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Part IV: Turing Machines and Undecidability 
 

 

We are about to begin our exploration of the two 

outer circles of the language hierarchy, as well as 

the background, the area outside all of the circles. 

 

Up until now, we have been placing limitations on 

what we could do in order that we could discover 

simple solutions when they exist. 

 

Now we are going to tear down all the barriers and 

explore the full power of formal computation.  We 

will discover a whole range of problems that 

become solvable once we do that.  We will also 

discover that there are fundamental limitations on 

what we can compute, regardless of the specific 

model with which we choose to work.       
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17 Turing Machines 

We need a new kind of automaton that has two properties: 

 

• It must be powerful enough to describe all computable things.  In this respect, it should be like real computers 

and unlike FSMs and PDAs. 

• It must be simple enough that we can reason formally about it.  In this respect, it should be like FSMs and PDAs 

and unlike real computers.  

17.1 Definition, Notation and Examples 
In our discussion of pushdown automata, it became clear that a finite state controller augmented by a single stack was 

not powerful enough to be able to execute even some very simple programs.  What else must be added in order to 

acquire the necessary power?  One answer is a second stack.  We will explore that idea in Section 17.5.2. 

17.1.1 What Is a Turing Machine? 
A more straightforward approach is to eliminate the stack and replace it by a more flexible form of infinite storage, a 

writeable tape.  When we do that, we get a Turing machine .  Figure 17. 1 showns a simple schematic diagram of a 

Turing machine M.  M’s tape is infinite in both directions.  The input to M is written on the tape, one character per 

square, before M is started.  All other squares of the tape are initially blank (). As we have done for both FSMs and 

PDAs, M’s behavior will be defined only on input strings that are: 

 

• finite, and 

• contain only characters in M’s input alphabet. 

 

 

 

 

 …    a a b b b          … 

 

 

 

        Finite State Controller 

        s, q1, q2, … h1, h2 

 

      Figure 17.1  The structure of a Turing machine 

 

 

 

 

M has a single read/write head, shown here with an arrow.  We will almost always use the convention that, when M 

starts, its read/write head will be over the blank immediately to the left of the leftmost character of the input.  But 

occasionally, when we are designing a machine to be used as a subroutine by some other machine, we may choose a 

different initial specification. 

 

M begins in its start state.  At each step of its operation, M must: 

 

• choose its next state, 

• write on the current square, and 

• move the read/write head left or right one square. 

 

M can move back and forth on its tape, so there is no longer the idea that it consumes all of its input characters one at 

a time and then halts.  M will continue to execute until it reaches a special state called a halting state.  It is possible 

that M may never reach a halting state, in which case it will execute forever. 
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Notice that there will always be a finite number of nonblank squares on M’s tape.  This follows from the fact that, 

before M starts, only a finite number of squares are nonblank.  Then, at each step of its operation, M can write on at 

most one additional square.  So, after any finite number of steps, only a finite number of squares can be nonblank.  

And, even if M never halts, at any point in its computation it will have executed only a finite number of steps. 

  

In Chapter 18 we are going to argue that the Turing machine, as we have just described it, is as powerful as any other 

reasonable model of computation, including modern computers.  So, in the rest of this discussion, although our 

examples will be simple, remember that we are now talking about computation, broadly conceived.   

 

We are now ready to provide a formal definition: a Turing machine (or TM) M is a sixtuple (K, , , , s, H): 

 

• K is a finite set of states, 

•  is the input alphabet, which does not contain , 

•  is the tape alphabet, which must, at a minimum, contain  and have  as a subset,   

• s  K is the start state, 

• H  K is the set of halting states, and 

•  is the transition function.  It maps from: 

 

               (K - H)                       to K               {→, }. 

       non-halting state       tape character             state          tape character         action (R or L) 

 

If  contains the transition ((q0, a), (q1, b, A)) then, whenever M is in state q0 and the character under the read/write 

head is a, M will go to state q1, write b, and then move the read/write head as specified by A (either one square to the 

right or one square to the left). 

 

Notice that the tape symbol  is special in two ways: 

 

• Initially, all tape squares except those that contain the input string contain . 

• The input string may not contain . 

