
Usability as a pawn in the power politics of a venture
firm.

Product, Process, and Profit:
The Politics of Usability in a Software Venture

Barbara Mirel
National Center for Patient Safety
Veterans Health Administration (10X)
2215 Fuller Road
Ann Arbor, Michigan 48105
barbara.mirel@med.va.gov

Abstract

In research and in practice, usability specialists commonly target the
technology—user-interfaces and help—as the main arena for bringing
about usability improvements. However, usability improvements depend
on more than innovative and user-centered technical designs and
implementations. Equally important for creating useful and usable
software are the social and political forces that shape the development
context. These forces give rise to leadership conflicts, factional disputes,
renegade efforts, alliances and betrayals, all of which profoundly
influence whether usability improvements will be supported and sustained
within and across projects. This essay presents and analyzes a case
history of a software start-up company in which usability achieved
a Pyrrhic victory, triumphing only in the short run because of social
and political forces.

K.4.3 Organizational impacts
Keywords: usability, political support, goal conflict, sociology

Introduction

T
his is a story of clashing cultures, of struggles between
a handful of start-up, coding cowboys and a group of
talented, steady-eddie developers who joined together
in a venture to produce pioneering software. This clash
of cultures spurred breakthrough gains in usability but

it left casualties in its wake, casualties grave enough to arrest continued
usability innovation. This story recounts a moment of triumph and
glory for usability innovations that faded because of organizational
processes and power relations.

185

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

ACM Journal of Computer Documentation, 2000,24:185-203
© 2000 by the Association for Computing Machinery.
All rights reserved. ISSN 1527-6805

I narrate this story as the human factors lead
in this start up venture. I address one basic
question: What does it take technically and
organizationally to create breakthrough innova-
tions in usability for computer-supported,
complex tasks? By technically, I mean designs
and implementations in the software product
itself—its features, functions, architecture,
interfaces, and help. By organizationally, I mean
the complex network of social and political
relationships, structures, processes, policies,
norms, values and rules that shape choices
about software design and implementation
(Giddens, 1984). As I hope this story makes
clear, changes technically and organizationally
are equally necessary to bring about usability
innovations. Technical and organizational
systems are intricately intertwined (Latour,1988;
Thomas,1994; Knights and Murray, 1994;
Feenberg, 1995; Jackson, 1996; Frost and Egri,
1995; Star, 1995). The dynamics of change and
resistance that flow within and between them
make or break advances in usability. If, as is
often the case in the usability literature, we pay
attention only to innovating the technology, we
will get an incomplete and misleading picture of
what it takes to create useful software (Nielsen,
2000; Spool et al., 1999; Rubin, 1994).

Temptations loom large for us to devote our
energies almost entirely to technical redesigns
and enhancements especially when the need
for these efforts is so apparent—as it is in
the case of building software that is useful
for users’ complex tasks, end-to-end. These
cases, however, are precisely the ones that most
need social and political changes to accompany
technical efforts. In these cases, technical efforts
for imposing usability require contextual and
user-centered approaches that rattle many
developers’ core beliefs, methodologies, and
claims to control and turf (Beyer and Holtzblatt,
1998; Nardi, 1996; Anderson, 1994; Ramey
et al., 1996; Rheinfrank et al., 1991; Brown
and Duguid, 1991; Denning and Dargin,
1996; Nyce and Lowgren, 1995). If adequate
organizational changes do not accompany
these approaches, resistance to them may very

well stifle or derail even the most necessary of
usability innovations.

Therefore, to build usefulness and ease of
use into software from the start, social and
political innovations are equally if not more
important than technology innovations. I say
more important because, as my story shows, in
the dynamic interplay between technical and
organizational systems, the influence that one
system has on the other is asymmetrical. Social
structures and political processes have far more
power in shaping the technical possibilities
that are left open or foreclosed than technology
innovations have in directing or re-engineering
organizational work arrangements, power rela-
tions, and policy. Given this unequal influence,
the experiences I relate underscore that usability
experts must deliberately strive as much for
political innovations as technological ones.

Usefulness as a Technology Breakthrough

Before recounting this story, I need to set
the stage briefly with two explanations. The
first focuses on technological innovations for
usability.

When, in this story, I talk about breakthrough
innovations in usability, I mean innovations in
usefulness for complex tasks—for the nonrou-
tine, problem-solving work of everyday, not
early-adopter, users (Holland, 1998). Usefulness
is probably the hardest but arguably most
important factor to attain in usability. It involves
representing in an application users’ own models
of their work-in-context, their approaches to it,
and their identities in it (Agre, 1997; Coyne,
1995; Johnson, 1998). A mismatch between
the task models built into a program and users’
actual ways of thinking about and doing their
work is perhaps the least redressed of all usability
problems (Liddle,1996; Cooper, 1999; Norman,
1999). Improvements in this area, therefore, can
provide dramatic breakthroughs.

Improvements for usefulness, however, are
often nontrivial to implement. It takes intensive
effort, for instance, to communicate situated
tasks rather than operation-level functions; to
transform context-free interface objects into

186

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

“organizationally rele-
vant things;” to provide
domain-specific content,
intelligent assistance,
and screen cues for real
world choices and pur-
poses; and to structure
places not just spaces for
electronic work (Coyne,
1995; Johnson-Eilola,
1997; Albers, 1999;
Agre, 1997; Ramey et
al., 1996, Johnson et
al., 1995). These designs
can be demanding and
seem to leave no time
for realizing complementary changes in the
organizational system. Yet, as my second explana-
tion now discusses, without these organizational
changes, attempts to achieve breakthroughs in
usefulness may come to naught.

Enter Organizational Politics

 Breakthrough innovations in usefulness are
unavoidably political. By definition, they chal-
lenge the status quo in development organiza-
tions. Tacitly or overtly, proponents of software
innovation charge that historical precedents,
institutionalized norms, and structural regulari-
ties are obstructing success. Organizational
routines are questioned, previous versions of the
technology get disparaged, various groups’ stakes
in existing and new approaches are exposed,
and previously uncontested organizational
objectives and processes associated with the
technology at hand get scrutinized.

These tensions are evident in three types of
decisions about technology, decisions shaped by
prevailing interests and worldviews (Thomas,
1994). They determine whether a usability
innovation will occur, and, if so, what trajectory
it will take. They include:
1. Decisions about the defining architecture

of the product.

2. Within that architecture, decisions about
scope, requirements, and features.

3. Decisions about how to implement targeted

features and functions.

The interests that
dominate and control
the outcomes of early
decisions about archi-
tecture and features ulti-
mately wield the great-
est influence over the
trajectory of innovation
(Latour, 1988; Thomas,
1994). In my story, deci-
sions about implementa-
tion were far less conse-
quential, even though
such implementation
issues as selecting and

successfully laying out effective user interface
(UI) controls or naming them well are com-
monly cited in the literature as the arena for
determining the fate of usability (Czerwinski
et al, 1999; James, 1999; Forrester, 1998;
Wiklund, 1994). In my case, implementation
decisions occurred well after most of the
possibilities for usefulness were already carved
out and constrained.

