The ins and outs of problem statements

In this document we answer the following three questions:

1. What is a problem statement, and what’s it good for?

2. What exactly does a problem statement look like?

3. What’s a good process, for deriving a problem statement which will prove valuable to us during development?

We believe that the creation of problem statements is crucial to the success of any project which has sufficient technical or organizational complexity. You will have several opportunities to create and evaluate problem statements, in CSSE 371 (Requirements Engineering) and also in CSSE 374 (Software Architecture). Usually, both requirements engineers and also architects are involved in the creation of problem statements.

1. What is a problem statement?

a. Short and to the point: A 1 – 3 page statement which everyone on an engineering project agrees with, saying, “This is what we are doing.” By “everyone,” we mean official project stakeholders, developers, and everyone else who should have some say-so in the project’s outcome.

b. A translation: The problem statement translates the business case point of view of marketing people into the terminology and form used by the technical team who will develop a system, as a solution to a problem or need by paying customers. The problem statement will help those in business oriented non-technical jobs communicate effectively with the technical communities that support them, and help the technical communities understand, prioritize and delineate among needs, differentiators and wish-lists. It will also improve decision making speed and reduce rework resulting from a misunderstanding of the underlying reasons for what is requested by the product management team. These are all reasons why it’s worthwhile to do this problem statement!

c. Stays away from solving the problem: The problem statement says, “What has to be done” for a development project to succeed – to meet the needs of its stakeholders who are external to the development. It does not say, “How that has to be done,” unless those external stakeholders say so. This makes the problem statement become a tool for the development team to envision architectural and technology choices. Specifically, the problem statement matches an architectural document created by the architects for the project – that architecture document which follows will then say, point by point, how the proposed overall system design will meet the needs described in the problem statement. Since both the problem statement and architectural document are fairly short, they have an “impedance match” which enables the architectural document to convince stakeholders of the viability of the proposed technical solution.

d. Something done separately: It is not a part of a larger requirements document, because it is a more conceptual document and is intended for a very wide audience. Also, the problem statement usually needs to be done first, so that the requirements reflect the concepts described in the problem statement. Thus, the problem statement does not fit in with the schedule of creation and organizational approvals for the related, thick requirements document.

e. More than just the “short list” of requirements: Furthermore, this is not just a consolidation of detailed requirements. The problem statement must say, for example, which really are the key requirements, and which ones are less important, something a requirements document may not say at all. And the problem statement explains why those are important to the success of the stakeholders.

f. Serves a crucial role in software project success: In other words, the problem statement is a format or tool for the stakeholders and developers to communicate in concise, plain language, about what tasks are being paid for, and what must be accomplished conceptually for the project to be a success. It is something everyone involved can tape on their office wall and know, “When we have done this, we made it!” Notice in the template for the problem statement, below, there is a place for stakeholders to sign-off on this document. This is very important! The problem statement forces all parties involved (including the development team’s leaders), to reach a conceptual agreement about what they are doing, and sign their names to this agreement!

2. What exactly does a problem statement look like?

Here is one sample format, which you can use as a template:
Problem Statement for <name of project>

-- under each heading, below, is described the nature of the contents of that section. Overall, it should sound like the answer to our question, “What is a problem statement?” above.

High Level Problem Summary

“Elevator statement”
 describing the problem to be solved - a single sentence that captures the essence of the issue.

Summary of Primary Success Criteria

How we will know when we’ve succeeded? A bullet list of the 3-5 key indicators of success: prioritized metrics for things such as speed to market, market dominance, quality, reusability…

Scope

A short, high level description of the problem boundaries – what is considered to be “inside” and “outside” the system for this particular release. (This is crucial to success – many projects fail because of a failure in mutual understanding of project boundaries.)

Detailed Problem Statement

FUNCTION

What the solution must do and how it will be used: identifies key features and prioritizes needs.

Key Business features

A bullet list of the features that provide business value for the system: the ones the end users care about.

Key Enabling Features

A bullet list of the administrative features necessary to provision
 the system and keep it up and running: the ones the administrators care about.

Key Concurrency Issues

Which key functions must happen at the same time?
FORM

The form the system must take in providing the functional features. Form requirements have a major impact on the architecture style chosen. Think “What shape is the software, in terms the stakeholders can understand?” So, you might say here that it’s going to have to be an “Oracle based” system, if that’s really a requirement and not a design choice. But you wouldn’t say, “We’re going to use abstract factory” or even “it will be a client-server system,” because these are pretty far into design (even if there’s a chance all the non-technical stakeholders would understand you).