 

But those are the only ways in which  is special.  A Turing machine may write  just as it writes any other symbol 

in its tape alphabet .  Be careful, though, if you design a Turing machine M that does write .  Make sure that M can 

tell the difference between running off the end of the input and hitting a patch of ’s within the part of the tape it is 

working on. Some books use a definition of a Turing machine that does not allow writing .  But we allow it because 

it can be quite useful if you are careful.  In addition, this definition allows a Turing machine to output a string that is 

shorter than its input by writing ’s as necessary. 

 

Define the active tape of a Turing machine M to be the shortest fragment of M’s tape that includes the square under 

the read/write head and all the nonblank squares. 

 

We require that  be defined for all (state, input) pairs unless the state is a halting state.  Notice that  is a function, 

not a relation.  So this is a definition for deterministic Turing machines. 

 

One other important observation: a Turing machine can produce output, namely the contents of its tape when it halts.   

Example 17.1 Add b’s to Make Them Match the a’s 

Design a Turing machine M that takes as input a string in the language {aibj : 0  j  i} and adds b's as required to 

make the number of b's equal the number of a's.  The input to M will look like this: 

 

  …  a a a b                       … 
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On that input, the output (the contents of the tape when M halts) should be: 

 

  …  a a a b b b  … 

 

 

M will operate as follows: 

1. Move one square to the right.  If the character under the read/write head is , halt.  Otherwise, continue. 

2. Loop: 

  2.1 Mark off an a with a $.   

  2.2 Scan rightward to the first b or .   

         If b, mark it off with a # and get ready to go back and find the next matching a, b pair. 

         If , then there are no more b’s but there are still a’s that need matches.  So it is necessary to write 

         another b on the tape.  But that b must be marked so that it cannot match another a.  So write a #.  Then 

         get ready to go back and look for remaining unmarked a’s. 

  2.3 Scan back leftward looking for a or . If a, then go back to the top of the loop and repeat.  If , then all 

           a’s have been handled.  Exit the loop.  (Notice that the specification for M guarantees that there will not 

           be more b’s than a’s.)   

3. Make one last pass all the way through the nonblank area of the tape, from left to right, changing each $ to an a 

and each # to a b. 

4. Halt. 

 

M = {{1, 2, 3, 4, 5, 6}, {a, b}, {a, b, , $, #}, , 1, {6}), where  = 

 

       ( ((1, ), (2,, →)), 

 ((1, a), (2,, →)), {These four transitions are required because M must be  

 ((1, b), (2,, →)),   defined for every state/ input pair, but since it isn’t possible 

 ((1, $), (2,, →)),   to see anything except   in state 1, it doesn’t matter what 

 ((1, #), (2,, →)),   they do.  } 

 ((2, ), (6, $, →)), 

 ((2, a), (3, $, →)), 

 ((2, b), (3, $, →)), {Three more unusable elements of .  We’ll omit the rest  

 ((2, $), (3, $, →)),   here for clarity.} 

 ((2, #), (3, $, →)), 

 ((3, ), (4, # , )), 

 ((3, a), (3, a, →)), 

 ((3, b), (4, #,)), 

 ((3, $), (3, $, →)), 

 ((3, #), (3, #, →)), 

 ((4, ), (5, , →)), 

 ((4, a), (3, $, →)), 

 ((4, $), (4, $, )), 

 ((4, #), (4, # , )), 

 ((5, ), (6, ,)), {State 6  is a halting state and so has no transitions out of it.} 

 ((5, $), (5, a, →)), 

 ((5, #), (5, b , →))   ) 

 

People find it nearly impossible to read transition tables like this one, even for very simple machines.  So we will 

adopt a graphical notation similar to the one we used for both FSMs and PDAs.  Since each element of  has five 

components, we need a notation for labeling arcs that includes all the required information.  Let x/t/a on an arc of M 

mean that the transition can be taken if the character currently under the read/write head is x.  If it is taken, write t and 

then move the read/write head as specified by a.  We will also adopt the convention that we will omit unusable 

transitions, such as ((1, a), (2,, →)) in the example above, from our diagrams so that they are easier to read. 
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Example 17.2 Using the Graphical Language 

Here is a graphical description, using the notation we just described, of the machine from Example 17.1: 

 

 

 1             

                 a/a/→ 

   //→                 $/$/→               a/$/→                  $/$/ 

                    #/#/→                  #/#/ 

        a/$/→      b/#/ 

 2      3    4 

 

          /#/ 

  //              //→ 

 

        

          $/a/→ 

   5        #/b/→    

     

                                  // 

      6 

 

17.1.2 Programming Turing Machines 
Although there is a lot less practical motivation for learning to program a Turing machine than there is for learning to 

build FSMs, regular expressions, context-free grammars, and parsers, it is interesting to see how a device that is so 

simple can actually be made to compute whatever we can compute using the fastest machines in our labs today.  It 

seems to highlight the essence of what it takes to compute.   