My story focuses on the processes more than
the product of innovation—processes that were
frequently unpredictable and that led to unintended
consequences and precarious usability gains. This
case history is more than the story of one innovation
project. I trace cumulative decisions across several
projects to show their actual as well as forsaken
outcomes, the possibilities that they opened as well
as closed. This story culminates in a capstone project
in which usefulness innovations occurred. But if I
only told the project-based story of this innovation,
the lessons it might suggest would be misleading.
From an historical perspective, the project brought
about usability gains and losses, and understanding
these gains and losses is, in the long run, more
beneficial to usability efforts than prescriptions
for success. In this case history, breakthrough
innovations were achieved but the unintended losses
accompanying these innovations were too deep and
corresponding organizational changes too shallow to
sustain the usability visions and gains.

In telling this story, I’ve made all names ficti-
tious. I’ve also included a timeline summarizing
events in Appendix A.

breakthrough innovations were
achieved but

the unintended losses
accompanying these

innovations were too deep
and corresponding

organizational changes too
shallow to sustain the usability

visions and gains.

187

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

The Quest

In December, 1997, Visible Solutions became
a venture within Pyrrhtel, a large multinational
telecommunications corporation. The goal of
this venture was to become profitable enough
in three years to spin off as a separate company
by turning the interactive data visualizations
developed through almost a decade of Pyrrhtel
research into a commercial product—data
analysis software for business users. The
visualizations consisted of UNIX-based graphics
that could display hundreds of thousands
of records and that could be manipulated
and linked by users to drill down for the
purpose of discovering trends, outliers, and
other relationships. In Pyrrhtel’s R&D lab,
interactive visualizations were an “experimental
playground” for exploring huge sets of data
for telecommunications problems such as
visualizing call records to detect incidents
of telephone fraud. Early in 1997, Pyrrhtel’s
upper level management saw great potential for
channeling this “graphic playground” into a
profitable “graphic theme park.”

Before the venture was officially launched,
a pilot group worked for several months on
assorted commercial projects for business users
such as visualizing software code in order
to detect imminent Y2K problems. Three
veteran upper level Pyrrhtel managers led this
group, and they became the founding fathers
of the venture. One of them, Stan, was my
immediate boss, the venture’s Vice President
of Development.

To this triumvirate’s credit, they realized that
the home-grown Pyrrhtel group—including
themselves—were socialized in an R&D culture
and inexperienced in getting a software product
to market quickly and competitively. Turning
the powerful but opaque visualization technol-
ogy into an accessible, easy to use product
required the mindset and energies of a start-up
company. These founding fathers, therefore,
went outside of Pyrrhtel and hired a CEO who
started with Visual Solutions in December
1997. One week later the venture officially
launched.

Jack, the CEO, was a hard driving Harvard
Business School grad who prided himself on
knowing how to situate high tech in the market.
At 35, he had already set up a number of small
ventures, made them visible to investors quickly,
and sold them for handsome profits. He was
well-studied in talking about all the ingredients
of a successful company—teamwork, collabora-
tion, and openness.

My start date coincided exactly with Jack’s,
reflecting the two inseparable charges of the
venture—to bring a product to market and to
assure that this product would be accepted by
users. Turning out a usable product was a top
priority because, in the preventure days, the
pilot group had gotten burned by unusable
products. Most of their customers had rejected
and returned the visualizations for lack of
usability. A full time human factors position
was created to address this problem, and I
was hired.

In January, 1998, right after the birth of the
venture, Jack began holding regular quarterly
company meetings. At each meeting, without
exception, he ritualistically told the story of who
we were and where we came from. In the same
words and with the same slides, he recounted
our mission and our beginnings. Our mission
was to build visual analysis software that would
“revolutionize business decision-making” by
helping everyday business analysts graphically
interact with and interpret data that was
otherwise too unwieldy to analyze.

In the beginning, Jack would declare, we
had a really cool technology but not a usable
product. Teams were formed, and we brought
visualizations out of UNIX land and into the
competitive world of Windows. We targeted two
vertical—domain-specific—markets. We were
becoming a market leader in each and would
soon take the whole world of data analysis by
storm. We were talking to real users, learning
real users’ needs and building for them. We were
leaving behind a stodgy R&D mentality and
becoming a really cool start-up.

When hardships occurred, Jack integrated the
mishaps into the tale without missing a beat.
Within fifteen months, both vertical products

188

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

were abandoned. These abandoned projects,
the CEO spun, demonstrated our flexibility.
We decided to shift product direction but it was
for the better, and we were adept at hitting the
ground running. Most importantly, we were
learning. We learned enough to improve the
core graphics and the surrounding platform of
interface controls to make them a marketable
OEM product for developer users in other
software firms. These developers would build
our visualizations into their software and give
our powerful interactive graphics widespread
visibility.

Jack integrated our emerging experiences into
his tale each quarter. When we dropped vertical
products for niche markets, we moved to
develop a horizontal—that is, generic problem-
solving—product, an all-purpose data analysis
tool for any business domain. It was as if we
had found the holy grail.

In mythic fashion, disappointments, conflicts,
and mistakes became the birth-pangs of con-
quering new and uncertain worlds. This story
was a quest tale; its hero was the venture.
This ritually told quest recounted the origin,
purpose and journeys of the group. We went
through trials and battled demons, all for the
mission of bringing the boon of visualizations
to society. In such a quest, conflicts and losses
are inescapable.

But the problem with this quest tale—stirring
as it was—was that conflicts really didn’t get
resolved. Nor did they get synthesized into
some greater endeavor. Rather conflicts simply
disappeared, and losses never had lasting effects.
Mostly we just grew wiser and headed off in a
better direction. It was a story of yea-saying.
As in any ritual reciting, it was a re-enactment,
aimed at renewing listeners’ unquestioning
assent at each hearing.

Beneath the surface, what was going on in
this ritual recounting was the CEO upholding
his version of events as inviolate. Unfortunately,
reality belied his account. Frictions in the
actual venture were consequential. They were
also complicated and two-edged. They incited
abuses of power, and they sparked creativity
and innovation. Creatively, provocative debates

and frictions inspired usability innovations as
nothing else could. Were frictions, as in Jack’s
story, truly to disappear, that disappearance
would have taken with it much of the vitality,
vision, and sense of mission of the group. In
fact, that is exactly what happened.

Factions Emerge

Contending factions were born with the
venture. The first factional split emerged
between January and April, 1998, when Jack
started his tenure by hiring and firing a number
of people. In these four months, he brought on
board eight new employees, all of whom had
worked for him at his last start-up company.
These new hires quickly became dubbed
“cronies,” a term of resentment when it came
from the mouths of some veteran Pyrrhtel
people, a badge of honor when voiced by Jack
and the new hires themselves. One reason why
some Pyrrhtel people resented the cronies was
that, in April, at the same time as Jack was
hiring his former employees, he unexpectedly
fired six Pyrrhtel people. His reason, he said,
was a “lack of fit.”

The firing prompted Stan, the Vice President
of Development, to call an emergency meeting
of the twenty developers in the venture—all
of whom, except for two new cronies and
me, were Pyrrhtel veterans. The meeting was
aimed at quelling our fears that, in significant
ways, “old Pyrrhtel” was different from new
“start-up” and perhaps at risk. As the quest tale
conveys, “start up” was the favored culture and
inseparable from harmony and growth.

