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ABSTRACT
To be able to examine software evolution – variation in soft-
ware over a sequence of releases – or to compare differing
versions of software with each other, we need to be able to
measure artefacts representative of the software or its cre-
ation process. One can find in the literature a multitude
of approaches to both measuring software – by defining and
applying software metrics – and to examining software evo-
lution in terms of these metrics. In this position paper,
we claim that information content, specifically the (relative)
Kolmogorov complexity, is the correct and fundamental tool
for the measurement of software artefacts. Experimental re-
sults obtained from an analysis of the project udev demon-
strate utility: future work should explore the breadth of
applicability and determine the full scope of the approach.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-

sures, performance measures; D.2.7 [Software Engineer-

ing]: Distribution, Maintenance, Enhancement; H.1.1 [Models

and Principles]: Systems and Information Theory

General Terms
Design, Documentation, Measurement, Theory

Keywords
Kolmogorov complexity, software measurement, software evo-
lution, information theory, similarity metric, CompLearn

1. INTRODUCTION
This paper’s thesis is that, fundamentally, software arte-

facts of all types can best be measured and compared in
terms of their information content as measured by their Kol-
mogorov complexity.

If we wish to measure or investigate how software evolves
– how subsequent releases of a software project differ from
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each other – we need to have some means of measurement
by which we can reveal the course of the evolution.

In software engineering (hereafter SE) we measure soft-
ware using software metrics. Software metrics are (abstract)
tools that we apply to artefacts representative of the soft-
ware or of its production process to produce numerical rep-
resentations. In turn, we hope that these numbers represent
what we do when we create software and thereby provide us
with the information we need to measure and predict.

Here we take the word ‘artefact’ to mean any product or
by-product of the software creation process that we can then
use as input to one of our measurement tools. In studying
software evolution, we apply metrics to the artefacts taken at
given points in time or corresponding to different, generally
sequential, releases of the software project. In addition to
metrics that we can apply to single data sets (releases) we
can, alternatively, look for metrics that explicitly involve
either the process of creation or distinctions between these
different data sets.

There are very many software metrics [18, 27, 15, 10, 20,
35, 14]. There are many artefacts that have been considered
for the measurement of software evolution [21].

We have two main reasons for claiming that Kolmogorov
complexity is the ‘best’ measurement device for software
artefacts. Firstly, the Kolmogorov complexity is a funda-
mental mathematical concept which is, by definition, a mea-
surement of the number of bits of information intrinsic to an
object. Being fundamental and having a mathematical def-
inition, it is unlikely that there will be significant disagree-
ment about its interpretation (of and by itself). Secondly,
its fundamental nature means that it involves no tunable pa-
rameters, no expert evaluations, no calibration. Therefore
it can and should serve as a basis and as an underpinning
for other derived metrics extant in the literature that have
already been shown to have practical worth and, in so doing,
should provide an unequivocal means of comparison.

There are other reasons behind our claim – and we are
also aware of some criticisms of it. These will be discussed
in the following sections. We will continue to expound on
our claim, showing its relation to previous work, in the next
section. In the third section of this paper, we will provide
some evidence of the validity of the claim by showing how
the (relative) Kolmogorov complexity can be employed in a
short proof-of-concept example. We study the open source
project udev [24]. In our conclusion, as well as summing up,
we will briefly discuss some further potential opportunities
for application of the method.
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2. EXPOSITION
We claim that a theoretical basis for the measurement of

software will come from the field of information theory, that
it will be based on Kolmogorov complexity, and that relative
measures of Kolmogorov complexity are already available
and of practical significance. The reasoning behind these
claims is now dealt with in detail.

2.1 Background
We can define any software metric that seems useful to

us – and many people have done so. When considering soft-
ware evolution, the class of potential metrics is broader still.
Practitioners have derived some utility from at least some
of the proposed software metrics. Through ad hoc rules-of-
thumb and heuristics, they have sought to bring some order
to the practice of SE by deriving design advice from numbers
in some way representative of software. Software, in turn,
reflects the decisions made in its design and construction.

Michael Jackson [19] has argued that SE has not yet spe-
cialised to the extent that software construction can be con-
sidered the purview of ‘normal design’ as opposed to ‘radical
design’. Indeed, in cases where software construction can be
reduced to normal design (the minor or automated modifica-
tions of existing designs) risk is minimised and predictabil-
ity is higher. Many, if not all, of the software metrics in use
see greatest success when used within the ‘normal design’
paradigm, areas where the metrics are known to be ‘good’.