 

In Chapter 18, we will argue that anything computable can be computed by a Turing machine.  So we should not 

expect to find simple nuggets that capture everything a Turing machine programmer needs to know.  But, at least for 

the fairly straightforward language recognition problems that we will focus on, there are a few common programming 

idioms.  The example we have just shown illustrates them: 

 

• A computation will typically occur in phases: when phase 1 finishes, phase 2 begins, and so forth. 

• One phase checks for corresponding substrings by moving back and forth, marking off corresponding characters. 

• There are two common ways to go back and forth.  Suppose the input string is aaaabbbb and we want to mark 

off the a’s and make sure they have corresponding b’s.  Almost any sensible procedure marks the first a, scans 

right, and marks the first b.  There are then two ways to approach doing the rest.  We could: 

• Scan left to the first a we find and process the rest of the a’s right to left.  That is the approach we took in 

Example 17.1 above. 

• Scan all the way left until we find the first marked a.  Bounce back one square to the right and mark the next 

a.  In this approach, we process all the a’s left to right. 

Both ways work.  Sometimes it seems easier to use one, sometimes the other. 

• If we care about the machine’s output (as opposed to caring just about whether it accepts or rejects), then there is 

a final phase that makes one last pass over the tape and converts the marked characters back to their proper form. 

17.1.3 Halting 
We make the following important observations about the three kinds of automata that we have so far considered: 

 

• A DFSM M, on input w, is guaranteed to halt in |w| steps.  We proved this result as Theorem 5.1.  An arbitrary 

NDFSM can be simulated by ndfsmsimulate and that simulation will also halt in |w| steps. 
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• An arbitrary PDA, on input w, is not guaranteed to halt.  But, as we saw in Chapter 14, for any context-free 

language L there exists a PDA M that accepts L and that is guaranteed to halt.   

 

• A Turing machine M, on input w, is not guaranteed to halt. It could, instead, bounce back and forth forever on its 

tape.  Or it could just blast its way, in a single direction, through the input and off forever into the infinite sequence 

of blanks on the tape. And now, unlike with PDAs, there exists no algorithm to find an equivalent Turing machine 

that is guaranteed to halt. 

 

This fundamental property of Turing machines, that they cannot be guaranteed to halt, will drive a good deal of our 

discussion about them. 

17.1.4 Formalizing the Operation of a Turing Machine 
In this section we will describe formally the computation process that we outlined in the last section. 

 

A configuration of a Turing machine M = (K, , , , s, H) is a 4-tuple that is an element of: 

 

 K   ((- {})  *)  {}     (* (- {}))   {}. 

 

           state      includes all of M’s active       square under the includes all of M’s active 

       tape to the left of the        read/write head tape to the right of the 

       read/write head     read/write head 

 

Notice that, although M’s tape is infinite, the description of any configuration is finite because we include in that 

description the smallest contiguous tape fragment that includes all the nonblank squares and the square under the 

read/write head. 

 

We will use the following shorthand for configurations:  (q, s1, a, s2) will be written as (q, s1 a s2).   

 

The initial configuration of any Turing machine M with start state s and input w is (s, w).  Any configuration whose 

state is an element of H is a halting configuration. 

Example 17.3 Using the 4-Tuple Notation and the Shorthand 

          As a 4-tuple     Shorthand 

 

 …  a b b b   … (q, ab, b, b)   (q, abbb) 

 

 

  

 …  a a b b  …            (q, , , aabb) (q, aabb) 

 

 

 

The transition function  defines the operation of a Turing machine M one step at a time.  We can use it to define the 

sequence of configurations that M will enter.  We start by defining the relation yields-in-one-step, written |-M, which 

relates configuration c1 to configuration c2 iff M can move from configuration c1 to configuration c2 in one step.  So, 

just as we did with FSMs and PDAs, we define: 

 

 (q1, w1) |-M (q2, w2) iff (q2, w2) is derivable, via , in one step. 