However, developers’ fears were real as well
as mythic. The new hires, perceived as a “start
up” faction, immediately assumed positions of
authority, mostly as directors or team leaders.
Jack continued to hire cronies as the year wore
on. The highest ranking of them, Kevin, became
Vice President of Product Management. By the
end of 1999, Kevin controlled the vision of
both the venture and the product, ultimately
vying for power with Stan, the Vice President of
Development and founding father.

Stereotypically, “start up” stood for fast-

189

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

paced development, speed-to-market, small
and nimble teams, and an aversion to formal
process. “Old Pyrrhtel,” by contrast, revered
process. It also stood for open debates among
wide-ranging ideas, protracted decision-making,
and a staunch commitment to diversity in the
workforce.

The two factions came into conflict early on
in regard to one of the first decisions about the
visualization technology—how to define the
scope, structure, and design of the Windows-
based graphics.

Initial Tensions About the Scope and
Design of the Core Graphics

This conflict pitted the top “old Pyrrhtel”
developer, Rick, against a newly hired “start
up” developer, Ben. One of the first cronies
hired, Ben came aboard in January, 1998, as
a much needed Windows and graphic user
interface (GUI) expert. He immediately joined
the already started project of converting the
researchers’ UNIX-based graphics into Active-X
components.

Ben came to the team with his own ideas
about structure and design. But Rick, the lead
of the team, who was the star developer in
the venture, had already instituted his own
standards and design. They were based on the
assumption that primary users of the graphics
were technical developers—like himself and the
researchers before him—and that these users
wanted screen real estate devoted exclusively to
data, with few if any verbal cues for interaction
and guidance.

Ben’s sense of Windows design and his
experiences in creating commercial products
ran counter to Rick’s. Unlike “old Pyrrhtel”
Rick who had never brought a commercial
Windows product to market, “start up” Ben was
experienced in developing commercial successes.
However, he did not yet have the social or
political clout to succeed against Rick.

To the core, these two programmers disagreed
about whether primary users were to be OEM
developers or business analysts and whether the
library for storing the Active-X controls should

be modular or interconnected. Technically,
the implications of Rick’s current design and
structure were that they closed some possibilities
for building enhancements for usefulness for
business users later on—for instance, for giving
them task-based entry points and a way to filter
data before visually querying it.

These disagreements were political as much as
technical. Rick, the team lead, had no intentions
of willingly giving up his control over the
library and graphics design. Ben, too, was
politically motivated. He was the most expert
developer in the venture in regard to usability
and designing for end-users. If end-users were
to be the primary target, he was sure to take
the lead in development efforts. Embedded in
the debate were distinct social and political
interests, equal and competing talents, and
contending computing ideologies but at this
point they never became overt.

The controversy ended almost as soon as
it began. Rick pulled rank and said that the
design and library were not open for discussion.
The criteria behind his selection of design and
structure were not to be questioned—they
simply were part of Pyrrhtel lore and technical
wisdom, the legacy of talented researchers.
Moreover, Rick noted, the venture’s only
immediate potential customers were developer
users who would embed the visualizations in
their own company’s business systems. He was
designing for them. Most developers in the
venture shared Rick’s sentiments and deferred
to his status, skills and knowledge.

Despite this outcome, this disagreement
only seemed to disappear. It resurfaced many
times, with greater force each time. Tensions
between these two developers continued for
two years. Ultimately, “start up” Ben would
displace” old Pyrrhtel” Rick in status, control,
and privilege.

In this case, however, debates were checked
almost before they began. The issue of who the
primary users were—who to design for—insti-
gated debate again two months later in March,
1998. This time the decision was about product
architecture, and it spawned new factions and
arguments.

190

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

New Factions Form Dening the Plat-
form Architecture

To house the Active-X graphics and provide
mechanisms for accessing and manipulating
them easily, a platform needed to be built and
its architecture defined. In March, 1998, Stan,
the Vice President of Development, assigned
another newly hired crony developer, Pat,
to head the platform initiative, deliberately
wanting new blood and fresh approaches at
the helm. The organizational chart now looked
as follows:

Unlike Rick, the “old Pyrrhtel” lead of the
graphics conversion team, Pat as platform lead
overtly considered designing primarily for
business analysts instead of developers and
held a series of meetings for all developers and
product managers to debate this issue. By May,
after two months of meetings on this issue, the
majority of people agreed that the platform
developers should build generic interaction
features that would address what the group
assumed to be overlapping needs of end-users
and developer users. Most of the group was in
full accord when Pat, the platform lead defined

Kevin
Vice President of Product

Management

Rick
Developer, Graphics Team Lead

Ben
Developer, Horizontal Team

Lead

Barbara
Human Factors Lead

Stan
Vice President of Development

Jack

CEO

Figure 1. Organizational Chart of Main Players.

191

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

task purposes—coding—and business users’
purposes—problem-solving—differed dramati-
cally, we all argued that one technology for
both would have limited value for either. What
was good for the goose was not necessarily good
for the gander because, empirically, they were
very different birds.

Kevin, the Vice President of Product Manage-
ment, was in this “user first” camp primarily
for market reasons, reasons shared by the rest
of us, as well. From a market point of view, we
wanted the venture to work on products that
pushed past targeting OEM users. The OEM
market was fine for short-term sales but the
end-user market was far more profitable. If
we were to succeed in this market, we needed
to bias our products toward end-users not
developers.

Over the months, this “user first” position
crystallized. It argued for giving higher priority
to usability improvements than to new, beguil-
ing features. The position also stressed that
nine out of ten times developers’ designs do
not capture users’ needs. Finally, “user first”
members held that prerequisites for success
were to identify through usability studies a
problem-solving content and to build it into
end-user products. The “user first” group hoped
to realize the mission of the venture by putting
users at the center of every development effort.
“Program first” people, by contrast, assumed
that the dazzling power of the technology itself
would win the market.

In some ways, platform-related oppositions
between “user first” and “program first” echoed
dissensions between “start up” and “old Pyr-
rhtel.” “User first” and “start up,” for example,
both sought a robust architecture to support
speedy development of end-user applications
within the venture. But the two factions differed
in how to design for this end. “Start up” stood
for “thinking outside of the box” but user-
centered design methodologies were too outside
the box even for some of the most adventurous
“start up” people. Pat, the platform lead, for
example, thrived on inventive programming,
but stopped short at interaction design. For

the platform as equally aimed at the two user
groups—a two-in-one technology.

The defining aspect of this two-in-one
architecture was the specification that each of
its features and functions had to be scriptable.
Scriptability would assure that end-users got
their required functionality while developers
were able to code as needed. In truth, the
platform, almost from the start, became as
biased toward developer users as the Active-X
graphics were. Once Pat started building plat-
form features, he gave priority to infrastructure
issues that were vital to developers but not to
end-users; he also tabled features that were
too hard to script even if they were critical
for supporting end-users. Bookmarking, for
example, was nontrivial to script, and it
remained tabled for sixteen months, from May,
1998, to September, 1999, even though at
least four user studies between these dates
requested it as a core end-user need for manag-
ing inquiry.

