CSSE 477
Fall 2011-12
Project 3 – Modifiability
There are two goals for this project –

1. Determine the “modifiability” of your project system. In particular, see if you can make a substantial improvement to the modifiability of your project, by making changes back to the design level, if necessary.

2. Do a first draft of an architecture document for your system.

1. Modifiability
The overall scheme for this part is as follows:

· Do a first set of changes, and time how long they take.

· Implement a strategy for making changes more efficient (e.g., refactor the code)

· Do the second set of changes, and time how long they take.

· Report on how this “experiment” went.

2. Architecture document draft
The idea here is to take the documentation you already have for your system, and use it to build a first draft in the format recommended by Bass (Ch 9), with the analysis of your existing design following his recommendations for creating a design in the first place (Ch 7). That is, create useful instances of the three kinds of “views” – static, dynamic, and allocation, and add these, top down, until the architecture feels well-documented.

Use the architecture document template out under Handouts as a starting point. The goal for Project 3 is to populate Section 6 – Views, with pictures and accompanying explanation which sounds like the way your project system is really designed. These should be good enough that they would actually be helpful to a new person joining your project, helping them understand how it works and where any contribution they made would fit in.

There are several deliverables, and class discussions we’ll be doing:
Delayed - Now due Monday night, 9/26, 11:55 PM: Was Friday, 9/23, 11:55 PM – Do the following, as noted in the slides for class this day:

· If your project still has "clients," you could talk to them about what new features they might like. If not, decide for yourselves a reasonable set of next changes, for this project. We also have provided a team of "implementers" for you to brainstorm this with - see below. Make the changes something new, that you or the clients haven’t ever considered far enough to think about how you’d design them…

· These will be a “target” for making changes efficiently.

· Divide the changes into two “equal” sets, so that these appear to be of about equal difficulty. Try to make each group “not homogenous,” in terms of what’s changed. It is especially good if each set includes changes to the same areas.
· Turn those in, in your “team journal” by 11:55 PM. This is the start of a new set of entries for Project 3.
Monday, 9/26, in class –
(1) Work on making the changes in your first set, before trying to improve on modifiability of your system. This will be a journal entry describing your activities, and a spreadsheet showing each change, what module it was a part of or other relevant details, and how long it took. Then, of course, there’s a total time at the bottom. And,
(2) Get some ideas from doing that, on how you can systematically improve the "modifiability" of your system. Start with Bass’s list of tactics (next-to-last slide from 9/23 ppt). Try to figure out exactly what’s suitable for your needs.
Tuesday, 9/27, in class (before the biweekly quiz) - You’ll have a chance to explain how you’ll improve modifiability, to a group designated as your “implementers” (another team - see below). Use them as consultants, to get feedback on the tactics you think will work:
	For design team:
	"Implementers" will be:

	Freeman, Heidtbrink, Manke, Scherer
	Moore, Theis, Watts, Wells

	Banks, McNees, Milluzzi
	Freeman, Heidtbrink, Manke, Scherer

	Mendel, Orlowski, Spiegel
	Banks, McNees, Milluzzi

	Covert, Frank, Sherman
	Mendel, Orlowski, Spiegel

	Moore, Theis, Watts, Wells
	Covert, Frank, Sherman

	Fuller, Glowski, Haffner, Hines
	Klaetsch, Mlynarczyk, Williford

	Hollingshead, Jones, Mann, Stamp
	Fuller, Glowski, Haffner, Hines

	Klaetsch, Mlynarczyk, Williford
	Hollingshead, Jones, Mann, Stamp

Delayed - Now due Wednesday night, 9/28, 11:55 PM: Was Tuesday, 9/27, 11:55 PM – Turn in the following:

(1) The results of your first set of “timed changes,” before you try to improve modifiability. And,

(2) Add to your journal what you and your implementers discussed, and what you’re going to try, to improve the "modifiability" of your system.
Then, of course, you will have a few days to try to make the systematic changes – not the second set of specific changes themselves – just the “modifiability improving” changes. This should be a refactoring of your system, in the sense that the functionality of the system doesn’t really change. You have a few days to do these systematic changes - they're not due till Monday…

At the same time, you should be working on the first draft of your architecture document – one that includes at least what’s due Thursday…
Delayed - Now due Friday night, 9/30, 11:55 PM: Was Thursday, 9/29, 11:55 PM – Turn in the first “rough rough draft” of your architecture document. It should look like the template, but with the high-level view included for each of the 3 kinds of views, in Sec 6 of that document.
Monday, 10/3, in class – Each team explain design changes and results they got. Make sure that, again, you do a real experimental approach, timing each change, so that you can document this on your spreadsheet. The goal is, when done with the second set of changes, to be able to compare, and see if you really gained anything in “modifiability” efficiency. Discuss how this went, in your journal.

Tuesday, 10/4, 11:55 PM – Turn in your results of the modifiability exercise (journal and spreadsheet), and the architecture document with at least one level deeper shown in the Views.
Note that we will progressively add the other sections to the arch doc, as shown on the template. So, you won’t be wasting any effort if you go ahead and add some of these others now! (And I’ll you feedback on those.)
To make this Tuesday, 10/4 deliverable completely clear, you should end up with at least two levels, for at least one of the three kinds of views (static, dynamic and allocation). This is rather like how, in 371, you ended up with multiple levels of Data Flow Diagrams (DFD’s) to show how data flowed through a system. My recommendation – the dynamics (components and connectors) probably need detailing the most; if you do not show two levels of activity there, describe a really good reason why not!
