

1

1 abstract

A problem that often hampers the smooth integration of

reused components into a new system is the packaging mis-

match problem: when one or more of a component's com-

mitments about interaction with other components are not

supported in the context of integration. Although system

integrators have faced and surmounted this problem for

decades, their experience largely exists as unrecorded folk-

lore and as specific papers in separate research communities

— a situation which makes it difficult to systematically

understand and solve an instance of this problem. In order

to allow system integrators to attack packaging mismatches

systematically, what is known about the problem and its

solutions must assembled and organized. To take a step in

this direction, this paper first discriminates the chief charac-

teristics of component packaging, which are the sources of

mismatch. It provides a catalog of techniques to resolve

packaging mismatch, organized according to the architec-

tural commitments involved: on-line and off-line bridges,

wrappers, intermediate representations, mediators, unilat-

eral and bilateral negotiation, and component extension.

Finally, it describes the issues involved in resolving packag-

ing mismatch, aspect by aspect.

1.1

Keywords

component-based engineering,

cot

 and component brokers,

interface issues, software architecture and systemic reuse

2 introduction

Software developers have long dreamed of building systems

by assembling off-the-shelf components. Today’s off-the-shelf

components not only encapsulate useful functionality but also

many commitments about how the component is to interact

with other components in the system. These commitments

about interaction constitute the component’s

packaging

.

Integrating a component into a system is significantly easier

when the component’s packaging matches the style of

interaction used in the system.

One strategy for decreasing the need to consider packaging

when reusing a component is to build all components to a

packaging standard. Having such a packaging standard is

often what is meant by the phrase “plug-and-play compatibil-

ity.” Unfortunately, as the old quip goes, the best thing about

standards is that there are so many to choose from. There are

many packaging standards in vogue today, including Corba,

com

/ActiveX, JavaBeans, Java class libraries, and Microsoft

Visual Basic controls. Building a component to one of these

standards makes it difficult to integrate the component into a

system built to another of these standards. In recognition of

this difficulty, products are appearing whose only function is

to bridge between components written to different standards,

like the Corba/

com

 bridge and the ActiveX/JavaBean bridge.

Hence, so far, standards have not lessened the need to con-

sider a component’s packaging when attempting to reuse it.

Furthermore, a lesson from the emerging software archi-

tecture community is that no single packaging standard will

ever be appropriate for all components

[14]

. Good system

design involves choosing an architectural style that is appro-

priate to the system. For example, a system that transforms

data in a series of identifiable steps might suitably be built in

the pipe–filter style. A development environment that is

meant to accommodate an open-ended set of analysis tools

might suitably be built in the implicit invocation style. Were

these analysis tools intended instead to access common data

without mutual interference, then a database-centric style

would be more appropriate. Each architectural style implies

the mechanisms by which components interact, which in turn

implies the packaging the components must have. In a pipe–

filter system, the components are packaged as filters; in an

implicit invocation system, as anonymous event handlers; and

in a database-centric system, as database accessors. Because

different architectural styles are suited to different problems,

there will always be a variety of packagings in the world.

Hence a component’s packaging, as well as its functionality,

will continue to influence whether it can be reused in a new

context.

When a system integrator has a component whose func-

tionality is needed but whose packaging is inappropriate, the

problem is an instance of

packaging mismatch

. System inte-

grators have faced and surmounted this problem for decades.

A typical solution is to interpose “glue code” (sometimes

called a wrapper, bridge, mediator, or adaptor) between the

component and the system to compensate for the differences

A Catalog of Techniques for Resolving Packaging Mismatch

Robert DeLine

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA, USA 15213-3891

1-412-268-2582

rdeline@cs.cmu.edu

To appear in Symposium on Software Reusability, Los Angeles, CA, May 1999

2

in packaging. Another typical solution, often used when the

former solution is inapplicable, is to modify the component’s

source code to update its packaging to one appropriate to the

current system. Unfortunately, the experience of these system

integrators currently exists only as unrecorded folklore and

as specific technical papers scattered throughout the com-

puter science literature. As witnessed by the number of differ-

ent words for “glue code,” we lack even a consistent, precise

vocabulary. In order to allow system integrators to attack

packaging mismatches systematically, what is known about

the problem and its solutions must assembled and organized,

in much the same vein as the patterns community is doing for

object-oriented design

[5]

. This paper takes a step in that

direction. In Section

3

, it provides a vocabulary for different

kinds of packaging mismatch problems by decomposing a

software component’s packaging into a set of identifiable

aspects. Section

4

 then presents a catalog of packaging mis-

match resolution techniques, with examples drawn from a

variety of architectural styles and classified according to the

vocabulary from Section

3

. Section

5

 describes the issues

involved in resolving packaging mismatch, aspect by aspect.

Section

6

 discusses related cataloging efforts.