This definition of the platform as a two-in-
one technology provoked some dissent. At
the time, dissenters were a loosely knit group,
cutting across “old Pyrrhtel” and “start up”
lines. This group included me; Ben, the crony
developer on the graphics conversion team;
an “old Pyrrhtel” project manager for the
vertical application team that I also was on;
Kevin, the “start up” Vice President of Product
Management and Stan, the “old Pyrrhtel” Vice
President of Development.

Conceptually, we shared a bias toward what
I’ll call a “user first” over a “program first”
perspective. The “program first” perspective to
which we objected rested on the adage “if you
can build a neat new feature, you should build
it; users will welcome and adapt to it.” The
goal from a “program first” perspective was to
build new and ever better features. Our “user
first” frame of mind, by contrast, started with
users’ practices and purposes rather than with
potential features. So long as basic features
for user and system performance were built
into the software, priority should be given to
usability for task purposes. Since developers’

192

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

most programmers, this leap was huge. For
one it wasn’t—Ben, the “start up” crony on the
graphics conversion team. He became one of
my two biggest allies in the user-centered camp
and the pivotal player in effecting breakthroughs
for usefulness a year later. My other biggest
ally and usability champion was Stan, my boss.
A hybrid of “user first” and “old Pyrrhtel,”
Stan valued in equal measure user-centeredness
and an adherence to process to ensure quality
products. This mixture would turn the tides
against him in Fall, 1999.

At the time of the platform definition meet-
ings, the objections of our minority “user first”
group did not change the two-in-one platform
definition devised by the “program first” group.
But our objections did qualify it somewhat.
Everyone agreed that at some point the two user
groups’ needs would probably stop overlapping,
and, at that time, development would have to
split, probably into two distinct platforms.

With this emerging “user first” faction and
the two Vice Presidents’ endorsements, usability
was poised to take a more central role in product
definition, design, and development.

A Crisis in Unilateral Decision-Making

Halfway into 1998, the venture settled
into four product teams: one for the graphics
(the same team that previously converted the
graphics to Active-X), one for the platform, and
two for vertical applications targeted to different
end-users. Until July, 1998, Rick, the lead of
the graphics team decided unilaterally what
these four teams would build. Rick assigned
selected features to the platform, and then
Pat, the crony platform lead, similarly decided
on his own what the priorities would be for
the platform.

Both team leads’ choices were biased toward
developer users’ needs. The assumption in the
development division was that the graphics and
platform teams with their six or so programmers
apiece would build for generic interactions—the
overlap between developer and end-users. End-
users had domain-specific needs, as well, and
the two or three programmers on each vertical
team would develop for these needs.

In July, 1998, the vertical application teams
completed their user and system requirements
and submitted far more requests for generic
building to Rick—the feature gatekeeper—than
he had anticipated. These requests were aimed
at supporting end-users’ generic processes of
inquiry, processes that cut across domains,
for instance, managing inquiry, running and
comparing parallel streams of inquiry, going
off on a tangent and coming back, interrupting
work and returning hours later, and socially
negotiating the meaning of displays. These
end-user requests were hard to script, and
they competed with other technically difficult
features required for developer users such as
thin client architecture. Rick, the graphics team
lead, tried to throw the end-user requests back
over the wall to the vertical teams.

The vertical teams protested vociferously.
From them came a burgeoning “user first”
challenge to the graphics and platform teams
leads’ bias toward developer users and control
over priorities. In addition, a “start up” line of
attack was mobilizing against what appeared to
be Rick’s “old Pyrrhtel” tactics of adhering to
unquestionable processes for making decisions
and setting criteria.

In this July, 1998, crisis, two months after the
decision to define the platform as a two-in-one
technology, several all too familiar questions still
begged for answers. For example, what did the
two-in-one scope mean? Now that end-users’
requirements were so numerous, was it still
a feasible scope? What team should build for
generic problem-solving processes? How were
priorities to be distributed between developer
users and end-users, who decided, and based
on what criteria?

Had these questions finally been addressed
head on, work groups might have been reorga-
nized to put more programming resources on
the vertical teams and authority for decisions
might have been redistributed, both leading to
a shift in bias and priority toward end-users.
With ample resources and authority, designs
for usefulness might have been built into the
vertical applications from their inception as
success demands. Yet, despite the opportune

193

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

time, these fundamental questions did not
become the focus in resolving this conflict. Rick,
the graphics team lead, made a strategic move
to appease objectors while still maintaining his
control. He succeeded masterfully, and the cause
of usefulness was set back considerably.

The Chits Hit the Fan

In addressing the unrest in July, 1998, Rick
avoided substantive issues and focused instead
on the surface problem of unilateral decision
making. In what seemed to be a strategy of
placating the “start up” group by appearing
to be open to new processes, Rick proposed
an allegedly democratic system for deciding
priorities—a “free market” system of chits.
Each team would get a budget of chits based
on the projected revenues for their respective
products. Teams would use these chits to buy
features that they wanted and needed most.
The price of the features, calculated by Rick as
head developer, was to equal the effort it would
take to build them. Two teams could pool
their chits for the same feature and have more
left over for other requests. In this way, teams
would set their own priorities. The budgets
for the graphics and platform teams combined
were 168 chits; the vertical teams collectively
had 42.

The development group was taken in by the
game quality of this proposal. Real conflicts got
deflected into a niggling over rules. Little was
said about the system’s viability or credibility,
about the teams’ woefully unequal budgets or
the assumptions on which they were based.

It was a classic example of emperor’s new
clothes. No one stated straight out (a) that Rick
and Pat, the graphics and platform team leads,
were strongly biased toward developer users
and had a “program first” mentality; (b) that
these biases were favored 4 to 1 in the proposed
budgets; and (c) that Rick was doing all the
calculations. A couple of people did protest,
myself included, but Stan, the Vice President
of Development, dismissed our objections.
In private conversation with me he indicated
that he cared little about whether the group

used a chit or some other system. What he did
care about was mending the persistent “old
Pyrrhtel” and “start up” divisions, especially
the mounting tension between Rick, the
graphics team lead, and Ben, the graphics
team crony. The VP of Development believed
the chit system would help to bridge the “old
Pyrrhtel”/”start up” split because Rick was
making a grand gesture to change his “old
Pyrrhtel” ways.

The inequities of this “participatory system”
became evident five months later. In December,
1998, after end-user requirements predictably
got short shrift in the purchased features, the
first vertical application team collapsed for
want of interested users. Weeks later, the other
vertical team’s—my team’s—trial version with
alpha users evoked enough complaints about its
lack of usefulness to send us back to the design
table for another month. From our alpha user
tests and observations, we now knew better
than any team yet what end-users needed and
wanted for visual analysis in context. Our new
design consequently resulted in even more
generic problem-solving requirements but
without a chit budget to buy them.

To try to close the chasm between what
users expected and what the core visualizations
provided, our vertical team moved into the new
year and spent all of January, 1999, building
usability improvements into our product with
whatever resources we could muster. Three
events around us, however, converged to shut
down this project for good in February. First,
a partnership essential for getting the vertical
application to market went sour, partly because
the visualizations were too sparse in usefulness.
The executive team decided against mending
this partnership.

