
1. Introduction ... 1	
2. Background ... 1	
3. Functional Requirements .. 1	
4. Quality Attributes .. 2	
5. Patterns and Tactics .. 2	
6. Views .. 2	

A. Component and Connector View ... 2	
1. Elements .. 3	
2. Relations ... 4	
3. Context .. 4	
4. Variability ... 4	
5. Architecture ... 4	

B. Module View .. 4	
1. Elements .. 5	
2. Context .. 5	
3. Variability ... 5	
4. Architecture ... 5	

C. Allocation View ... 5	
1. Elements .. 5	
2. Interfaces ... 6	
3. Context .. 7	
4. Variability ... 7	
5. Architecture ... 7	

7. Framework .. 9	
8. Acknowledgements ... 9	
9. References ... 9	
10. Revision history .. 10	
11. Appendices .. 10	

A. Glossary ... 10	

1. Introduction
<Describe the purpose of the document and give a brief overview. Include a guide for
different types of stakeholders.>

2. Background
<Give a brief statement of the problem and the intended solution. Describe the main
stakeholders and their concerns. Describe any existing systems, especially those that have
interfaces with your system. Include a shortened version the very highest level points
from the Problem Statement, and give a reference to that.>

3. Functional Requirements
<Describe the main functional requirements. You do not need to include all of the use
cases, but a few examples might be helpful, as noted in the Guidelines, above. Refer the
reader to the Requirements Document for more details. Pick at least one use case and

detail it with design information, as a prime example of how the system will work doing
its main function.>

4. Quality Attributes
<Use the scenario table format to describe all of the quality attributes that must be
included in the final system. Rank these architectural drivers, in terms of their
importance. As noted in the guidelines, above, the most important of these quality
attributes, for the system to succeed, should be given more space.>

5. Patterns and Tactics
< Describe the tactics used to achieve each quality attribute. Describe any patterns that
are used to package tactics. If you don't have any patterns, describe how different forces
influence the choice of tactics. You should give the most attention to what is believed to
be the most important of these quality attributes – how to achieve that.

This section especially should record your rationale for the design. It should say what
alternatives you considered, and why you chose the one you did. Your instructors will be
paying special attention to what you say here!

If you used “patterns” in your system, in the sense of the Gang-of-Four patterns, and
want to elaborate on those, that probably should go in Section 7, as a part of your
Framework discussion.>

6. Views
A.	 Component	 and	 Connector	 View	

1.	 Elements	
Above is our component-and-connector diagram. This diagram shows the run time
entities of our system, detailing how it is supposed to work. It is made up of various
elements. The ShowSplitter element divides the shows into parallel processes, allowing a
pipe and filter architecture to be applied. The EpChecker element checks to see if the
episode itself is available locally, if not it downloads from TVDB. The ImageCheck
element checks to see if the episode images are stored locally, it downloads the from
TVDB if it is not. The InfoChecker element checks to see if the information pertaining to
a certain episode is available locally, and downloads it from TVDB if not. The
EpSummary element provides a quick summary of an episode, and if it is not available
locally it downloads it from TVDB. The FullShowDetails element provides full

information (including actors, summary, credits, etc...) for a given show. The DataSorter
element provides a way to take a set of TV episodes or shows and apply a logical
ordering to them. The NetworkSort element does the same but relies on the TVDB api for
information. The ShowList element takes data from the sorter, and formats it so it can be
displayed in a logical order to the user. The ListView element provides the formatting for
the list of shows, the ShowList.

2.	 Relations	
The relations exist in the ShowProcessor and ViewBuilder. The filters in these elements
depend on each other to pass data throughout the system. Similar to a Pipe and filter
model.

3.	 Context	
The views show the high level breakdown of software components internal to SickBeard,
in terms of data flows. This is an alternative to an OO view. It is lower level than an
allocation view, yet a higher level then code.

4.	 Variability	
Altering the behavior of an existing filter, or creating new filters and inserting them into
the internal workings of SickBeard is how to exercise any variation points in the system.

5.	 Architecture	
SickBeard started with one core functionality, and as it added more functionality it
extended its existing set of filters to do more with regards to the TVDB API, file
management, etc.

B.	 Module	 View	

Above is the class diagram for SickBeard. The diagram shows how the different classes
in our system interact with each other.