3 aspects of component packaging

A common way to describe a packaging mismatch problem is

by reference to a difference in interaction mechanism: “I’d

like to reuse this module written in C, but the components in

my system interact by announcing events, not by making

procedure calls.” Describing the difference this way, however,

gives no feel for how different the two packagings really are,

for example, how different procedure call is from event

announcement. In order to be more precise about the nature

of a packaging mismatch, it is useful to decompose a

component’s packaging into a set of aspects. An instance of

packaging mismatch can then be described as a difference in

one or more of those aspects. This section provides such a set

of aspects, each of which is described in a subsection below.

This new vocabulary will then be used both to categorize the

examples in the catalog of techniques in Section

4

 and to

discuss issues in resolving mismatch on an aspect-by-aspect

basis in Section

5

.

3.1

Data representation

In order for two components to transfer or share a data item

without mismatch, they need to agree on its representation.

For small-scale data items, like basic data types, this

agreement commonly means either that (

1

) the components

share a common type system and agree on the data item’s

type or that (

2

) the components agree on a bit-level

representation of the data item, for example, the

ieee

 floating

point standard representation. For large-scale data items, like

files and databases, this agreement commonly means that the

components agree on the data item’s format or syntax. For

these larger data items, whether the components agree about

data representation is not necessarily a black and white issue.

For example, one vendor’s word processor may be capable of

editing documents created with another vendor’s word

processor, but the document may lose some of its formatting

when opened in the foreign word processor. Whether such a

loss constitutes a data representation mismatch is up to the

system integrator. Also, although the differences in data

representation may reflect deeper semantic mismatches,

semantic mismatch is outside the scope of packaging

mismatch and is not discussed here.

3.2

Data and control transfer

In order for two components to transfer data or control

without mismatch, they must agree on the mechanism to use

and the direction of the transfer. Table

1

 shows several

common mechanisms used to transfer data and/or control

between software components. Because we are interested in

the degree to which these mechanisms differ, the table

decomposes the mechanism into a set of properties. Each of

the mechanisms listed in the first column of the table can be

used to transfer data and/or control both into and out of a

component; the second column shows whether data and/or

control is transferred. For example, the first row indicates that

when a component gets an environment variable, data is

transferred into the component; when it sets an environment

variable, data is transferred out. When two components use

one of these mechanisms to transfer data or control, the

table’s third column indicates whether the transmission is due

to the receiver actively requesting the data/control (pull) or

due to the sender actively sending the data/control (push).

This table can be used to judge the degree to which mech-

anisms differ. For example, getting an environment variable

and fetching from shared memory are similar because they

agree on direction (transfer in), on what is transferred (data),

and on reception request (pull). However, reading from a

data stream is different from being notified of an event.

Although both mechanisms involve transferring data into the

component, the former is done at the receiver’s request (pull);

the latter, at the sender’s request (push).

3.3

Transfer protocol

In order for two components to interact without mismatch,

they must agree on the overall protocol for transferring data

and control. At minimum, this means agreeing on the

number and order of individual transfers of data or control.

For example, for message-based data exchanges, this may

take the form of both components agreeing on a standard

message-passing protocol. For procedure-based interaction,

it may take the form of each procedure caller upholding the

called procedure’s preconditions. For communication styles

where communication speed is a factor, like modem or

satellite communication, the transfer protocol aspect may

include timing considerations.

3.4

State persistence

A component may vary in the degree to which it retains state

3

between interactions. For example, procedure-based

modules may be either stateful, like an I/O library where

internal buffers are retained between procedure calls, or

stateless, like a library of trigonometric functions. Objects in

an object-oriented language and its larger cousins, Corba

components, ActiveX controls, and JavaBeans, all retain their

internal state between method invocations. Servers, whether

interacting through sockets or

rpc

 calls, may be stateless, like

the Sun

nfs

 file server or a web (

http

) server, or stateful, like

the Andrew file server or an

ftp

 server.

3.5

State scope

A component may vary in the amount of its internal state it

allows other components to affect. For example, a document

editor with a programmable interface may allow interactions

that affect the entire state of the editor component (e.g. a “quit

application” operation), or a whole document (“save”,

“print”), or a portion of a document (“delete paragraph”). If a

component interacts with several other components

simultaneously (for example, a server that interacts with

multiple clients), then it may divide its internal state into

individual pieces of state for each component with which it

interacts. When two components disagree over the amount of

state to be affected during an interaction, this is an instance of

state scope mismatch.

3.6

Failure

Component vary in the degree to which they tolerate

interactions that fail. For example, a component that reads

from a file is typically designed to expect the data from the

file to be delivered reliably and accurately; whereas, a

component that uses unreliable network message passing is

typically written to tolerate missing or garbled data.

Component also vary in the extent to which they themselves

fail.

3.7

Connection establishment

A component’s packaging consists not just of the details of

the interaction mechanisms it uses but also in how those

mechanisms are set up and torn down. Consider a

component that is packaged to read a file. The architectural

connection between the component and the file it reads could

be established in a variety of ways: the component may open

and close a file with a hard-coded name; the component may

open and close a file whose name is given through interaction

with a user; another component in the system may provide

the name of a file or a file descriptor. For two components to

interact without mismatch, they must agree on how the

interaction mechanism they use is set up and torn down.