 

We can now define the relation yields, written |-M*, to be the reflexive, transitive closure of |-M.  So configuration C1 

yields configuration C2 iff: 

  

 C1  |-M*  C2. 
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A path through M is a sequence of configurations C0, C1, C2,… such that C0 is an initial configuration of M and: 

  

 C0 |-M  C1 |-M  C2 |-M …. 

 

 A computation by M is a path that halts.  So it is a sequence of configurations C0, C1, …, Cn for some n  0, such that 

C0 is an initial configuration of M, Cn is a halting configuration of M, and: 

  

 C0 |-M  C1 |-M  C2 |-M … |-M  Cn. 

 

If a computation halts in n steps, we will say that it has length n and we will write: 

 

 C0 |-M
n  Cn 

17.1.5 A Macro Notation for Turing Machines 
Writing even very simple Turing machines is time consuming and reading a description of one and making sense of 

it is even harder.  Sometimes we will simply describe, at a high level, how a Turing machine should operate.  But 

there are times when we would like to be able to specify a machine precisely.  So, in this section, we present a macro 

language that will make the task somewhat easier.  If you don’t care about the details of how Turing machines work, 

you can skip this section.  In most of the rest of our examples, we will give the high level description first, followed 

(when it’s feasible) by a description in this macro language. 

 

The key idea behind this language is the observation that we can combine smaller Turing machines to build more 

complex ones.  We begin by defining simple machines that perform the basic operations of writing on the tape, moving 

the read/write head, and halting: 

 

• Symbol writing machines: for each x  , define Mx, written just x, to be a Turing machine that writes x on the 

current square of the tape and then halts.  So, if  ={a, b, }, there will be three simple machines: a, b, and . 

(A technical note: Given our definition of a Turing machine, each of these machines must actually make two 

moves.  In the first move, it writes the new symbol on the tape and moves right.  In the next move, it rewrites 

whatever character was there and then moves left.  These two moves are necessary because our machines must 

move at each step.  But this is a detail with which we do not want to be concerned when we are writing Turing 

machine programs.  This notation hides it from us.) 

 

• Head moving machines: there are two of these: R rewrites whatever character was on the tape and moves one 

square to the right.  L rewrites whatever character was on the tape and moves one square to the left. 

 

• Machines that simply halt: each of our machines halts when it has nothing further to do (i.e., it has entered a 

state on which  is undefined), but there are times when we’ll need to indicate halting explicitly. We will use 

three simple halting machines:  

• h, which simply halts.  We will use h when we want to make it clear that some path of a machine halts, but 

we do not care about accepting or rejecting. 

• n, which halts and rejects. 

• y, which halts and accepts. 

 

Next we need to describe how to: 

 

• Check the tape and branch based on what character we see, and  

• Combine the basic machines to form larger ones. 

 

We can do both of these things with a notation that is very similar to the one we have used for all of our state machines 

so far.  We will use two basic forms: 
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• M1 M2 : Begin in the start state of M1. Run M1 until it halts.  If it does, begin M2 in its start state (without moving 

the read/write head) and run M2 until it halts.  If it does, then halt. If either M1 or M2 fails to halt, M1 M2 will fail 

to halt. 

 

• M1   condition     M2 : Begin in the start state of M1. Run M1 until it halts.  If it does, check condition.  If it is true, 

then begin M2 in its start state (without moving the read/write head) and run M2 until it halts.  The simplest 

condition will be the presence of a specific character under the read/write head, although we will introduce some 

others as well.  A machine with this structure will fail to halt if either: 

• M1 fails to halt, or  

• condition is true and M2 fails to halt.   

 

We will use the symbol > to indicate where the combination machine begins. 

 

Example 17.4 The Macro Language Lets Machines be Composed 

Let M =  

 

         >M1     a     M2 
          b       

 

           M3 

 

So M:  

• Starts in the start state of M1. 

• Computes until M1 reaches a halting state. 

• Examines the tape.  If the current symbol is a, then it transfers control to M2.  If the current symbol is b, it 

transfers control to M3. 