Their vote of no confidence was tied to the
month’s second event—the beginning efforts
of Jack, the CEO, to woo venture capitalists a
surprising year and a half ahead of schedule.
Jack deemed our vertical application too shaky
to impress prospective investors. He claimed
that a graphics-and-platform toolkit for OEM
users was a better bet because it would entice
investors.

194

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

Simultaneously, Product Management could
conceive a different, sexier end-user product to
ultimately draw them in.

This strategy led to the third event of the
month. At the end of January, Product Manage-
ment issued a forty-five page product plan
and feature list, giving clear priority to an
OEM product for general availability (GA)
release in May. It was a bold play by Kevin,
the Vice President of Product Management, to
claim decisions about features and priorities for
himself. A week after the plan was circulated,
Stan, the Vice President of Development,
officially disbanded our vertical team. Ironically,
the redesigning that we did in January won a
software design award from a trade magazine
a year later.

The Imperfect Storm

At the end of January, 1999, three successive
days of meetings focused on the forty-five
page product plan. Participants included the
Vice Presidents of Development and Product
Management, development team leads and
systems engineers, selected programmers such as
Ben, myself as usability lead, and two directors
and two managers in product management.
Discussions were stormy, fractious, and hostile.
Strange alliances emerged from combined turf
and ideological battles. Rick was livid at the
plan’s usurping of his control over features
and priorities and rejected the plan despite
its and his “program first” bias. Loyal to him,
other “program first” developers joined the
fray, charging cronies with a blatant attempt
to take over. In response, cronies criticized
“old Pyrrhtel” people for being too insular to
realize that above all the venture needed to get
a product to market and the plan would get us
there. A series of major players unpredictably
crossed factional lines, torn between their
own inner interests and beliefs. Inwardly and
outwardly, struggles were intense.

Eventually, the product plan was rejected, and
the bitterness of the debates left badly battered
egos and relationships. Product Management
said that it would revise and resubmit the

plan but it never did. This attempt to change
organizational processes and officially get the
group to buy into them was laid to rest. Neither
workgroups nor authority was altered despite
the recognized need to more deliberately plan,
design, and develop market-driven products—in
this case, an OEM product for the short term.
Usefulness for end-users had little to gain from
this particular plan but, in the long run, it may
have benefited from instituting this new process
of choosing features by sharing decisions and
endorsements across the many roles present
at these meetings.

The Vice President of Product Management’s
goal of taking control of both the product
direction and the means for executing it in
development did not disappear with the plan.
Kevin continued but now more surreptitiously.
He began working toward having Ben, the
crony on the graphics team, supersede Rick
as head developer venture-wide. Earlier, Ben
had taken his frustrations in working with
Rick and concerns about the direction of the
graphics design to Stan, the VP of Develop-
ment. Though sympathetic, Stan pronounced
Rick “unmanageable” and made no changes
in authority, status, or workgroup structure.
Ben then took advantage of his close crony
ties with the Kevin and Jack and went to them
for support. Loathe to have this star crony
disaffected, Kevin and Jack began orchestrating
for Ben to head design and implementation
and for Rick to take on more of a research role
that would lack the power to thwart what the
two executives jointly saw as essential “start
up” talent.

From February through May, 1999, a sudden
calm followed, fashioned more from people
avoiding communication and repairing ruptures
than from any sense of peace or resolution.
Weary from the product plan confrontations,
people went about their business and steered
clear of conflict. The bulk of the developers
worked on getting out the OEM graphics-and-
platform toolkit by May. Three people were
assigned to try yet another vertical product.
But no one officially revisited whether it was

195

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

time for the platform to move past the notion
of overlapping needs between end-users and
developer users.

During this period, six of us began work
on a brainchild of Kevin’s, the VP of Product
Management—an attempt to woo investors
by developing an add-in for Excel designed as
a horizontal, generic visual problem-solving
tool. Ben was named head of this project team,
a position that began his rise in status and
authority. He was given free rein to hand-pick
five other user-centered advocates to join him.
With him at the helm and calm giving us time
to work, our horizontal product team moved
freely in our own direction. We designed for
usefulness, intent on circumventing established
processes for feature requests that would thwart
us from incorporating usability. If need be,
we would build and modify the visualizations
ourselves so that they supported and enhanced
users’ problem-solving processes. Revisiting the
platform definition on our own, we decided to
create our own platform features to serve the
needs of end-users.

Breach in the Social Contract

Preparing and identifying user needs kept
our horizontal product team busy through the
middle of June, 1999. Around us, the venture
went through its highest peak ever and, two
weeks later, its lowest valley. The peak was the
launch of the OEM product on schedule to
venture-wide celebrations. The vale was the
firing of fifteen people, a third of the venture.
The reason for firing this time, Jack said, was
the need to win investors. Venture capitalists
were holding back because, they claimed, the
venture was “too heavy to fly.” The layoffs
would make us sleek, fast, productive and
saleable. Yet it was hard not to see that the
CEO was also taking this opportunity to rid
himself of detractors. A high-level director was
fired who was one of Jack’s and Kevin’s most
outspoken critics; most of the people let go
were “old Pyrrhtel.”

The venture reeled from this mass firing.
With antagonisms still raw from the product

plan and suspicions high about why we needed
to find venture capitalists so soon, this crisis
exacerbated mistrust, division, and fearfulness.
Major players were lost from most teams; a sense
of being adrift set in, and morale plummeted.
In protest, one of the most highly regarded
“old Pyrrhtel” developers resigned, a product
manager equally respected by “start up” and
“old Pyrrhtel” people alike. This time the “old
Pyrrhtel” Vice President of Development did not
try to buck up his troops. Genuinely pained at
the costs of this firing, Stan became disenchanted
with the growing backroom politics of the Vice
President of Product Management and the
CEO whose special agendas traced back to their
tight relationship in their former company. This
time, Stan wrote a two-page memo to the
whole executive team warning that the layoff
crisis and subsequent resignation revealed that
the venture’s unspoken social contract was
breeched in ways that would be irreversible
unless the executive team immediately renewed
trust—renewed it by reorganizing workgroups,
revitalizing them with a clear roadmap for a
central product and its families, reinstating
processes to abate the lack of direction, and
opening decision making so that secrecy and
privileged agendas no longer impeded com-
munication and shared values.

Renegades

June, 1999, passed, however, and no moves
came from the executive team to repair the
damage. Teams struggled to regroup on their
own but randomness prevailed. Our horizontal
product team was the only team in the venture
that didn’t lose someone in the layoff. We
coalesced strongly in the face of the surrounding
disarray. Isolating ourselves from the turmoil
fed into our already established tendencies to
keep a low profile while intensely working to
innovate the visualizations and their develop-
ment processes. We created altogether new
user-centered interface controls, graphics
functionality, and infrastructure to suit users’
demonstrated needs. We designed and built
rapidly, and iteratively tested usability in the

196

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

field. We sidestepped official processes to free
ourselves from dependencies on “program
first” teams. We evaded having to formally
request and justify resources by informally
securing them from Kevin, the VP of Product
Management. In renegade style, we shared with
the rest of the venture enough of what we were
doing through our usability test reports and
project updates to be good team players but our
pace quickly outstripped our reported news.