However, despite strong arguments advocating the con-
trary, it is still the case that much of software development is
radical rather than normal. Practitioners’ battery of heuris-
tics can, as a result, provide only guidelines and cannot be
more finely tuned to software measurement or the revela-
tion of software evolution without losing their generality. If
there were some underlying theoretical approach that could
justify and validate the measurement of software, it could
instead serve both as a basis for future modelling and as a
common thread, tying previous indicators together.

Information theory is the branch of science that we have
for reasoning about information: if we agree that software
is information, then a theoretical basis for measuring and
comparing software will come from this field. This assertion
is validated by contemporary work, such as that by Harman
[16, 17] – describing the need for information theoretic met-
rics as fitness functions in search-based SE with Lutz [26]
as an exemplar – or that by Clark et al. [13] or by McCa-
mant and Ernst [28] – on information flow with implications
particularly for software security. It was also the conclusion
of early workers in SE. van Emden’s theoretical work [33,
34] extending themes from Simon and Ando [31] and from
Alexander [1] and the practical demonstrations of employing
entropy for measurement of software design by Chanon [8, 9]
were the first applications of information theory in the new
field of SE. These initial forays were followed by many pa-
pers seeking to use variants of entropy to measure software
or its design or its evolution [35, 22].

Consider the discrete case of Shannon’s entropy [30]:

H(X) = −
X

xǫX

px log px. (1)

The entropy, H(X), is calculated in terms of the probabil-
ities px that the codes x from a set X will occur during
their transmission from a source to a sink over a channel.
We can ask: in SE terms, what are the symbols here, what

do they imply, and how do we measure their probabilities
of occurrence? Clearly, given the significant numbers of pa-
pers seeking to employ entropy in SE, there are many possi-
ble answers. Alternatively, we can try a different approach.
Shannon’s entropy relates to the significance of occurrence
of symbols taken from a known alphabet1 but says nothing
about the information content of the symbols themselves.
The information content of the symbols is measured using
Kolmogorov complexity.

2.2 Kolmogorov Complexity
Kolmogorov complexity, also known as “algorithmic en-

tropy”, was discovered independently by Solomonoff [32],
Kolmogorov [23] and Chaitin [7]. The Kolmogorov complex-
ity, K(x), of a binary string x is, by definition, the length of
the shortest (prefix-free) binary program to compute x on a
universal computer, such as a universal Turing machine. It
gives the number of bits to computationally describe x.

Kolmogorov complexity complements entropy. Shannon’s
concern centres on the characterisation of messages from a
random source. Kolmogorov dispenses with probability and
considers only individual messages’ information content. For
the purposes of software measurement, we are claiming that
Kolmogorov complexity provides a more appropriate fit.

There is, however, a practical difficulty to this. As a
definition based on an abstract universal computing engine
(the Turing machine), one might wonder how the value of
Kolmogorov complexity can be found. Indeed, as a non-
partial recursive function, the Kolmogorov complexity is
non-computable. Some form of approximation is needed.

Note firstly, that Kolmogorov complexity and Shannon
entropy can be related. It can be shown that the expected
Kolmogorov complexity for any distribution will be close to
its Shannon entropy. The approximation of the Kolmogorov
complexity in terms of entropy is also the device used by
Allen et al. [2]. They show that

E(Len(x)) ≥ H(x) (2)

where, for an instantaneous code for the domain of x, the
expected length per item is E(Len(x)). They explain that
“the entropy of a distribution of x is the minimum expected
length of an instantaneous code for one sample item”. More-
over, by using a Shannon-Fano coding of n items from a set
X, members x, the Kolmogorov complexity of the set X can
then be written ([2], p.189)

bK(X) = nH(x). (3)

By employing graph representations of programs, taking el-
ements from closed sets thus fixing n, they can then use

counting arguments to derive H(x) and from that bK(X).
One interesting conclusion of their paper is that “Informa-

tion size is highly correlated with counting size”. Given that
many SE metrics count features representative of software
artefacts - lines, methods, calls - we claim that this result
provides some evidence both for our argument but also for
those who may claim that existing metrics are good enough.
Now we know why.