4 catalog of mismatch resolution techniques

Following the lead of the patterns community, this section

provides a catalogue of techniques for resolving packaging

mismatch, where each technique is described in a template

form. The template provides the following information: a

short name for the technique; a schematic diagram in a

consistent format that captures the gist of the technique; a

more detailed prose explanation of the technique; and a set of

examples of the technique in use.

What principally distinguishes one technique from

Interaction mechanism

[transfer in/transfer out]

What is transferred Transmission requested by receiver (pull)

or sender (push)

environment variable [get/set] data pull

data stream [read/write] data pull

socket [read/write] data push or pull (depending on usage)

file [read/write] data pull

shared variable [get/set] data pull

shared memory [fetch/store] data pull

database [retrieve/update] data (controla)

a. Some databases notify accessors of updates with update triggers.

pull (pusha)

(remote) procedure [call/return] control + data push

coroutine [call/return] control (datab)

b. Some coroutine systems allow for arguments and results, as with procedure calls.

push

exception [catch/throw] control (datac)

c. Some languages allow data to be associated with an exception; others do not.

push

interrupt [receive/send] control (datad)

d. For Unix-style interrupts, the signal number is passed to the interrupt handler.

push

event [notification/announcement] data push

message [receive/send] data push or pull (depending on usage)

(component-owned) property [set/get] control + data push

Table 1: Data and control transfer properties of various popular interaction mechanisms

4

another are the set of packaging commitments that are made,

when they are made, and what architectural element embod-

ies the commitments. To illustrate the notion of a packaging

commitment, consider a developer who, when implementing

a module, chooses to report errors that occur in the module’s

functions by setting a global integer variable called

errno

 and

by returning zero from the function. He has made several

commitments about interaction, including: a data represen-

tation commitment (the variable is an integer); a data transfer

commitment (shared variable is the mechanism); a transfer

protocol commitment (the variable can be read after every

call to a function that returns zero); and a state scope com-

mitment (the variable is global). We would say that these

commitments are made when the module is developed and

that they are embodied in the module.

The template uses a schematic diagram to show at a glance

how the system architecture is transformed to resolve the

packaging mismatch and allow ready comparison of the tech-

niques. Each diagram is a series of rows representing signifi-

cant times during the development of the system, when either

commitments are made or the architecture changes. Borrow-

ing from architectural description languages (

adls

)

[14]

, a

system is described as a configuration of components and

connectors. Connectors, like pipes, procedure calls, and mes-

sage passing, mediate the interaction among components. In

the diagrams, components are depicted as labeled, round-

cornered boxes; connectors, as labeled diamonds. Because a

component may interact in multiple ways (for example, by

both reading a file and sending a message), the diagrams use

a black square, called a port, to depict each of the ways a

component interacts. Similarly, a connector provides multi-

ple roles for the components’ ports to play, which are also

depicted with black squares. For example, a pipe has a data

source role and a data sink role. Here is a picture of an iso-

lated component, an isolated connector, and a configuration

of two components interacting through a connector:

Although

adls

 typically use different shapes to discriminate

among different types of components and connectors, this

notation intentionally uses the same shape regardless of type

because the strategies that follow are applicable to more than

one type of component and connector.

To show the commitments that are embodied in these

architectural elements, the pictures of ports and roles are

annotated with labels. A lowercase

d

, often subscripted, is

used to denote a particular decision about interaction; a capi-

tal

D

 is used to denote a set of alternatives for a decision. Here

are some examples of these annotated elements:

The component

A

 above interacts through one port and is

committed to some decision

d

A

 on that port. For example, if

A

’s port represents the reading of a shared variable, then

d

A

may stand for a commitment about the data representation of

that variable. Component

W

 above interacts through two dif-

ferent ports, where a different commitment has been made

about interaction through each of the ports. Component

B

’s

decision about interaction is limited to some set of alterna-

tives

D

B

, but

B

 is free to choose any one of those alternatives

for its final commitment. For example, if component

B

 were a

word-processing application with a port for reading docu-

ment files, the set

D

B

 could stand for the set of document for-

mats that the application is capable of reading, like MacWrite

versus WordPerfect versus

rtf

. Finally, connector

C

 has made

a different commitment about interaction through each of its

roles. It is very common for a connector to be indifferent

about a commitment, so long as the same commitment is

made for each of its roles. These commitment-invariant con-

nectors are depicted with equal signs at the roles:

For example, a procedure call connector is indifferent about

the number, order, and types of arguments passed from the

procedure caller to the procedure definer, so long as the com-

mitment is the same for the caller and definer.

The examples that appear in the templates were chosen,

not because they are the best or most representative examples

of the technique, but because sufficiently detailed documen-

tation about them is available. Because much of this docu-

mentation consists of research papers, there is a bias toward

automated solutions. This in turn means that many of the

examples are about data representation mismatch, a problem

that lends itself more readily to automated solutions.

