Example 1 - good:

7. Framework
The Deathverse system will follow a Model-View-Controller pattern, separating the domain layer from the view that the end user has access to.

src: http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/
The next few subsections will go into each component of the system in slightly greater detail, without cluttering the high-level design with too many technical constraints.
7.A Model
The Model contains all of the domain-layer logic (attack a character, for example). It ensures that the data is valid, and modifies it according to the messages it receives from the View and Controller routines. Both the Controller and the View components are able to modify the data within the Model component - when the View component makes a change, the results are returned to the View immediately. In section 6.A, the Model is essentially the Deathverse SRC package, and the MySQL database that it directly accesses. In section 6.C, the Model exists on the Deathverse.csse.rose-hulman.edu server. It mainly includes the stored procedures necessary to access and modify the Database.

Example 2 - good:
7. Framework
For this section, we will refer to the UML class diagram and the ER diagram in the preceding sections. We constructed this system with a client-server framework, where the clients serve the view and the database handles the data persistence and model.

The advantage of implementing a client-server architecture involves the separation of concerns between the application logic and the UI. Stored procedures in the database are primarily responsible for the application logic, and combined with the actual data stored inside it, form the model backend of the system. The clients interact with this backend and are responsible for UI display, and human-computer interaction.

However, the dominating presence of the database makes it so that our system is not object-oriented in the traditional sense. As a result, we don’t have the complex class hierarchies and relationships between objects. As a lot of our model is handled by the database, many of the “object” relationships are implemented there, and since database objects are simply data without methods, this results in more UI-oriented software.

[bookmark: _Toc275271467][bookmark: _GoBack]Example 3 - really good:
7. Framework
 We used a model-view-connector architecture, which is illustrated in the UML class diagram in section 6 of this document. The team tried to make the design of the system as object-oriented as possible last year, so they adopted a lot of GRASP and Gang of Four patterns in order to fully allow for future modifications and additions to the current system. The following sections indicate the design patterns employed by the team.
[bookmark: _Toc127381523][bookmark: _Toc254378559][bookmark: _Toc275271468]GRASP Principles
	A primary goal of the LFP team throughout the design of the project was to minimize coupling between any logical packages or classes within the parser. By doing so, any part of the parser should be relatively simple to upgrade in the future; this will aid Northrop Grumman engineers, who may choose to extend the system to support different types of log files, queries, or persistence mechanisms. To this end, the parser was designed so that each package (file handling, query handling, and persistence) has a fixed method interface. By keeping these interfaces stable, both the LFP team and Northrop Grumman engineers can more easily modify components that interact or depend on them, allowing parts of the system to be upgraded or changed without impacting the remainder of the parser.
	Furthermore, the parser was designed so as to promote high cohesion within packages and classes. By beginning design with a domain model and layer diagram, the LFP team conceptually grouped actions and responsibilities of the system into well-defined sections and packages, then assigned actions within the system to maintain unity within individual classes. By enforcing cohesion within objects in the parser, maintenance and readability improves due to the logical and intuitive nature of placement of code.
[bookmark: _Toc127381524][bookmark: _Toc254378560][bookmark: _Toc275271469]Gang of Four patterns
	In addition to the GRASP principles listed above, the GoF design patterns played a large role in the parser’s design and construction. Some patterns were present throughout the entire design process, and influenced decisions made over the whole of the project; others focused more specifically on single classes.
	The two most common patterns that appear in the parser are the Information Expert and Creator patterns. Information Expert was helpful in enforcing the low-coupling, high-cohesion approach described earlier; by considering what classes had information to complete certain tasks, the LFP team was able to separate domain-level responsibilities into distinct classes and interfaces. This pattern was especially useful in determining placement of methods for query matching: originally, those methods were defined on each Entry object, but later moved to individual Query objects (which received Entry objects), as the Query is best suited to determine what is and is not a match to its own internal text and type. Similarly, Creator helped to define the structure of individual LogFile objects; as a LogFile is composed of Entry objects, and each Entry has Attribute and Bookmark objects, the creation sequence follows that same structure.
	Other, more specific patterns made several appearances as well. For example, a LogFileHandler object (a Pure Fabrication in and of itself, as no such thing exists in the problem domain) is an example of both the Controller and Singleton patterns: it provides a single point of reference for the entire system to create and dispose of LogFile objects, and serves as a kind of use case controller for all system operations dealing with log files. Towards the end of our implementation of the system, we added an interface, IFileHandlerObserver; this is an example of an observer class. This class allows our system to observe when data has been entered or manipulated and begin actions based on the user input. This was useful when trying to allow the system to display various things as well as autosaving data.
	On the Query side of the system, the QueryFactory is another example of a Singleton, as well as (currently) the only object to show the Factory pattern within the parser. A QueryFactory generates an appropriate Query object given a type and text (and possibly additional data in the future). This approach was chosen as opposed to direct Query object creation in order to support polymorphism on behalf of the Query object – more Query types can be added in the future, and integrated directly into the QueryFactory without worrying about altering creation code throughout the parser.
	Finally, the Query object is the best example of the Polymorphism pattern; as an abstract class, it encapsulates completely the concept of a query in the domain model (again supporting low coupling and high cohesion), provides a common interface for matching Entry objects against Query objects, and allows for future variation in the types of query available in the system – as long as any new Query types conform to the interface in the abstract class, they can be implemented at will.

7.B View
The View component acts as the window that allows users to see what is happening to their information. It allows the user to request information from the Database (Model Component), and converts the pure data into a visually pleasing web-page. Once the user receives the information, they can decide to modify it any way they choose. In Deathverse, the user can create a new character, join a group or attack another character. All of these actions will result in communication between the View and Model components, and a change in the data. In View 6.A, the View component is the Deathverse Pages item within the Deathverse Code package. Specific pages for the Deathverse system will be described in a separate document. In View 6.C, the View component is what the user sees on the client machine, pictured as a Desktop / Laptop / Tablet. Any device capable of browsing the web is able to communicate with Deathverse.
7.C Controller
The Controller component handles all of the incoming page request messages, converts them into meaningful statements that Deathverse may use, and makes changes to the data (Model) or web pages (View) as necessary. It has direct access to the main classes within the Model component as shown in the high level diagram in section 6.A (Character, Group and Account).

image1.emf