2.3 Information Distance, Relative Measures
Our interest is in monitoring change over software releases,

so we are interested in means of comparison. Kolmogorov

1What is the alphabet for radical design?
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Figure 1: Greyscale NCD distance matrix for all 141 releases of udev. Note. The coloured contour lines

occlude the results for self-comparisons, all of which have value zero.

complexity measures the amount of information in an ob-
ject. Bennett et al. [5] asked how the information distance
between two objects could be appropriately measured. Con-
currently with establishing deep connections between this
field and the thermodynamics of computation, they showed
that an appropriate metric was

E1(x, y) = max(K(x|y),K(y|x)). (4)

K(x|y), for example, is the conditional Kolmogorov com-
plexity of x given y, the length of the shortest program for
a universal Turing machine to output x for an input y.

Often it is the case that we wish to know difference in
a proportional rather than an absolute sense. A difference
of 100 bits between two objects of 1 million bits may be
unimportant but if the objects consist of 100 bits then the
difference will certainly be more noticeable. This was the
motivation for the introduction of the normalised informa-
tion distance, NID, introduced by Li et al. [25]. The NID
is defined by

NID(x, y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)}
(5)

They showed that the NID satisfies the metric properties
up to an additive term of O(1/K), where K is the maximum
of Kolmogorov complexities involved. Then we can interpret
1 − NID(x, y) as the number of bits of shared information
per bit of information of the string with more information.

The mathematics for the NID is exact. The final step
we need is that made by Cilibrasi and Vitányi [12]. They

showed that the NID could be approximated by using real-
world compression mechanisms provided that those com-
pression mechanisms possessed some common properties.
The new measure is the normalised compression distance,
NCD:

NCD(x, y) =
C(xy) − min{C(x), C(y)}

max{C(x), C(y)}
. (6)

Here xy denotes the concatenation of x and y and C(x),
for example, denotes the approximation of a Kolmogorov
complexity K(x) by the length of the compressed data pro-
duced by an instance of a real compressor. Cilibrasi has
also made an implementation of the NCD available as the
open source package CompLearn [11]. CompLearn imple-
ments the NCD using standard compression mechanisms,
including bzip2, gzip, lzma and ppmd. In addition to this
application in SE, the technique is also successfully used in
genomics, plagiarism detection and detection of similarity of
musical styles. (References for these can be found here [4].)

We have now seen how the Kolmogorov complexity mea-
sures the information content of objects and how, unlike the
Shannon entropy, it has no requirement for difficult to obtain
probability distributions. We have also seen how (mathe-
matical) metrics for the comparison of objects have been de-
rived from it. Further, we have seen how the uncomputable
but exact relative information distance measure, the NID,
can be approximated by the NCD which can be imple-
mented by approximation involving real-world compression
mechanisms. We now perform a Kolmogorov complexity-
based software evolution experiment on real data.
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3. PROOF-OF-CONCEPT EXAMPLE
In this section, we will characterise the evolution of the

open source project udev, a key element of Linux system
infrastructure. The aim of this short example is to demon-
strate the utility of the approach by examining real-world
data derived from a project of significant size.

The project udev currently comprises a suite of programs.
Although the main functionality of the project is to dynam-
ically generate filesystem nodes to represent hardware de-
vices, particularly dynamically connected ones such as USB
devices, it also includes functionality for the generation of
unique hardware identifiers as well as configuration scripts
which can be used to trigger or control actions corresponding
to devices’ connection or disconnection.

We chose this project because it is self-contained and has
many well-documented releases: 0.1, 0.2, 003, 004 up to
release 142. We assign these indices starting from 1. How-
ever, release 041 does not exist so index 40 corresponds to
release 040 but index 41 corresponds to release 042, and so
on. Although udev is written in C, we could equally well
have chosen a program written in any other language.

3.1 Method
We need to derive input data from each release of the

program as with any other method of examining software
evolution. For this short example – which we present as
evidence of plausibility – we proceed as follows.

1. From the distribution site (www.kernel.org), download
all of the releases to be studied as compressed tar files.

2. Decompress and extract each archive.

3. In the decompressed archive’s directory or any subdi-
rectory thereof, concatenate all files found with the file
extensions ‘.c’ or ‘.h’. This creates a single file contain-
ing the unedited and unfiltered source which we retain
as the data representative of the release.