4.1

On-line Bridge

4.1.1

Schematic

4.1.2

Problem

To integrate components

A

 and

B

 that have commitments

made at the time of their development that conflict with one

another

(s1)

. Connector

C

 cannot arbitrate the difference in

those commitments.

4.1.3

Solution

Introduce a new component

Br

 that is capable of interacting

in two ways: one way that is compatible with

A

’s commitment

d

A

; one that is compatible with

 B

’s commitment

d

B

(s2)

.

A C BA C

A dA W dBdA BDB dA C dB

(s1)

(s2)

(s3)

= C =

A dA BdB= C =

Br dBdA

BrA C BC
dA dA dB dB

5

Interpose this component between

A

 and

B

(s3)

. The

component

Br’

s computation makes up for the differences

between the commitments

d

A

 and

d

B

. How it does this

depends on the aspect of interaction that

d

A

 and

d

B

 represent,

which is the topic of Section

5

. Although the examples below

involve bridges that a tool generates, bridges are quite often

developed by hand to suit the details of a particular

mismatch. The bridge here is “on-line” in that it is part of the

system’s final control structure.

4.1.4

Variation

Component

A

 is developed to interact through connector

C

1

;

component

B

, through connector

C

2

. The introduced bridge

Br

 interacts with

A

 through

C

1

 and with

B

 through

C

2

.

4.1.5

Examples

• Nimble

[10]

Aspect of packaging

: data representation, namely the num-

ber, order, and types of arguments and results passed

between a procedure caller and definer

Component A

: a procedure caller

Component B

: a procedure definer

Connector C

: procedure call

Component Br

: a Nimble-generated bridge, which accepts

the parameters that A passes, calls B with the parameters B

expects, accepts the result from B, and returns the result

that A expects

• Yellin and Strom adaptor

[17]

Aspect of packaging

: data representation and transfer pro-

tocol, namely the number and order of method calls

between an object and a client of that object

Component A

: an object calling another object’s methods

Component B: the object whose methods are being called

Connector C: method call

Component Br: a generated “adaptor” (bridge) object,

which accepts method calls from A and makes method

calls on B

4.2 Off-line Bridge

4.2.1 Schematic

4.2.2 Problem

Same as for the On-line Bridge technique, with the restriction

that component B is some form of persistent data (s1). The

mismatch between A and B is about data representation.

4.2.3 Solution

Introduce a new component Br that is capable of reading data

with representation dB and writing data with representation

dA (s2). Component Br is typically a stand-alone tool. Run

component Br to transform B into a new component B' (s3).

Integrate B' with A (s4). Unlike the On-line Bridge technique,

where the bridge is typically developed to suit the needs of a

particular system, off-line bridges are often available as

separate tools and can hence be acquired rather than

developed. When dA and dB are about an aspect other than

data representation, use the On-line Bridge technique so that

the bridge can be part of the control structure of the final

system. To automate the step of executing the off-line bridge

and/or to select the bridge at runtime, use the Mediator

technique.

4.2.4 Examples

• Debabelizer

Aspect of packaging: data representation, namely image

format

Component A: MacPaint, committed to MacPaint format

Component B: an image in Photoshop format

Connector C: file access

Component Br: the tool Debabelizer, which can convert

among many image formats, including MacPaint and

Photoshop

• Word for Word

Aspect of packaging: data representation, namely docu-

ment format

Component A: Microsoft Word application, committed to

Word format

Component B: a document in FrameMaker format

Connector C: file access

Component Br: the tool Word for Word, capable of con-

verting among a variety of document formats, including

Word and FrameMaker

4.3 Wrapper

4.3.1 Schematic

4.3.2 Problem

Same as for the On-line Bridge Technique (s1).

(s1)

(s2)

(s3)

(s4)

A dA BdB= C =

Br dBdA

BBr CB' C
dA dA dB dB

B'A C
dA dA

(s1)

(s2)

(s3)

(s4)

(s5)

A dA BdB= C =

W dBdA

BW CdA

B'dA

B'A C

6

4.3.3 Solution

The solution is the same as with the On-line Bridge

technique, with one additional step. Before the final

integration, encapsulate the wrapper W (the analogue of

bridge Br), the component B, and the connector between

them within a new component B' (s4). This encapsulation

step is about both abstraction and access: the component B'

hides the commitment dB inside its implementation; and

component B can only be accessed through component W.

Both these aspects of the encapsulation step simplify

reasoning about the final integrated system. (Note that

whether A or B is encapsulated with W is arbitrary in this

paper’s formulation. In an actual system, system-specific

considerations determine this choice. Typically, if B is

encapsulated with W, it is because dB represents a “legacy”

commitment to be denigrated in favor of dA in the system’s

future life.)

4.3.4 Examples

• Hardware emulator

Aspect of packaging: data representation, namely instruc-

tion set. This data representation difference reflects signif-

icant semantics differences (e.g. risc vs. cisc, different

memory models), which must also be address but are not

packaging mismatch problems.