 

To make writing our machines a bit easier, we introduce some shorthands: 

 
             a          

M1   M2  becomes  M1     a, b M2 
             b 

 

 M1   all elements of  M2  becomes  M1    a  M2 

         except a 

                

Next we provide a simple mechanism for storing values in variables.  Each variable will hold just a single character.  

A standard Turing machine can remember values for any finite number of such variables either by writing them 

someplace on its tape or by branching to a different state for each possible value.  This second solution avoids having 

to scan back and forth on the tape, but it can lead to an explosion in the number of states since there must be effectively 

a new copy of the machine for each combination of values that a set of variables can have.  We will hide the mechanism 

by which variables are implemented by allowing them to be named and explicitly referenced in the conditions on the 

arcs of our machines.  So we have: 

 

M1 all elems of  M2  becomes  M1    x   a M2 

         except a 

       and x takes on the value of  the current square. 

 

                          

M1   a, b  M2  becomes  M1    x  a, b M2 

 

       and x takes on the value of  the current square. 
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We can use the value of a variable in two ways.  The first is as a condition on a transition.  So we can write: 

 

       M1 x = y M2 

 

       if x = y then take the transition. 

 

Note that we use  for assignment and = and  for Boolean comparison. 

 

We can also write the value of a variable.  We’ll indicate that with the variable’s name. 

Example 17.5 Using Variables to Remember Single Characters 

Let M = 

 

     >    x          Rx 

 

If the current square is not  blank, M remembers its value in the variable x, goes right one square, and copies it by 

writing the value of x.  (If the current square is blank, M has nothing to do.  So it halts.) 

 

Next we define some very useful machines that we can build from the primitives we have so far: 

 

Move right.  If the character under the read/write head is not , repeat.  If it is , no further action 

is specified, so halt.  In other words, find the first blank square to the right of the current square.  We 

will abbreviate this R. 

 

 

Move left.  If the character under the read/write head is not , repeat.  If it is , no further action is 

specified, so halt.   In other words, find the first blank square to the left of the current square.  We 

will abbreviate this L. 

 

 

Similarly, but find the first nonblank square to the right of the current square.  We will abbreviate this 

R .  

 

 

Similarly, but find the first nonblank square to the left of the current square.  We will abbreviate this 

L .  

 

We can do the same thing we have just done for  with any other character in .  So we can write: 

 

La  Find the first occurrence of a to the left of the current square. 

 

Ra,b  Find the first occurrence of a or b to the right of the current square. 

     

La,b  a  M1 Find the first occurrence of a or b to the left of the current square, then go to M1 if the detected 

b  character is a; go to M2 if the detected character is b.   

      

M2        

 

Lxa,b  Find the first occurrence of a or b to the left of the current square and set x to the value found. 

 

Lxa,bRx Find the first occurrence of a or b to the left of the current square, set x to the value found, move 

one square to the right, and write x (a or b). 
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Example 17.6 Triplicating a String 

We wish to build M with the following specification: Input:    w    w  {1}* 

      Output:  w3  

Example:  Input: 111     Output: 111111111 

 

M will operate as follows on input w: 

1. Loop 

       1.1 Move right to the first 1 or .   

       1.2 If the current character is , all 1s have been copied.  Exit the loop.  Else, the current character must be  a 1. 

             Mark it off with # (so it won’t get copied again), move right to the first blank, and write two more #’s. 

        1.3 Go left back to the blank in front of the string. 

2. Make one final pass through the string converting the #’s back to 1’s. 

 

M = 

 >R1,       1      #R#R#L 

             
 

   L     #          1 
            
 

 h 

 

Example 17.7 Shifting Left One Square 

We wish to build a shifting machine S with the following specification, where u and w are strings that do not contain 

any ’s:   

 

Input:    uw     

Output:  uw  

 

Example: Input:   1100      
   Output:  1100 

 

S moves left to right through w, copying each character onto the square immediately to its left: 

 

 

        >   R   x            LxR  

 
                                           
 

             L 

17.2 Computing With Turing Machines 
Now that we know how Turing machines work, we can describe how to use a Turing machine to: 

 

• recognize a language, or 

• compute a function. 

17.2.1 Turing Machines as Language Recognizers 
Given a language L, we would like to be able to design a Turing machine M that takes as input (on its tape) some 

string w and tells us whether or not w  L.  There are many languages for which it is going to be possible to do this.  