4. For release indices x, y, calculate the distance matrix
of all values of NCD(x, y) by applying CompLearn’s
ncd using the ppmd compressor to the concatenated
source files previously created.

5. Plot the distance matrix then compare the plot’s signif-
icant features with the program’s history or vice versa.

In this simple test, we employ the raw source code as the
artefact for comparison. Clearly, since what we are exam-
ining is the pairwise, relative, number of bits of shared in-
formation, any artefact representative of the program will
provide candidate data. We will further discuss this later.

3.2 Results
Figure 1 shows the distance matrix comparing all releases.

The value of NCD(x, y) is plotted in greyscale with black
representing 0.0 and white representing the value 1.0. Over-
laid on the plot are coloured contours corresponding to the
values shown in the key. Self-comparisons along the diagonal
are all zero (but occluded by the contour lines).

Remember that 1 − NCD(x, y) can be thought of as the
number of bits of shared information between samples x
and y proportional to the sample with more information.
Therefore white areas, the top-left and bottom-right of the
plot, correspond to comparisons between samples with little

Table 1: Reasons for major changes

Index Release Notable Features
6 6 SCCS files kept in source
16 16 Removal of SCCS files

43,44 44,45 No code changes
53 54 Update klibc with zlib
73 74 Remove own copy of klibc
79 80 Replace libsysfs

98,99 99,100 Almost no code changes
126 127 libudev info library

shared information. Moreover, since the releases are tempo-
rally sequential, moving from the diagonal in the directions
left to right or bottom to top corresponds to comparing a
given release (on the diagonal) with a later release.

The blocks that can be seen along the main diagonal cor-
respond to releases that are similar to each other. Wide
reaching changes will be found at the corner points of each
block along the diagonal. After a few initial releases (5),
there is a set of around 10 releases that are very similar to
each other. There is then another block of 57 releases fol-
lowed by a block with the remaining releases. Within each
of the two larger blocks, there are one large and one small
sub-blocks: 17 to 53, 53 to 72; and 77 to 126, 126 to 141,
respectively. Two dotted islands are present on the main
diagonal at indices 43 and 98. The other feature of note is
the dual ‘spike’ from releases 17 to 54 corresponding to com-
parison with release 5. One can say that release 5 is similar
to release 17 onwards but not to releases 6 to 16. The re-
leases at which major changes occurred are given in Table 1
together with the code alterations responsible for the large
differences in shared information content.

This establishes the utility of the method. The plot told
us where to look in the ChangeLog to see what the major
changes were. Without a ChangeLog, we could have seen
where major changes were introduced. Although we used
source code here, would could equally well have employed
obfuscated binaries for the test since we have not established
what the most revealing artefacts for our purposes will be.

We note that there is some dependency on the quality of
the compressors used in the approximation. A compressor
better approximating the ideal compressor will give better
results. Nevertheless, most commonly found compressors
are suitable for use with the method (although see [6]).

4. CONCLUDING REMARKS
To provide a sound theoretical basis for software measure-

ment, including the measurement of software evolution, we
must look to information theory. Previous attempts to do
so have almost all employed Shannon entropy as the ba-
sis for characterisation. Until recently, the alternative, Kol-
mogorov complexity, could not be explored because the tools
were not available to do so. Since Kolmogorov complexity
measures the information content of objects, we claim that
it provides a more natural fit with the needs of software
measurement. Further, it carries much of the meaning of
Shannon entropy without the need for difficult to obtain
probabilities and can thus be said to subsume much of the
earlier work. The strong correlation between counting met-
rics and information content established by Allen et al. pro-
vides further justification for this choice.
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We have experimentally demonstrated plausibility here by
investigating raw source code as the artefact for tracing soft-
ware evolution. Investigating behaviour in terms of dynam-
ically produced traces [4] or structure in terms of graph rep-
resentations of software [3] have also been previously out-
lined. (We intuit connections with sequence-based specifi-
cation techniques [29].) We have sketched that the idea of
employing Kolmogorov complexity as the basis for software
measurement is worthy of further investigation since the lim-
its and desirable context are unknown. The remaining task
amounts to the discovery of which artefacts – or kinds of
artefacts – are most representative of software and software
development operations and why.
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