Component A: Intel x86 executable, committed to x86

instruction set

Component B: Sun Sparc processor, committed to Sparc

instruction set

Connector C: Instruction fetch and execution

Component W: program that runs on a Sparc and emulates

the x86 processor

• Database wrapper [10]

Aspects of packaging: data transfer and transfer protocol

Component A: database accessing program, committed to

sql query language

Component B: file formatted with newline-separated

records, committed to linear access (no query language)

Connector C: data access

Component W: automatically generated component that

accepts an sql query and performs linear access to fulfil

the query

• MacLink

Aspect of packaging: data representation, namely floppy

disk format (dos vs. Macintosh)

Component A: Macintosh application, committed to Mac

formatted files

Component B: a file on a dos-formatted disk

Connector C: file access

Component W: MacLink, which makes a file on a dos-for-

matted floppy disk appear to be a Mac-formatted file

4.4 Mediator

4.4.1 Schematic

4.4.2 Problem

To integrate components A and B that have commitments

made at the time of their development that conflict with one

another (s1). Connector C is simultaneously capable of

supporting several alternatives for a given commitment,

often about data representation. It does this by having an

internal infrastructure that is able to choose and coordinate

among specialized components, called brokers or agents, that

are capable of handling a particular data translation. The

infrastructure is often designed to allow the set of alternative

commitments to be easily grown, even at run-time with some

mediators. Mediator technology is currently an object of

research and should become more available to system

integrators over time.

4.4.3 Solution

Specialize the mediator so that its commitment is compatible

with component A ’s (s2); then integrate it with component A

(s3). Repeat for component B (s4, s5). These two

specialization and integration steps may take place at

different times, for example, one at system integration time,

one at run-time.

4.4.4 Variation

Connector C allows variation on only one of its roles, making

a fixed commitment for the other role. For example, a

mediator may support a fixed type of interaction with a data-

consuming component, but be capable of interacting with

many types of data-producing components.

4.4.5 Examples

• tom [9]

Aspect of packaging: data representation, namely docu-

ment format

Component A: a program that reads PostScript documents

Component B: a document in LaTeX format

Connector C: the tom service, which can convert among a

variety of document formats by choosing the appropriate

conversion tools

(s1)

(s2)

(s3)

(s4)

(s5)

A dA D1 C D2 BdB

(dA ∈ D1)dA C D2

A C D

A C dB
(dB ∈ D2)

BA C

7

• retsina [15]

Aspect of packaging: data representation, namely the for-

mats of different information sources in the same domain,

like stock information

Component A: a stock portfolio management program

Component B: a web page showing periodic stock updates

Connector C: the warren system (an instance of the ret-

sina framework)

4.5 Intermediate Representation

4.5.1 Schematic

4.5.2 Problem

Same as for the Mediator technique, with the restriction that

the mismatch between A and B is about data representation.

Connector C is simultaneously capable of supporting several

alternatives for a given commitment about data

representation. It does this by committing to its own choice

for this alternative (call it dI) and by implementing all

translations to and from each of the alternatives in D and dI.

The advantage of having an intermediate form is that the

number of translations the connector must implement grows

linearly with the number of alternatives; whereas, the number

of pairwise translations grows quadratically with the number

of alternatives. The disadvantages are that the cost of two

translations must be incurred even when A and B commit to

the same alternative (dAB to dI to dAB) and that the

translations may lose information. Typically, the set of

alternatives is committed when the connector is developed.

4.5.3 Solution

Specialize the connector to the mismatch at hand (s2) and

integrate it (s3). Because the set of alternatives is typically

fixed when the connector is developed, the system integrator

often uses connector-specific tools at system build time to

achieve the specialization and integration.

4.5.4 Examples

• Xerox parc’s Inter-Language Unification (ilu) [6]

Aspect of packaging: data representation, namely represen-

tation of basic datatypes (integers, strings, booleans,

records, etc.)

Component A: a program written in C

Component B: a program written in Lisp

Connector C: the ilu infrastructure, which supports inter-

language procedure call

• Corba

Aspect of packaging: data representation, namely represen-

tation of basic datatypes (integers, strings, booleans,

records, etc.)

Component A: an object implemented in C++

Component B: an object implemented in Smalltalk

Connector C: a Corba orb, which supports inter-language

method call

4.6 Unilateral Negotiation

4.6.1 Schematic

4.6.2 Problem

To integrate components A and B, where component A is

committed at its development time to a set of alternative

decisions about interaction and component B is committed

to a particular decision.

4.6.3 Solution

If component B’s commitment is in the set of commitments

that component A is capable of supporting, then specialize

component A to match B’s commitment (s2) and integrate

the two (s3). This technique can also be seen as a mismatch

prevention technique: develop components that support

more than one style of interaction to make them more widely

reusable. (One way to realize this advice is the Component

Extension Technique.) If component B’s commitment is not

in the set of commitments that component A is capable of

supporting, then consider another technique, like On-line

Bridge or Wrapper.