1.	 Elements	
Our system is made up of many different classes, and controlled through one main class
called Sickbeard. The main class is used to control the web interface, however it knows
very little about how the system actually works. In order to get the implementation details
it makes class to all of the different classes. The system functionality is split up into many
different classes in order to hid different parts of the system from each other. This makes
working on and individual piece of the system much easier to understand, because the
developer does not have to worry about the implementation details of the other parts. The
system works by first loading the data stored in the database and accessed through the
DB object, into tv show and tv episode objects. After loading the data, the system checks
each show to find upcoming episodes, if one is found it is the added to a queue for
processing. While processing the queue it will log any errors it finds in the data, as well
as send notifications to the user about the upcoming episodes.

2.	 Context	
	
The diagram purposefully does not show how the system interacts with external services
because this interaction is shown in the allocation view.

3.	 Variability	
	
In order to exercise any variation points in the system, a developer can simply create new
classes to be used by the main controlling class. These new classes can incorporate new
features, or simply come about from a refactoring of the old system.

4.	 Architecture	

This design came to be through a long process of trail and error. When the system was
first designed it did not have separate classes for different functionality. As the system
became larger it was apparent that these separate classes were necessary to help new
developers work with the system, as well as help current developers keep a separation of
concerns.

C.	 Allocation	 View	

1.	 Elements	

Hardware

Client

The client computer can be any desktop, laptop or other Internet capable device. These
devices will be the ones viewing information. People will view the software through
means of a third party browser, which will allow the end user to see the server’s interface.
This hardware client can, in rare cases, the server itself. The reason for this is usually the
local server is not hooked up directly to a monitor or easily accessible by a user.

Local Server
This is the server that will be running SickBeard. It is required to run python and other
required libraries. The server will always be running SickBeard and could possibly have
multiple connections to the SickBeard software. We will have full control over the local
server and any of the relevant processes needed to run SickBeard.

Remote Server
This is the server that implements the API that we need. We do not have control of
anything other than the data that the API provides. This is also the only data we have
access to.

Software

Show Fetcher
The Show Fetcher is responsible for going out to TheTVDB and fetching information
about television shows. Some of the items fetched include, show descriptions, episode
images, air times, network and plot summaries. This is the primary component that is
responsible for server-to-server communications.

Display Driver
The Display Driver is responsible for taking the local data and presenting it to the user. It
is also capable of pulling information through the show fetcher. This means that the
Display Driver can display live information if it is required in certain views.

Browser
This is the external browser that the user will be using. It is simply used to interpret and
display the views produced from the Display Driver.

Relations
The primary relation is the one from SickBeard to TheTVDB, which happens through the
Show Fetcher. The Show Fetcher communicates through the API provided by TheTVDB.
This allows an easy connection for us to get the information we need out of TheTVDB.

2.	 Interfaces	

TVDBAPI
Resources
TV Info
This is the python object that provides methods to query info from TheTVDB. It’s
actually a class that can be called as a method that allows us to obtain information.

Data Types
TVDBAPI Class
This is the API class that we can make calls against. There are several methods that
allow us to query multiple pieces of information such as seasons, series or individual
episodes. It also provides an easy interface for obtaining images.

Exceptions
There are very few exceptions in this system, as this is the nature of the system’s design.
We are using the model that exceptions should be used for exceptional circumstances.

Variability
There is minimal variability due the lack of need for variability. The API provides all the
data in an easy to access form so therefore we don’t need different forms of this.

Quality Attributes
SickBeard provides a clean pythonic interface that any python programmer can pick up
and understand. This is awesome as it was very easy for each of our developers picked it
up right away.

Element Requirements
The system requires it’s own database and theTVDB webserver. These are the only two
software requirements in order to run SickBeard successfully.

Rational and Design Issues
TheTVDB existed before the API did and thus was written to bridge the connection
between TheTVDB and any python interface.

3.	 Context	
This system’s Environment is the Hardware and Internet. These environmental elements
are both required for proper operation, although SickBeard can run without Internet in a
limp mode. Many of the functions are disabled in limp mode, but the user is notified
about the problem.

4.	 Variability	
In order to provide an easy implementation, we need to minimize our variation. We do
this to keep items succinct and simple to keep variation down.

5.	 Architecture	
The overall structure is built on existing web service technologies. The overall structure
of the program will be dead simple for anyone to pickup. It also employs web standard
API technology implementations so anyone familiar with standard web API technologies
will be familiar with the system.

