CSSE 377

Name _______________Key_______________

Biweekly Quiz

This is an example from the last class - given Friday, April 3, 2009

7 questions, 20 points each

Instructions: These are all short answer questions, but explain each of them in enough depth to show convincingly that you understand the concepts involved.
1. In a pipe-and-filters architecture style, why does “filters not knowing their neighbors” imply easy evolution?
Answer: Having each interface (pipe) written to a standard, instead of to the specifics of the next filter, makes sure that the filters are interchangeable with alternative ones that do the same things (or provide new features). Moreover, it’s encouraged for each filter not to have states that its neighbor must be aware of, which would create a reliance on unique behavior of the neighbor.
Not required at all (and usually not true) is the ability to rearrange the filters in a different order.
2. In a layered architecture, suppose you discover that the “Useful system” level has to communicate directly with the “Core level” to handle errors. What would you need to do to be sure doing this didn’t mess up your system design?
Answer: Be careful about which parts of the useful system are allowed these special privileges, and ensure that they do that in some systematic way guided by design standards. It should also be as consistent as possible with the ways that the rest of the system accesses the same kind of service by going through the layers as intended.
3. For each step in the Attribute-driven design process, Bass recommends you choose a module to decompose, then choose an architectural driver, from the features, quality attributes, or other constraints given. What should you do next, and why?
Answer: Pick a tactic for handling that driver, and adjust what you now have in the design (and / or revised requirements) as a result.
4. The flight simulator described in Ch 8 once was expensive to debug, test, and modify – until they redesigned it as the chapter describes. What are three things about the new architecture which helped reduce that expense?
Answer: (1) The use of the structural architecture which cleanly separated the parts. (2) The use of the n-squared table to show which components impacted which others. (3) The use of an intermediary in communications, to check on adherence to standards. (4) Modeling reality (e.g., of the physics of the aircraft). And others…
5. Bass’s scenario template for modifiability lists the end user, developer, and system administrator as possible sources. Describe how they would differ, in terms of the ways they would change most systems. And, how would you decide which one should be targeted to make some type of changes?

Answer: The system administrator and end user would make most of their changes by varying parameter values. The system administrator could also write scripts for some customizations. The developer would write code and probably also scripts. You would decide which one should make a particular change based on minimizing overall cost while providing the flexibility required for the system.
6. How does “maintaining existing interfaces” prevent ripple effects?

Answer: By asking developers to keep the same interface with some other code, the other code doesn’t have to be changed as well. This isn’t always possible, but often there is some other way than fixing both sides (or all sides) who participate in an interface.
7. Describe two different “states” of the system you are working on in your project. How, semantically, is the knowledge about that state difference communicated across the system?

Answer: This varies, depending on your system. Almost every system has some special states where not everything is allowed which it normally does. For example, while starting up, perhaps users aren’t allowed to access the GUI even though it appears to be mostly up. State-driven aspects of your system also include activities like locking out readers while writing the same data. And, if your system has flags that turn features on and off, those are states. In multi-user systems, turn-taking is a form of implementing states.