4.6.4 Examples

• Microsoft’s com connector

Aspect of packaging: transfer protocol, namely the inter-

face (collection of procedures) by which A will export

computation to B

Component A: a com component exporting multiple inter-

faces

Component B: a com component importing a particular

interface

Connector C: the com connector

• “Fat” executables

Aspect of packaging: data representation, namely proces-

sor instruction set

Component A: a Macintosh “fat” executable, i.e. a program

compiled to both the 68000 and PowerPC instruction

sets, but provided as a single executable file

Component B: a PowerPC processor

(s1)

(s2)

(s3)

A dA BdBD C D

A dA BdB (dA ∈ D, dB ∈ D)dA C dB

BA C

(s1)

(s2)

(s3)

A D BdB= C =

A dB BdB
(dB ∈ D)= C =

BA C

8

Connector C: the MacOS program loader

• Optional procedure arguments

Aspect of packaging: data representation, namely the num-

ber and types of arguments passed between a procedure

caller and definer

Component A: a procedure definer

Component B: a procedure caller

Connector C: a procedure call connector that allows for

optional (keyword) arguments, as with Modula 3 or Com-

mon Lisp

• Views of relational databases

Aspect of packaging: data representation, namely the

grouping of data items into a record

Component A: a relational database

Component B: a database accessor

Connector C: a dbms, which allows a dynamic grouping of

data (view) to be formed from the database’s tables

4.7 Bilateral Negotiation

4.7.1 Schematic

4.7.2 Problem

To integrate components A and B, each of which is

committed at its development time to a set of alternative

decisions about interaction (s1) and to a protocol for

selecting one of the alternatives by negotiating with its

partner components (s2). The negotiation may be either

symmetric (the two components interact through a pre-

determined channel to choose the alternative) or asymmetric

(one component alone chooses the alternative).

4.7.3 Solution

Develop components that support negotiation to prevent

packaging mismatch. There are currently too few examples of

bilateral negotiation to provide general advice.

4.7.4 Examples

• Microsoft’s com connector

Aspect of packaging: transfer protocol, namely the inter-

face (collection of procedures) by which A will export

computation to B

Component A: a com component exporting multiple inter-

faces

Component B: a com component capable of importing

several interfaces. This component alone chooses the final

interface by iteratively querying for the interfaces A sup-

ports.

Connector C: the com connector

• Modem whistling

Aspect of packaging: transfer protocol, namely two com-

munication parameters: modulation standard (bits per

baud) and transmission rate (bits per second). There is a

standard algorithm by which the two modems interact

symmetrically to select the best values for these parame-

ters.

Component A: a modem making a call

Component B: a model receiving a call

Connector C: a bit stream channel (telephone line)

4.8 Component extension technique

4.8.1 Schematic

4.8.2 Problem

To integrate an extensible component A to a component B

with a fixed commitment about interaction. The developers

of component A defer some commitments about interaction

by delegating these commitments to a set of modules

integrated when the component is initialized at runtime.

When component A is developed, its designers commit to an

interface between A and the dynamically loaded modules,

called extensions, plug-ins, or add-ins and denoted above by

X (s1). When A initializes itself at runtime, it integrates the

extensions (s2). After the extensions are integrated, the set of

alternative commitments that component A is capable of

making is the union of those alternatives that the extensions

committed to individually when they were developed. Later,

when component B is dynamically integrated, component A

selects the extension whose commitment agrees with dB and

integrates the extension and B (s3).

4.8.3 Solution

Develop an extension that matches component B’s

commitment and integrate it with component A. When seen

from the point of view of component A’s developers, this is a

mismatch prevention technique; from the point of view of

someone selecting or developing an extension, this is a repair

technique. The technique can be seen as providing a

(s1)

(s2)

(s3)

A DA BDB= C =

A dab Bdab
(dab ∈ DA ∩ DB)= C =

BA C

(s1)

(s2)

(s3)

A dA BXB dBdX dB

dA E dX = C =

A E XB dB

XY dY

XZ dZ

A E XB

XY dY

XZ dZ

BC

9

particular architecture for realizing Unilateral Negotiation.

Namely, if component A and its extensions were encapsulated

into a single component whose port had commitment

DA = {dY, dB, dZ}, then the diagram above would fit the

pattern for Unilateral Negotiation.

4.8.4 Examples

• Word add-ins

Aspect of packaging: data representation, namely docu-

ment format

Component A: Microsoft Word application

Extensions X: Word add-ins, which can each read docu-

ments in different formats

Component B: a FrameMaker document

Connector C: file access

• Netscape plug-ins

Aspect of packaging: data representation, namely docu-

ment format, where a document is considered any infor-

mation source whose contents can be displayed on a

workstation (text, image, animation, sound, etc.)

Component A: the Netscape web browser

Extensions X: Netscape plug-ins, one per type of docu-

ment, where the document’s type is manifest through its

file extension or mime type declaration

Component B: a document on the web

Connector C: web document access (e.g. http)

• Flexible Packaging [2]

Aspect of packaging: any. Flexible Packaging is a new tech-

nique for developing software components that separates a

component’s functionality from its style of interaction.

