSE 377

Name _______________Key_______________

Biweekly Quiz

This is an example – from the prior class – given Friday, April 24, 2009

7 questions, 20 points each

Instructions: These are all short answer questions, but explain each of them in enough depth to show convincingly that you understand the concepts involved.
1. Section 7 of your architecture document is supposed to say how it works at a high level, but also why that design solves the problem you set out to solve. Who are the two major audiences who will benefit from knowing the "why", and why?
a. The client (customers or your management) who's paying for it, or their representative. They want to see something they can have confidence in.
b. The other designers who will detail your design (or developers who will code from it directly). It's important that they know your intent for the design, and not just what it is formally, so that they don't corrupt the value in some interpretation they make. Or, successor architects.
c. White-box testers.
2. In reconstructing an architecture, as you are perhaps doing now in your own project, you run into the issue that everything "current" about the system is now shown at a very low level, like code. To describe the architecture, you need it at a high level, like pictures of classes and layers interacting. Assuming you don't have a current design document, what is the basic process by which you get from staring at the code, to showing the correct and current higher, more abstract view you need?
After analyzing things like the pattern of calls from one class to another, the pattern of data use, and perhaps the names of things or the packages they are in, you have to synthesize the "meaning" of this. Say, "All this is one layer." This more abstract view can only be "correct" in the sense that it describes how the system operates in general terms, it may not agree with the original description (e.g., in terminology).
3. In the article "I am not making this up," the author takes a dim view of the marketing people involved in this project. How could you explain this in terms of their project objectives and the author's objectives as a consultant hired to fix the architecture?
During the time the author was consulting, the project objectives were to do a succession of releases, as the article notes. These releases had new features in them, and they were supposed to come out on a fixed schedule. To the extent that rearchitecting held this back, he came in conflict with the marketing people. (They probably took a dim view of him, too!)
4. The authors of the Apache article begin by saying that OSS (Open Source Software) is said to differ from the usual, industrial style of development in these ways:
T 1. OSS systems are built by potentially large numbers (i.e., hundreds or even thousands) of volunteers.

T 2. Work is not assigned; people undertake the work they choose to undertake.

T 3. There is no explicit system-level design, or even detailed design.

F 4. There is no project plan, schedule, or list of deliverables.
So, on the Apache project, which of these 4 things turned out to be truly different, and which ones were false (not really that different). Mark T or F by each one. And explain any of them, below, if you think they might need that:
I graded these correct if you described the proper evidence - for example, (1) could have been seen as "false" because a core group did most of the work.

1. There were about 15 key people, but a whole host of others, many of whom contributed bug fixes.
2. This one was True, they were all volunteers. However, bug fixes, etc., were assigned.
3. The core group did brainstorm how to do each new major section, and then select design strategies from among those.
4. They had a document saying who was going to do what, which they said was roughly like a plan. Yet it was driven a lot by more informal issues, bug reports.
5. Testability could be thought to be "an enabler of modifiability" because it reduces the time required to produce changes; so, in that sense, maybe it belongs as a sub-topic under the QA of modifiability! However, the tactics Bass recommends for testability make it seem different from modifiability. Describe how the tactics for these two QA's differ:
The tactics for Modifiability include "Localize Modifications" and "Prevent Ripple Effects," with a lot of specific tactics under each one.
The tactics for Testability include "Manage Input/Output" and "Internal Monitoring." An example of the first of these is building a test harness to do white-box testing. An example of the second is "tooling" the code itself with debug modes and validity checks.

So, the tactics for testability are not about design of the system itself, but about designing around the system processes that verify what it's doing, however it's designed and built.
6. The architecture review of the Nightingale system was used to illustrate how Bass's process for this works. They discovered that the system could be improved by "swapping out" of different major components to better meet customer needs. Included in these architectural discussions were the database, the OS, and the "rules engine." Why was the rules engine was hard to change, but the team wanted to change it anyway?
The rules engine had all the "business rules" for a particular customer, and was needed as a scripting language to interpret differences in how the system was to work for each of them. They wanted to change it for performance reasons, and so that developers and others didn't have to learn the unique language it used. There also were some glitchy reasons, like the fact the rules engine could contain errors the team could not test for prior to release.

The rules engine was hard to change because it was a 3rd-party product, so the team didn't have that source code. Their plan called for rewriting all the rules in C++ code, which meant creating a rule-to-C++ code generator - not easy!
7. In using CBAM on the NASA ECS system, Bass & Co. built a table of architectural strategies proposed, and listed how many QA scenarios each of them affected, and how many of these currently succeeded or failed versus these numbers after they applied that strategy. Describe how the process they used became a measure of "utility."
This was in Table 12.5, pp. 320-1. They actually looked at what the scenarios were, which would be improved by making an architectural change. They then listed relative numbers for the "current utility" versus "expected utility" with each change. (See Table 12.6, p. 323, for example.)
The utility lets you compare diverse kinds of values and to add up components of them, as the authors did in this table.