Here are some further examples of topics you could cover under “Form,” depending of course on which ones are important enough to merit that!

Key Attributes

The -illities that impact architecture style and their priorities. In each case, what you want to say here is what the system “has to be,” not what you think it will do. For example, under performance and capacity, has somebody said how many transactions per hour the system has to do?:

· Performance & capacity

· Reliability & availability

· Usability

· Security

· Modifiability, maintainability, & customizability

· Testability

· Safety

Hardware & Software Constraints

This includes the hardware, software, and customer environment within which the system will operate, such as constraints such as tools and languages used for implementation, hardware platforms
Key Interfaces
The offer & network infrastructure, external systems that provide or receive information from the system… Required data formats or shared data needs…
Required Standards

Constraints on the solution such as environmental standards, interface specifications…

Domain

A description of the product line or product family the solution is a part of: key commonalities and variabilities for this particular problem. Again, these only go in the problem statement if they are specified as requirements. If they are design choices, they belong in an architecture document!
ECONOMY

The expected value and cost of the solution to customers and to your own organization (parent company, etc. – beyond your own development group): can include benefits, market strategies, COGS,
 variable pricing strategies, resource constraints...

Business Context

Overview of the business problem you are solving for the customers, and the market drivers
 which impact the need for a solution to the problem. Additional details can be in the appendix.

· Value proposition

· Customer willingness to pay

Customer Organization Constraints

The people who will use the solution: includes constraints on geographic location, skill sets, internal/external reporting structures...
Development Organization Constraints

The people who will develop the solution: includes constraints on geographic location, skill sets, internal/external reporting structures...

Development organization’s available budget, expected cost for solution.

Key Risks and Uncertainty

Issues that will affect the economic success or failure of the solution.

TIME

The relationship of the solution to past, present, and future: This includes what the system is replacing, the proposed lifecycle of the product, the current market window…

Historical Context
What product(s) or manual system this system is replacing, a view of the offer and network level system it will exist in…

Current Context

Market Window,
 both for the development organization and for customers, schedule dependencies, key competitors and their schedules…

Future Context

Product Line or Product Family Direction (and how this product fits into that larger set).

How will the solution need to change in the future?

Key Stakeholders (some possibilities)

	Name
	Client (owner of the budget – in a large company, typically an executive)
	Signature

	Names
	Other outside organizations which need to sign-off
	Signature

	Name
	Program Management, Offer Management, etc. – your marketing people
	Signature

	Name
	Product Management (someone above the project’s own development manager, who represents the Client in frequent decision-making – “owns responsibility for the product’s success” to the Client)
	Signature

	Name
	Requirements Engineering (may go under other names like Systems Engineering)
	Signature

	Name
	Architecture (may be a part of development)
	Signature

	Name
	Development (i.e., your development manager)
	Signature

	Name
	Integration and Field Support (representing the after-sale support people)
	Signature

	Name
	Testing (QA, etc., which may be a separate organization, especially for customer acceptance testing)
	signature

	Name
	Development Management / Project Management
	signature

	Name
	Customer Representative (external to your company – especially needed if there is a single buyer of your software product)
	signature

Revision History

	Date
	Version
	Reason for change
	Edited By

	Xx/xx/xxxx
	0.1 Draft
	
	Author’s Name(s)

	Xx/xx/xxxx
	1.0 Baseline
	Stakeholder review comments
	Author’s Name(s)

	Etc.
	
	
	

APPENDIX

Sample Appendix – Glossary

	Acronym/Term
	Definition

	
	

	
	

Additional Background and Context Information (as available – may include history, description of conditions under which the project is being done, things which could change, etc.)

Samples –

	
	

	Current Customers & Contractual Commitments
	Customer names, key attributes, schedule requirements…

	Potential Customers
	key attributes, schedule requirements, names if known …

	Key Competitors
	Competitor names, key strengths, key markets, market share…

	Market Drivers
	Market expectations and changes that impact the problem and solution.