Component A: a module, called a ware, with minimal

commitments about interaction

Extensions X: modules, called packagers, that encapsulate

a given style of interaction

Component B: any

Connector C: any connector for which there exists a pack-

ager supporting the connector

5 resolving packaging mismatch, aspect by aspect

All of the techniques discussed in the previous section, except

Off-line Bridge and Intermediate Representation, are quite

general and can be theoretically used to overcome a

mismatch in any aspect of packaging. For the On-line Bridge,

Wrapper, Mediator, and Component Extension techniques,

the system integrator is interposing either a component or

connector between the mismatched components, and this

interposed element could perform any decidable

computation. This section describes the issues that arise

when creating this interposed element, aspect by aspect. For

ease of discussion, this interposed element will be referred to

as a bridge, although the issues apply to the other techniques

as well.

For the Unilateral and Bilateral Negotiation techniques,

either one or both of the components comes in multiple ver-

sions, where the different versions may share a lot of imple-

mentation. Understanding how each of the aspects of

packaging affects the implementation of this family of related

versions is future work.

5.1 Data representation

Bridges that overcome data representation mismatches

typically implement an information-preserving transform

from one data encoding to another, for example, converting

text between ebcdic and ascii, integers between big-endian

and little-endian representation, and images between gif and

png. Other differences in representation have to do with the

amount of data. A bridge can turn more data into fewer data,

for example, by culling, aggregating, or using a reduction

operation like averaging. It can turn few data into more data

by using default values or by deriving the missing data from

the provided data. As mentioned earlier, some bridges may

perform a partial or flawed conversion, such as converting

from one word processor document representation to

another. Finally, a bridge may not be able to overcome all

representation differences. For example, functions and data

structures that rely on pointers are notably difficult to

represent as byte streams or text, a limitation that arises, for

example, in remote procedure call systems.

5.2 Data and control transfer

In order for a bridge to overcome a transfer mismatch

between two components, those components must in general

agree on the direction of the data/control flow. For example, a

bridge can transfer data from a component sending data to

one receiving it, but cannot transfer data between two

components receiving data. Even when the bridged

components agree on the direction of flow, the issue of push

versus pull affects the bridge’s function: a bridge between an

active sender and an active receiver must act as a buffer [1]; a

bridge between a passive sender and a passive receiver must

act as a pump [1]; and a bridge between an active sender

(receiver) and a passive receiver (sender) must pass data/

control through and idle otherwise.

5.3 Transfer protocol

In general, the bridge must respect the number and order of

interactions that each of the components supports. The more

constraints the components place on the interactions, the less

freedom the bridge has for supporting different number or

order of interactions. Whether a component places many

constrains on the number and order of interactions may

depend not only on its packaging but on its functionality. For

example, a message-passing component is often

implemented to accept a fixed message protocol; the only

flexibility it supports is that inherent in the protocol. On the

other hand, the order in which the sort filter produces output

depends on its functionality, not its packaging.

5.4 State persistence

When a component exhibits a state persistence mismatch

10

because its state persists longer than is needed, the bridge

overcoming this problem is left with a garbage collection

problem. Consider Wu’s effort to make the terminal-based

interactive fiction game Adventure available for play over the

web as a cgi script [16]. The original game interacts with a

single player, prompting for moves and preserving the game

state until the player quits. The lifetime of a cgi script is only

that of a single url fetch, much shorter than the indefinite

lifetime of the terminal-based game. A bridge between the

cgi script and the terminal-based game would have to keep a

collection of terminal-based games running, one per web

user. Since the web server that runs the cgi script cannot

keep an unbounded number of terminal-based games

running at once, the cgi script would need a means to

garbage collect “unneeded” games. On the other hand, if a

component’s state persists for too short a time, a bridge may

be able to mask the problem if the component provides

access to its state (so that it can be saved and restored) or if a

component’s interaction is batch (stateless) in nature.

5.5 State scope

In general, it is difficult for a bridge to overcome differences

in state scope since the effects of interactions are

encapsulated within the components it connects. If the scope

of an interaction’s effect on a component needs to be wider

(affecting more internal state), the bridge may be able to

repeatedly use an interaction with a smaller scope. For

example, if a document editing component provides no

print-document operation but does provide a print-page

operation, a bridge could mimic the former operation by

repeatedly using the latter. Narrowing the scope of an

interaction’s effect on a component is harder still. One

possibility is to replicate the component. If a document

editing component provides a print-document operation but

no print-page operation, the bridge could replicate the

document as several smaller documents, with one page per

document, and apply the print-document operation. State

scope mismatches are often overcome by redeveloping the

component in question [1].

5.6 Failure

A bridge can trivially make a non-failing interaction appear

as a possibly failing interaction (the possibility is simply

never realized). However, a bridge cannot make a possibly

failing interaction appear as a non-failing interaction, unless

the failure can be ignored or recovery added. The most

obvious case in which a failure cannot be ignored is when the

interaction is meant to read data; if the bridge cannot recover

from the failure, then it has no way to produce the data that

was intended to be read. For example, reading data over a

network cannot readily be repackaged as reading a local

variable, since the latter cannot fail while the former can fail

due to network communication errors.