We worked like this through July, 1999, but
in November we hit a showstopper. In field-
testing our product, users came to a halt in their
analysis because one of the graphics invented
by the Pyrrhtel researchers confused them. It
was a particularly complex graphic, and no fix
was possible in the short run. We had little
time because we needed to coordinate with the
marketing of Excel 2000 and get our product
out in two months, no later than mid-October,
1999. At this point, discussions ensued with
the full development and product management
groups as well as with the executive team.
Heated debates focused on whether to hold
up production for three reasons: to improve
the graphic, to assure that no other surprises
lurked, and to take the time to follow all
formal development processes so that we’d be
selling quality software, not a prototype. “Old
Pyrrhtel”—especially Stan, the Vice President
of Development—insisted on following these
formal processes and the wisdom of experience
they represented. “Start up” and “user first”
advocates wanted nothing to stand in the way of
finally getting a product to end-users after a year
and a half of trying. Members of these factions
argued that continued improvements and
quality could be added in a quick-turnaround
Version 2 based on users’ feedback from actual
work contexts. “Program first” people were
unnervingly quiet, seemingly hushed and
alienated by how drastically this horizontal
product deviated from their current work.
To resolve these debates, the horizontal team
proposed taking a month to invent and test
an alternate approach to the same analysis
with a different graphic. We would let users’
demonstrated performance determine whether

to go to market or not. Usability and usefulness
would have an unprecedented final word.

Kevin and Jack—the VP of Product Manage-
ment and the CEO—heartily concurred. Stan,
however, demurred, sensing chaos. The rip in
the social fabric that he had warned about had
never been mended. This renegade approach
seemed to threaten that contract even more.
Though he endorsed the positive outcomes of
the renegade team, Stan feared that products
and processes were deviating in ways that
threatened unity and coordination across
products. For instance, the formal series of
technical reviews by a larger team of developers
and testers that had been standard Pyrrhtel
practice had been shortcut. Teams were going
their own ways and divisions were deepening.
Stan was not satisfied with the revise-and-test
solution because of the precedent it would set
for quality assurance. He staunchly supported
user-centeredness, more than the Kevin and
Jack combined, but believed—as it turned out,
accurately—that the commitment to usability
in this case was being misused to tip the balance
of power.

A month later, in September, 1999, the new
design of the horizontal product was completed;
field-testing showed that is was useful, usable,
and valuable. It accomplished critical usefulness
innovations that we had been trying to achieve
for over a year. With this evidence, I backed
going to market in October with our first end-
user product. The launch date was set, and
Kevin crossed Development boundaries to
call for system testing. Despite the apparent
success in revising the product, Stan balked. He
was not against the product or its launch but
against how it happened. The essence of this
conflict captures a vexing struggle—the need
to adequately answer the question “why back
quality or usability if you can sell something
without it?” Stan was backing the standard
processes that ensured quality control even
when, in this particular case, it was possible to
get by without them.

He saw no recourse after this last incursion
into his domain but to present Jack, the CEO,
with an ultimatum. He demanded that Jack and

197

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

Kevin acknowledge his control of development
and decisions about when future products were
ready. Instead Jack fired him. In addition, he
fired four other contrary “old Pyrrhtel” people,
including one who, like Stan, was a founding
father of the venture.

Aftermath

The innovative, user-centered product went
to market two weeks later in October, 1999, on
schedule. But the spirit and energy that gave
rise to the possibility of creating this innovation
were gone, gone with the disappearance—the
silencing—of conflict. In November, 1999, in
a desperate move, one of the executives, the last
remaining founding father, went to the Board
of Directors in an attempt to rein in the CEO
and the Vice President of Product Management.
This attempt failed. He and another executive
subsequently resigned. Finding it no longer
tenable to work in the current atmosphere,
seven other people gave notice, including
the last of the female programmers in the
development group. Included in the group
who quit were four out of the six people on
the horizontal team who had brought the
innovation to market, including me.

As far as I was concerned, within weeks after
the firing, I saw that Stan’s departure brought
about a sea change in culture that was not going
to sustain continued usability innovations. In
the aftermath, upper management congratulated
itself on its user-centered product but made
no concrete plans or material commitments to
foster more advancements in the next set of
products. I was offered a promotion to Director
and received assurances that the user experience
would be important to future endeavors.
But I saw too vast a discrepancy between
these promises and the reality of how the
executive team went about its business. Process
had become a pejorative word, leaving little
mechanism for continuity other than the whims
of decision makers or the power brokering of
interest groups. The resulting environment
seemed to stifle the openness of debate that
had stimulated creativity. The leaders preferred

eliminating the sources of friction.
The firing brought into sharp relief a clear

pattern—Jack who was hired almost two years
earlier to do whatever it took to turn out a
commercial product was intent on “cronify-
ing” the venture and forcing out anyone who
objected to his game plan. His game plan was
not to turn out a revolutionary product but
rather to rapidly turn out a “good enough”
product that would interest venture capitalists
and, ultimately, make the company an attractive
purchase for a software giant like Microsoft.
Usually we tend to think of a dualistic tension
between process and product as, at first glance,
may seem to be the case in Stan’s conflict with
Kevin and Jack. Stan had promoted process,
and Kevin and Jack had made process out to
be anachronistic and, ultimately, superfluous.
But, in truth, Jack’s game plan was based on
a particular weighting in the triadic tension
between process, product, and profit. Truly
committed to neither product nor process he
was ready to use and discard both in order to
position himself for profit.

The effects of losing the Vice President
of Development cannot be overemphasized.
He was an ardent usability champion at the
executive level. More importantly, in this multi-
faction environment, he was one of the few
people capable of taking on the crucial role
of intermediary (Casson, 1997). He raised
difficult questions, got disputing sides to enter
into dialogue, and inspired them to take new
perspectives for the good of a high quality, usable
product. He knew how to engender and exploit
cognitive dissonance for learning. Turbulent
as many debates were, they often led to inven-
tive designing and programming because,
under the Vice President of Development’s
tutelage, people recognized the legitimacy of
opposing positions and embraced the challenge
of addressing them in the product. Stan’s gift in
facilitating this process went unnoticed—basi-
cally, taken for granted—until he was gone.
After he was fired, the stark silences that
occurred in meetings when difficult questions
arose gave unsettling evidence of a significant
loss of leadership.

198

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

The Politics of Innovation Revisited

On the face of it, this story looks like a struggle
primarily between “user first” and “program
first” with usefulness—“user first”—still being
attained through renegade means before a series
of “program first” definitions altogether closed
out this possibility. But actually, in the long
run, the most important factional dispute for
usability was “start up” versus “old Pyrrhtel.”
The mythic quest of leaving behind stodgy
R&D mentalities was enacted by the “start
up” CEO and the Vice President of Product
Management as they used usability as a weapon
to oust the “old Pyrrhtel” Vice President of
Development and almost all of the core Pyrrhtel
people who had started with the venture.
Unintentionally, “user first” principles figured
into the firing of their best champion, which
meant that repeated breakthroughs in usability
became unlikely.