Among these are all of the noncontext-free languages that we discussed in Part III (as well as all the regular and 

context-free languages for which we have built FSMs and PDAs). 
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However, as we will see in Chapter 19 and others that follow it, there are many languages for which even the power 

of the Turing machine is not enough.  In some of those cases, there is absolutely nothing better that we can do.  There 

exists no Turing machine that can distinguish between strings that are in L and strings that are not.  But there are other 

languages for which we can solve part of the problem.  For each of these languages we can build a Turing machine M 

that looks for the property P (whatever it is) of being in L.  If M discovers that its input possesses P, it halts and 

accepts.  But if P does not hold for some input string w, then M may keep looking forever.  It may not be able to tell 

that it is not going to find P and thus it should halt and reject. 

 

In this section we will define what it means for a Turing machine to decide a language (i.e., for every string, accept or 

reject as appropriate) and for a Turing machine to semidecide a language (i.e., to accept when it should). 

Deciding a Language 

Let M be a Turing machine with start state s and two halting states that we will call y and n.  Let w be an element of 

* .  Then we will say that: 

 

• M accepts w iff (s, w) |-M* (y, w) for some string w.  We call any configuration  (y, w) an accepting 

configuration. 

 

• M rejects w iff (s, w) |-M* (n, w) for some string w.  We call any configuration (n, w) a rejecting configuration. 

 

Notice that we do not care what the contents of M’s tape are when it halts.  Also note that if M does not halt, it neither 

accepts nor rejects. 

 

Let  be the input alphabet of M.  Then M decides a language L  * iff, for any string w  *, it is true that: 

 

• If w  L then M accepts w, and 

• If w  L then M rejects w. 

 

Since every string in * is either in L or not in L, any deciding machine M must halt on all inputs.  A language L is 

decidable iff there is a Turing machine M that decides it.   

 

We define the set D to be the set of all decidable languages.  So a language L is in D iff there is a Turing machine that 

decides it.  In some books, the set D is called R, or the set of recursive languages. 

Example 17.8 AnBnCn 

Recall the language AnBnCn = {anbncn : n  0}, which we showed was not context-free and so could not be recognized 

with a PDA.  AnBnCn is decidable.  We can build a straightforward Turing machine M to decide it.  M will work as 

follows on input w: 

 

1. Move right onto w.  If the first character is , halt and accept. 

2. Loop: 

2.1. Mark off an a with a 1. 

2.2. Move right to the first b and mark it off with a 2.  If there isn’t one, or if there is a c first, halt and reject. 

2.3. Move right to the first c and mark it off with a 3.  If there isn’t one, or if there is an a first, halt and reject. 

2.4. Move all the way back to the left, then right again past all the 1’s (the marked off a’s).  If there is another a, 

go back to the top of the loop.  If there isn’t, exit the loop. 

3. All a’s have found matching b’s and c’s and the read/write head is just to the right of the region of marked off 

a’s.  Continue moving left to right to verify that all b’s and c’s have been marked.  If they have, halt and accept.  

Otherwise halt and reject. 
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In our macro language, M is: 

 

                                                 a,2                         b,3 
             1                                                           

                >  R          a             1 R         b              2  R        c                3  L  

 

       ,2,3          b,c                        c,1,3,              ,a,1,2                    

                                                  

 2,3        R    a,b,c,1                      n 

              
            
              y 

 

Example 17.9 WcW 

Consider again WcW = {wcw : w  {a, b}*}.  We can build M to decide WcW as follows: 

 

1. Loop: 

1.1. Move right to the first character.  If it is c, exit the loop.  Otherwise, overwrite it with and remember what 

it is. 

1.2. Move right to the c.  Then continue right to the first unmarked character.  If it is , halt and reject.  (This 

will happen if the string to the right of c is shorter than the string to the left.)  If it is anything else, check to 

see whether it matches the remembered character from the previous step.  If it does not, halt and reject.  If 

it does, mark it off with #. 

1.3. Move back leftward to the first . 

2. There are no characters remaining before the c.  Make one last sweep left to right checking that there are no 

unmarked characters after the c and before the first blank.  If there are, halt and reject.  Otherwise, halt and accept. 