	Technology Drivers
	HW and SW changes, tool and process changes impacting this solution

	Future Direction
	Things that are likely to change in the future – not part of the current plan, but likely

	Current Assumptions
	Where you don’t know the exact need or requirement, the “best guess” made (and if applicable, why you made it)

3. What’s a good process, for deriving a problem statement which will prove valuable to us during development?

Here’s an example. The steps and deliverables include the following:

1. Gathering Written Input. Business case information, or first rough draft of the Product Technology Roadmap based on market and technology directions, covering at least the next 2 years.

2. Group Activity 1. Problem Statement Stakeholder Session: background phone calls followed by a facilitated session
 with the business and technical stakeholders to identify the needs, priorities, and success criteria for the product. Participants represent all aspects of the product life cycle from product management through deployment and customer support. Representatives of key customers for the overall platform need to be included.
 Identifying the right people is part of the service.

3. Writing It. At the conclusion of such an initial session, someone has to sit down and write a “straw horse” Problem Statement.

4. Group Activity 2. Facilitation and consultation with key product managers, systems engineers and lead developers to develop next iteration of Problem Statement that incorporates input from key stakeholders.

5. Revising It – Based on the additional input

6. Group Activity 3. Review of Problem Statement by representative stakeholders.

7. Revising It Again -- Updating of the Problem Statement based on review findings.

8. Sign-Offs – Everyone agrees this is the concise statement of what has to be done!

9. Maintenance. Ongoing validation and maintenance of the Problem Statement. It can’t afford to become obsolete! For example, there can be changes in market drivers. This activity will go on throughout the development project.

For this effort to be successful, enough of the stakeholders must be involved! A typical group participating in creation of the Problem Statement for a real commercial project may include the following (for our term project these numbers will be scaled down!):

· 1 requirements engineer (systems engineer): owns Problem Statement and participates in Roadmapping training and all Problem Statement activities

· 1 architect or lead developer: co-authors Problem Statement and participates in Roadmapping training and all Problem Statement activities

· Key product managers: participate in Problem Statement stakeholder session (1/2 day) and review (1/2 day)

· Key development team members from each lifecycle phase: participate in Problem Statement stakeholder session (1/2 day) and review (1/2 day)

· Key internal application customer representatives: participate in Problem Statement stakeholder session (1/2 day) and review (1/2 day)

· Project Executive (client): participate in Problem Statement stakeholder session (1/2 day) and optionally in the Problem Statement review

· Other product managers and development team members: participate as needed for information gathering and input

� An “elevator statement” is the message you would want to tell a stakeholder about your project, if you got on an elevator together and they asked, “So, what’s this project all about?”, and you had till they got off to explain the key points.

� The “Function – Form – Economy – Time” model is used here for describing the problem. This model is due to the US architectural firm CRSS (now part of HOK). See William Pena’s Problem Seeking: An Architectural Programming Primer, Third Edition. AIA Press, 1987, ISBN 0-913962-87-2.

� Specifically, what Administrative and Operational features must be included, the activities which must be done behind the scenes or invisible to end-users.

� “Provisioning” means supplying the system with data. For example, when a new account is created, something has to happen to capture all the related data, verify it, and get it into a system’s database.

� There could be many more of these “-ilities,” which are attributes of the whole system you are creating. They are so-named because many of them, like “reliability” and “usability” have that word ending.

� COGS = Cost of Goods Sold. In accounting, this is the direct cost attributable to a specific item being sold. For software, this is often seen as the total cost of development divided by the number of units of that software which you expect to sell.

� Market drivers are the key wants and needs of the “market” for this product which we believe will make it salable in that market.

� The Value proposition says why people will find value in the product we are developing, above and beyond its costs to them. The difference here is, financially, their incentive to buy the product.

� To the extent a problem statement includes development organization constraints, it drifts from describing purely the problem at hand. For example, our development organization may have database experience only with Oracle, and so our development has to target an Oracle-based solution. However, competing organizations may be able to use some less expensive database, resulting in a more widely marketable product. By including “Must be Oracle based,” in our problem statement, those reading it may lose sight of other options which could impact the long-term success of this project.

� Market Window is a business term for the length of time (usually a range of months) during which we believe a product solving this problem would be salable to the marketplace described.

� With the requirements engineer or system architect typically serving as the trained meeting facilitator.

� Often, a single development is a branch off a main product or platform, and the people representing the other, related pieces of software are considered stakeholders in the new project.

� An initial version for everyone else to throw darts at.

Problem Statement Guide
3 September, 2003
8