From a broad perspective, the usability
experiences highlighted in this case history
occurred in a larger framework that characterizes
much of the software world today. Similar to
this venture, many development contexts are
in the process of moving from technology-
driven to market- or user-driven products
(Casson, 1997; Agre, 1997). The transition is
difficult for the same kinds of technical and
organizational reasons as we see in this case
history. Inescapably, making the transition
triggers conflicts between old and new ways of
thinking about, designing and testing software.
It brings together divergent cultures (Casson,
1997). One culture—an optimistic one—is
ready to explore unknown markets, gather
information about them and their users, stake
out and design for these markets, and take
risks. Another more skeptical culture prefers
staying with familiar and known markets,
gathering information only about new features
that familiar and safe users may need, and
averting risks. For this culture, the wisdom of
experience and quality is embedded in current
development processes, and neither the wisdom
nor the processes should be abandoned. These
cultures and their manifold variations all

represent legitimate positions, which is what
makes conflicts so rich, unity so elusive, and
innovation so fragile.

Software firms and teams have many options
for negotiating these conflicts and frictions,
and the options that they pursue influence the
content, scope, and structure of the programs
they produce (Grudin, 1991). For most of my
time in the venture, it seemed that the option
was going to be to work with the tensions in
constant dialogue. For a year and a half, the Vice
President of Development was the much needed
intermediary who integrated the “user first” and
“start up” market-driven vision with “program
first” and “old Pyrrhtel” concerns about familiar
approaches and quality production. In addition,
throughout the two years, Stan upheld the
original vision of the visualizations transforming
problem-solving. As time went on and upper
management’s decisions increasingly suggested
only a raw profit motive, Stan served as a
needed symbolic leader, keeping unity intact
around a shared vision as well as he could
(Casson, 1997). His leadership created the
social atmosphere needed for cultivating mutual
respect and negotiating deep-seated differences.
But the product lagged in market-driven,
end-user qualities.

As demand increased for the venture to be
market-driven, the approach to dealing with
tensions changed. At first tacitly and then
overtly, the CEO and Vice President of Product
Management “cleaned house.” Negotiations
gave way to formal power—most dramatically
in the firing of people. Trust declined; and
various groups struck out on their own to find
some way to re-create trust and commitment.
For some it was a heightened allegiance to rules
and processes; for others it was the creation of
a tightly knit renegade team (Casson, 1997;
Thomas, 1994; Frost and Egri, 1995). The
technology produced during this time had
breakthrough usability innovations but the
social atmosphere following the product release
no longer tolerated dissension and a consultative
mode of negotiating differences. Without
this respect for differences, commitments to
usability became readily expendable when

199

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

deemed no longer useful.
A prime challenge for any development

context that is undergoing a transition from
system- to user-centered products is to figure
out how a common culture and conflict can
coexist. A common culture is necessary for
sharing a motivating vision, coordinating a
wide range of talents around innovation, and
gathering and exchanging information across
a large enough network to inspire repeated
innovation achievements (Casson, 1997;
Schein, 1996). Building a common culture to
support innovation is a long-term endeavor.
Renegade strategies, by contrast, provide only
a stop gap measure. They are often the main
strategy found in the literature about success
in technological innovation but these rendi-
tions are usually project-based, ending them
with innovative outcomes not aftermaths
(Thomas, 1997, Frost and Egri, 1995; Sharrock
and Button, 1997; Law and Callon, 1995).
Renegade efforts sprint to success but sprinting
does not work for a marathon.

In any environment that is making the
transition from technology- to market-driven
products, innovations incite competing agendas
and interests expressed in highly charged
politics. Usability can easily become a pawn
in political games, dispensed with as readily
as it is embraced. It may seem to be a feat
to achieve usability innovations in a project
but that single success does not guard against
usability becoming dispensable. The technical
accomplishments may be fleeting if they have
not been grounded in organizational processes
that engender trust and constructive debate
and that strive for an equitable balance among
profit, product, and process. Usability specialists
have a crucial organizational and political
role to play in bringing out these processes.
We cannot assume that if we simply educate
development and product management teams
about usability the culture and its processes

will change accordingly. Political stakes in
transitional environments are too high for such
idealistic hopes. Rather we need to actively
promote organizational as well as technological
innovation. Promoting organizational change, in
part, involves knowing enough about usability
in the earliest stages of a product’s life cycle
to dissuade developers from making choices
about architecture and scope that will foreclose
opportunities later to design for usefulness-in-
context. Equally important is gaining a seat
at the decision-making table and informing the
choices that we make with an awareness of
long- and short-term goals, of intended and
possible unintended consequences. From posi-
tions of influence, we can work toward achiev-
ing structures in workgroups, arrangements
of power, and modes of decision-making that
produce consultative, flexible, and trusting
environments. These environments provide the
deep structures necessary for usability to take
hold and flourish.

This case history underscores that overt
resistance is not the only threat to usability.
In subtle but intricate ways, overt support also
may set back the cause of usability considerably
if that support is strictly expedient rather
than authentic. With this insight in mind, it
becomes vital for us to maneuver politically
for genuinely supportive environments and to
embed usability deeply into them. For usability
to endure, it takes political as well as technical
skills and knowledge.

Acknowledgements

I would like to thank Russell Borland and
Roger Theodos for their insightful comments
and extremely helpful advice on drafts of this
article.

200

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

Appendix A: Timeline of Events

December 1997 Visible Solutions is formed as a Pyrrhtel venture.
January-April 1998 Eight new cronies are hired.
January 1998 Ben and Rick disagree about Active-X design and library.
 Factions arise between “start-up” and “old Pyrrhtel.”
March 1998 Pat becomes the lead of the Platform team.
April 1998 Six Pyrrhtel people are fired.
May 1998 The Platform architecture is defined.
 Debates give rise to “program-first” and “user-first” factions.
June 1998 Four development teams are underway.
 Rick and Pat are in charge respectively of graphics and platform priorities
 for features.
July 1998 Vertical teams submit user requirements and user-centered requests for feature
 fixes and enhancements.
 Disputes arise over how to decide on features and priorities.
 Rick introduces and implements the chit system.
December 1998 The first vertical team folds.
 Users for the second vertical team’s product give feedback on usability problems.
December 1998—January 1999
 The second vertical team redesigns its product.
 The second vertical team’s partner company becomes troublesome.
End of January 1999 The second vertical team folds.
 Product Management issues a 45-page product plan and feature list.
 Three days of meetings occur to discuss the product plan and feature list.
 The product plan and feature list are abandoned.
 Jack makes his first foray into getting venture capital in order to spin off from Pyrrhtel.
February—May 1999 Calm prevails. Platform and graphics teams continue.
 A new vertical team is formed.
 A new horizontal/generic product team is formed; it will become the renegade
 team that implements innovations for usefulness. Ben becomes team lead.
May 1999 The OEM product is launched.
June 1999 Fifteen people are fired. Another quits.
 Stan writes a memo to the executive team warning them of a breech in the
 social contract and a venture-wide crisis. No action is taken.
July 1999 The horizontal product team pushes ahead with its usability innovations.
November 1999 Users hit an obstacle with the horizontal problem-solving product.
 Re-design and testing occurs.
 Usability is given the final word on whether to ship or not after testing.
 Stan objects; Jack and Kevin concur.
September 1999 The new design passes usability tests without problems.
 The product is prepared for shipping in October.
 Stan demands greater control over development decisions. He is fired.
 Four other “old Pyrrhtel” people are fired.
October 1999 The horizontal product ships on schedule.
November 1999 One of the remaining Vice Presidents appeals to the Board to rein in Jack and

 Kevin; the appeal fails.
 That VP and another resign.
 Seven other people in the venture resign.
December 1999 Visible Solutions gets investor backing and spins off from Pyrrhtel.