 

In our macro language, M is; 

 

 

 

 >R        x a,b        Rc,  

                                            
              c                                        c 

 

   R#                n      y  x          Ry#  

 

                                           y = x 

 

                y                                                      #L  

 

Semideciding a Language 

Let  be the input alphabet to a Turing machine M.  Let L  *.  Then we will say that M semidecides L iff, for any 

string w  *: 

 

• If w  L then M accepts w, and 

• If w  L then M does not accept w.  In this case, M may explicitly reject or it may loop.  

 

A language L is semidecidable iff there is a Turing machine that semidecides it.  We define the set SD  to be the set 

of all semidecidable languages.  So a language L is in SD iff there is a Turing machine that semidecides it.  In some 

books, the set SD is called RE, or the set of recursively enumerable languages or the set of  Turing-recognizable 

languages. 
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Example 17.10 Semideciding by Running Off the Tape 

Let L = b*a (a  b)*.  So, any machine that accepts L must look for at least one a. 

 

We can build M to semidecide L: 

 

1. Loop:  

Move one square to the right.  If the character under the read/write head is an a, halt and accept. 

 

In our macro language, M is: 

 

         , b 

 

 >  R              a       y 

 

 

Of course, for L, we can do better than M.  M# decides L: 

 

1. Loop: 

Move one square to the right.  If the character under the read/write head is an a, halt and accept.  If it is , 

halt and reject. 

 

In our macro language, M# is: 

 
              b 

 

 >  R       a          y 

 
                 
 

    n 

 

As we will prove later, there are languages that are in SD but not D and so a semideciding Turing machine is the best 

we will be able to build for those languages. 

17.2.2 Turing Machines Compute Functions 
When a Turing machine halts, there is a value on its tape.  When we build deciding and semideciding Turing machines, 

we ignore that value.  But we don’t have to.  Instead, we can define what it means for a Turing machine to compute a 

function.  We’ll begin by defining what it means for a Turing machine to compute a function whose domain and range 

are sets of strings.  Then we’ll see that, by using appropriate encodings of other data types and of multiple input values, 

we can define Turing machines to compute a wide variety of functions. 

 

In this section, we consider only Turing machines that always halt.  In Chapter 25 we will expand this discussion to 

include Turing machines that sometimes fail to halt. 

 

Let M be a Turing machine with start state s, halting state h, and input alphabet .  The initial configuration of M will 

be (s, w), where w  *. 

 

Define M(w) = z iff (s, w) |-M* (h, z).  In other words M(w) = z iff M, when started on a string w in *, halts with 

z on its tape and its read/write head is just to the left of z. 

 

Let    be M’s output alphabet (i.e., the set of symbols that M may leave on its tape when it halts).   

 

Now, let f be any function that maps from * to *.  We say that a Turing machine M computes a function f iff, for 

all w  *: 
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• If w is an input on which f is defined, M(w) = f(w).  In other words, M halts with f(w) on its tape. 

• Otherwise M(w) does not halt. 

 

A function f is recursive or computable iff there is a Turing machine M that computes it and that always halts.  The 

term computable more clearly describes the essence of these functions.  The traditional name for them, however, is 

recursive.  We will see why that is in Chapter 25.  In the meantime, we will use the term computable.7   

 

There is a natural correspondence between the use of Turing machines to compute functions and their use as language 

deciders.  A language is decidable iff its characteristic function is computable.  In other words, a language L is 

decidable iff there exists a Turing machine that always halts and that outputs True if its input is in L and False 

otherwise. 

Example 17.11 Duplicating a String 

Let duplicate(w) = ww, where w is a string that does not contain . 

 

A Turing machine to compute duplicate can be built easily if we have two subroutines:   

 

• The copy machine C, which will perform the following operation: 

 

 w  →          ww
 

C will work by moving back and forth on the tape, copying characters one at a time: 

 

 

 > R     x     RR  x  LL x 

 
         
 

                h 

 

We define C this way because the copy process is straightforward if there is a character (we use ) to delimit the two 

copies.  

 

• The S machine, which we described in Section 17.1.5.  We will use S  to shift the second copy of w one square 

to the left. 

 

M, defined as follows, computes duplicate: 

 

 >  C S L  

 

Now suppose that we want to compute functions on values other than strings.  All we need to do is to encode those 

values as strings.  To make it easy to describe functions on such values, define a family of functions, valuek(n).  For 

any positive integer k, valuek(n) returns the nonnegative integer that is encoded, base k, by the string n.  For example, 

value2(101) = 5 and value8(101) = 65.  We will say that a Turing machine M computes a function f from ℕm to ℕ 

provided that, for some k, valuek(M(n1;n2;…nm)) = f(valuek(n1), … valuek(nm)). 