<These are the pictures and their explanations. Provide an introductory paragraph listing
the purpose of each view. What kinds of views do you need? See the Viewtypes
discussion, below. Include each view as a lettered subsection of this section. That is, the
first view should be 6.A, the second should be 6.B, etc. Each view should have all of the
following subsections:

1. Primary presentation – this will often be a diagram
2. Element catalog

A. Elements - brief description of each
B. Relations - brief description of each
C. Interfaces - for views that include them

1) Interface identity - unique name
2) Resources provided - syntax and semantics
3) Locally defined data types - if used
4) Exception definitions - including handling
5) Variability provided - for product lines
6) Quality attribute characteristics - what is provided?
7) Element requirements - names of required items, assumptions
8) Rationale and design issues - why these choices
9) Usage guide - protocols

3. Context diagram -- how the system relates to its environment
4. Variability guide – how to exercise any variation points
5. Architecture background – why the design reflected in the view came to be
6. Glossary of terms used - alternatively, you may place these in a separate glossary for the

whole document
7. Other information - if needed

Viewtypes:

There are typically 3 kinds of views you need to show, which translates to 3 or more views in this
high-level document:

Modules – These are “design time entities” of your system. The structure of the OO design (or
other software design methodology). This is probably the same thing as the “framework”
described in the next section. So, Section 7 becomes effectively an extension of the picture and
the basic explanation of it given here. Often, there are multiple versions of this viewtype – say, a
UML class diagram showing OO decomposition, generalization and uses; and then a view of the
software “layers” in the system, perhaps showing how your software uses third-party software.

Component-and-connector (C&C) – This shows the “run time entities” of your system. How is
it all supposed to work? For example, how does a “message” or “transaction” get through your
system? Or, how does the main use case happen, in terms of pieces of the system interacting?
The explanation should be “stream of execution.” Often, your system’s “style” comes out the
most in this figure, and readers can see the pipes-and-filters, or client-server design. Interfaces to

other systems would be at least generally described here. There are UML diagrams you can use
for these, too – see SEI Article.

Allocation – This one always shows hardware as well as software, a larger picture of the system
in its environment. Especially, it shows what software on what box talks to what other software
on its box. The links between the boxes should be as informative as possibly in their legend,
saying things like what protocols or interfaces are used, and what the capacity of these links will
be. However, there are additional kinds of allocation views that you may also need, like one
showing how it will be deployed or installed.

Data – These include things like entity-relationship diagrams for the database. Now, in this
architecture document, you might only show the most critical parts of that design, since otherwise
you could easily have half the document describing the data!>

User interface – Typically these interaction design images appear in a more detailed design spec.
However, as with data, an exemplary one which gets across a major point about your design
could be appropriate. The software framework supporting user interaction would be described in
Section 7.

7. Framework
<It’s presumed that, as you write this, or shortly thereafter, you create the high level
design for your system. This is its “framework.” Describe the components of the
framework constructed by the development team. You may want to use a diagram or
refer to one of the views in the previous section. Describe how the framework
enables/enforces/facilitates the software architecture.

A framework is a general OO design that makes it easy to attach more detailed pieces.
So, it has, for example, the most general “parent” classes of the system. And it shows
how these connect to others. Typically a framework is full of generics, iterators,
interfaces, methods designed to be overloaded, and all that good OO stuff. The
description should be supported by a UML class diagram which shows the connections in
the whole system (probably in Section 6, above).

This is the section where things like “model view controller” and “Gang of Four” patterns
would be a part of the discussion. However, if you were going to fully flesh out the
description of even your framework, that would likely be too long for this high-level
intro-to-everything.>

8. Acknowledgements
<Acknowledge the help of the customers and developers. Also give thanks for any other
sources of material you used, such as authors of patterns.>

9. References
<Include citations here, both internal to the team and external. Use a standard format,
such as IEEE (http://standards.ieee.org/guides/style/section7.html) or ACM
(http://moon.cse.yzu.edu.tw/acm/docs/ihhuang/citation/). Use a standard format, such as
IEEE (http://standards.ieee.org/guides/style/section7.html). >

10. Revision history
<Table containing the revision number, date, who made the change, what the change
was>

11. Appendices
A.	 Glossary	
API ...Application Programming Interface. A standardized set of

methods provided for developers to use when connecting to
the application. In the context of the TVDB, refers to a set
of Web-based data connections that return information
about TV shows.

SickBeardAn open-source application that interfaces with the TVDB
in order to provide an interface into a local TV collection
with information about each show.

TVDBTelevision Database. A freely available collection of
information