201

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

References

Agre, Philip (1997). Computation and Human Experi-
ence. Cambridge: Cambridge University Press.

Albers, Michael (1999). Information design consid-
erations for improving situation awareness in
complex problem-solving. In Proceedings of
the Seventeenth Annual Conference of Computer
Documentation (pp. 154-158). New Orleans:
Association for Computing Machinery.

Anderson, R. J. (1994). Representations and
requirements: The value of ethnography in
system design. Human-Computer Interaction,
9, 151-182.

Beyer, Hugh and Karen Holtzblatt (1998). Con-
textual Design: Defining Customer-Centered
Systems. San Francisco: Morgan Kaufman.

Brown, John Seely and Paul Duguid (1991). Enact-
ing design for the workplace. In Paul Adler
and Terry Winograd (Eds.), Usability: Turning
Technologies into Tools (pp. 164-197). New
York: Oxford University Press.

Casson, Mark (1997). Information and Organization:
A New Perspective in the Theory of the Firm.
Oxford: Oxford University Press.

Cooper, Alan (1999). The Inmates are Running the
Asylum. Indianapolis: SAMS.

Coyne, Richard (1995). Designing Information
Technology in the Postmodern Age: From Method
to Metaphor. Cambridge, MA: MIT Press.

Czerwinski, Mary, Maarten van Dantzich, George
Robertson, and Hunter Hoffman (1999). The
contribution of thumbnail image, mouse-over
text, and spatial location memory to web
page retrieval for 3D. In M. Angela Sasse
and Chris Johnson (Eds.) Human-Computer
Interaction INTERACT ’99 (pp. 171-178).
Amsterdam: IOS Press.

Denning, Peter and Pamela Dargan (1996). Action
centered design. In Terry Winograd (Ed.),
Bringing Design to Software (pp. 105-119).
Reading, MA: Addison-Wesley.

Feenberg (1995). Subversive rationalization:
Technology, power, and democracy. In A.
Feenberg and A. Hannay (Eds.), Technology
and the Politics of Knowledge (pp. 3-22).
Bloomington, IN: Indiana University Press.

Forrester Research (1998). Why Most Web Sites Fail.
Forrester Research, Inc: September.

Frost, Peter and Carolyn Egri (1995). The political
process of innovation. In Cynthia Hardy
(Ed.), Power and Politics in Organizations.
Brookfield: Darmouth Press.

Giddens, Anthony (1984). The Constitution of
Society. Berkeley: University of California
Press.

Grudin, Jonathan (1991). Interactive systems:
Bridging the gaps between developers and
users. Computer, 24 (April), 59-69.

Holland, John (1998). Emergence From Chaos to
Order. Reading, MA: Perseus Books.

Jackson, Michele (1996). The meaning of “com-
munication technology.” In Brant Burleson
(Ed.), Communication Yearbook 19 (pp.
229-268).Thousand Oaks, CA: Sage.

James, Janice (1999). Frequently tested issues in
usability studies in websites. In Proceedings
of Usability Professionals Association (pp.
451-462). Scottsdale, AZ: UPA.

Johnson, Robert (1998). User-Centered Technology.
Albany: SUNY Press.

Johnson, Peter, Hilary Johnson, and Stephanie
Wilson (1995). Rapid prototyping of user
interfaces driven by task models. In John
M. Carroll (Ed.). Scenario-Based Design (pp.
209-216). New York: John Wiley and Sons.

Johnson-Eilola, Johndan (1997). Nostalgic Angels:
Rearticulting Hypertext Writing. Stamford,
CT: Ablex.

Knights, David and Fergus Murray (1994). Managers
Divided: Organizational Politics and Informa-
tion Technology Management. Chichester: John
Wiley and Sons.

Latour, Bruno (1988). The prince for machines as
well as for machinations. In Brian Elliot (Ed.).
Technology and Social Process (pp. 20-43).
Edinburgh: Edinburgh University Press.

Law, John and Michel Callon (1995). Engineering
and sociology in a military aircraft project: A
network analysis of technological change. In
Susan Leigh Star (Ed.), Ecologies of Knowledge
(Ch. 8). Albany: SUNY Press.

Liddle, David (1996). Design of the conceptual
model. In Terry Winograd (Ed.), Bringing
Design to Software (pp. 17-31). Reading, MA:
Addison-Wesley.

Nardi, Bonnie (1996). Context and Consciousness.
Cambridge, MA: MIT Press.

Nielsen, Jakob (2000). Designing Web Usability.
Indianapolis: New Riders.

Norman, Donald (1999). Invisible Computer: Why
Good Products Can Fail, the Personal Computer
is so Complex and Information Appliances are
the Solution. Cambridge, MA: MIT Press.

Nyce, James and Jonas Lowgren (1995). Toward
foundational analyses in human-computer

202

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

interaction. In Peter Thomas (Ed.). The
Social and Interactional Dimensions of Human-
Computer Interfaces. Cambridge: Cambridge
University Press.

Ramey, Judith, Alan Rowberg, and Carol Robinson
(1996). Adaption of an ethnographic method
for investigation of the task domain in
diagnostic radiology. In Dennis Wixon and
Judith Ramey (Eds.). Field Methods Casebook
for Software Design (pp. 1-16). New York:
John Wiley and Sons.

Rheinfrank, John, William Hartman, and Arnold
Wasserman (1991). Design for usability.
In Paul Adler and Terry Winograd (Eds.),
Usability: Turning Technologies into Tools
(pp. 15-40). New York: Oxford University
Press.

Rubin, Jeffrey (1994). Handbook of Usability Testing.
New York: John Wiley and Sons.

Schein, Edgar (1996). Culture: The missing concept
in organization studies. Administrative Science
Quarterly, 41, 229-240.

Sharrock, Wes and Graham Button (1997). Engi-
neering investigations. In G. Bowker, S. L
Star, W. Turner and L. Gasser (Eds.), Social
Science, Technical Systems, and Cooperative
Work (pp. 79-104). Mahwah, NJ: Lawrence
Erlbaum Associates.

Spool, Jared, Tara Scanlon, Will Schroeder, Carolyn
Snyder, and Terri DeAngelo (1999). Web Site
Usability: A Designer’s Guide. San Francisco:
Morgan Kaufman.

Star, Susan Leigh (1995). The politics of formal
representations: wizards, gurus, and organiza-
tional complexity. In Susan Leigh Star (Ed.),
Ecologies of Knowledge (pp. 88-118). Albany:
SUNY Press.

Thomas, Robert (1994). What Machines Can’t
Do: Politics and Technology in the Industrial
Enterprise. Berkely: University of California
Press.

Wiklund, Michael (Ed.) (1994). Usability in Practice.
Boston: AP Professional.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, and that all copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on
servers, or to redistribute to lists,requires prior specific permission and/or a fee.© 2000 ACM 1527-6805/00/11—0185 $5.00

203

Article

ACM Journal of Computer Documentation November 2000/Vol. 24, No. 4