5.7 Connection establishment

There is nothing a bridge can do if a component exhibits a

connection establishment mismatch because it is

overcommitted with respect to the set up of a mechanism.

For example, if a component reads a file whose name is hard-

coded in the component’s source code, there is nothing a

bridge can do if the component must read some other file in

order to be integrated. In the case that the components to be

reused have made commitments about architectural

connections at the time of their development, it may not be

possible to integrate the bridge itself into the system.

6 related work

This paper builds on the work of the software architecture

community, which has argued for making the types of

interaction among components first-class abstractions [14].

In particular, Shaw argued that extra-functional properties of

software components, like packaging, often play as important

a role during system integration as functional properties [12].

She provided a preliminary list of packaging mismatch

resolution techniques and called for it to be “elaborated and

refined.” This paper is in response to that call.

In a similar vein, several researchers have classified vari-

ous aspects of software architecture to begin to bring disci-

pline to today’s folklore. Shaw and Clements classified the

architectural styles that a system may have, based in part of

the interaction mechanisms used in the system [13]. Mularz

reports several patterns (problems paired with solutions) that

cover the use of various types of glue to solve integration

problems [8]. Dellarocas created an initial handbook of sys-

tem integration problems paired with solutions, more com-

prehensive in scope than Mularz’s. Dellarocas’ classification

of interaction problems is broader than this paper’s (includ-

ing, for example, timing dependencies between components)

but less detailed in the regions of overlap. Kazman, Clements,

Bass, and Abowd classified software components and the

interactions among them (connectors) by both how they

compose to form systems and how they behave at runtime.

Like this paper, their model of runtime behavior is based on

the transfer of data and control among components, though

this paper views this behavior in more detail.

7 references

[1] Andrew P. Black. “An asymmetric stream communica-

tion system.” In Proc. Symposium on Operating Systems

Principles, 1983.

[2] Robert DeLine. “Avoiding packaging mismatch with

Flexible Packaging.” To appear in Proc. International

Conference on Software Engineering, 1999.

[3] Robert DeLine, Gregory Zelesnik, and Mary Shaw. “Les-

sons on converting batch systems to support interac-

tion.” In Proc. International Conference on Software

Engineering, 1997.

[4] Chrysanthos Dellarocas. “Toward a design handbook for

integrating software components.” In Proc. Symposium

11

on Assessment of Software Tools and Technologies, 1997.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. Design patterns: Elements of reusable object-

oriented software, 1994. Addison-Wesley.

[6] Bill Janssen, Mike Spreitzer, Dan Larner, and Chris

Jacobi. “The ilu 2.0 Reference Manual.” ftp://

ftp.parc.xerox.com/pub/ilu/2.0a13/manual-html/

manual_toc.html

[7] Rick Kazman, Paul Clements, Len Bass, and Gregory

Abowd. “Classifying architectural elements as founda-

tion for mechanism mismatch.” In Proc. International

Computer Software and Applications Conference, 1997.

[8] Diane E. Mularz. “Pattern-based integration architec-

tures.” Chapter 7 in James O. Coplien and Douglas C.

Schmidt, editors, Pattern languages of program design,

1995. Addison-Wesley.

[9] John Ockerbloom. Mediating among diverse data for-

mats. Dissertation, Carnegie Mellon University, 1998.

[10] Yannis Papakonstantinou, Ashish Gupta, Hector Garcia-

Molina, Jeffrey Ullman. “A query translation scheme for

rapid implementation of wrappers.” In Proc. Interna-

tional Conference on Deductive and Object-oriented data-

bases, 1995.

[11] James M. Purtilo and Joanne M. Atlee. “Module reuse by

interface adaptation.” Software–Practice and Experience

21:6, 1991.

[12] Mary Shaw. “Architectural issues in software reuse: It’s

not just the functionality, it’s the packaging.” In Sympo-

sium on Software Reusability, 1995.

[13] Mary Shaw and Paul Clements. “A field guide to boxol-

ogy: Preliminary classification of architectural styles for

software systems.” In Proc. International Computer Soft-

ware and Applications Conference, 1997.

[14] Mary Shaw and David Garlan. Software architecture: Per-

spectives on an emerging discipline, 1996. Prentice-Hall.

[15] Katia Sycara, Keith Decker, Anadeep Pannu, Mike Will-

iamson, and Dajun Zeng. “Distributed intelligent

agents.” IEEE Expert 11:6, 1996.

[16] Tom Wu. “Behind the scenes of the Adventure Web.”

http://www-tjw.stanford.edu/adventure/impl.html

[17] Daniel M. Yellin and Robert E. Strom. “Interfaces, proto-

cols, and the semi-automatic construction of software

adaptors.” In ACM OOPSLA, 1994.

12