 

Not all functions with straightforward definitions are computable.  For example, the busy beaver 

functions described in Section 25.1.4 measure the “productivity” of Turing machines by returning 

                                                           
7 In some other treatments of this subject, a function f is computable iff there is some Turing machine M (which may 

not always halt) that computes it.  Specifically, if there are values for which f is undefined, M will fail to halt on those 

values.  We will say that such a function is partially computable and we will reserve the term computable for that 

subset of the partially computable functions that can be computed by a Turing machine that always halts. 
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the maximum amount of work (measured in steps or in number of symbols on the tape) that can 

be done by a Turing machine with n states.  The busy beaver functions are not computable. 

 

Example 17.12 The Successor Function 

Consider the successor function succ(n) = n + 1.  On input n, M should output n+1. 

 

We will represent n in binary without leading zeros.  So n  0  1{0,1}* and f(n) = m, where value2(m) = value2(n) 

+ 1.  

 

We can now define the Turing machine M to compute succ: 

 

1. Scan right until the first . Then move one square back left so that the read/write head is on the last digit of n. 

2. Loop: 

2.1. If the digit under the read/write head is a 0, write a 1, move the read/write head left to the first blank, and 

halt. 

2.2. If the digit under the read/write head is a 1, we need to carry.  So write a 0, move one square to the left, and 

go back to the top of the loop. 

2.3. If the digit under the read/write head is a , we have carried all the way to the left.  Write a 1, move one 

square to the left, and halt. 

 

In our macro language, M is: 

 

 

 >  R L            1 0 

 

                                , 0 

    1L

 

We can build Turing machines to compute functions of two or more arguments by encoding each of the arguments as 

a string and then concatenating them together, separated by a delimiter. 

Example 17.13 Binary Addition 

Consider the plus function defined on the integers.  On input x;y, M should output the sum of x and y. 

 

We will represent x and y in binary without leading zeros.  So, for example, we’ll encode the problem 5 + 8 as the 

input string 101;1000.  On this input, M should halt with 1101 on its tape.  More generally, M should compute f(n1, 

n2) = m, where value2(m) = value2(n1) + value2(n2).  

 

We leave the design of M as an exercise. 

17.3 Adding Multiple Tapes and Nondeterminism 
We have started with a very simple definition of a Turing machine.  In this section we will consider two important 

extensions to that basic model.  Our goal in describing the extensions is to make Turing machines easier to program.  

But we don’t want to do that if it forces us to give up the simple model that we carefully chose because it would be 

easy to prove things about.  So we are not going to add any fundamental power to the model.  For each of the extensions 

we consider, we will prove that, given a Turing machine M that exploits the extension, there exists a Turing machine 

M that is equivalent to M and that does not exploit the new feature.   Each of these proofs will be by construction, 

from M to M.  This will enable us to place a bound on any change in time complexity that occurs when we transform 

M to M. 
 

There will be a bottom line at the end of this chapter.  The details of the definition of a Turing machine don’t matter 

in the sense that they don’t affect what can be computed.  In fact, there is a large family of other computational models 
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that look even more unlike the basic definition than our extended machines do but that are still equivalent in power.  

We will articulate that principle in the following chapter.  We will see, however, that the details may matter if we are 

concerned about the efficiency of the computations that we do.  Even here, though, the details matter less than one 

might initially think.  With one exception (the addition of nondeterminism), we’ll see that adding features changes the 

time complexity of the resulting programs by at most a polynomial factor. 

17.3.1 Multiple Tapes 
The first extension that we will propose is additional tapes.  Suppose we could build a Turing machine with two or 

three or more tapes, each with its own read/write head, as shown in Figure 17.2  What could we do with such a 

machine?  One answer is, “a lot less going back and forth on the tape.” 

 

 

 

  …  a b b a  …  

 

 

 

  …  b a b b a  … 

 

 

 

  …  1 2 2 1  …  

 

 

Figure 17.2 A multiple tape Turing machine 

 

 

A k-tape Turing machine, just like a 1-tape Turing machine, is a sixtuple M = (K, , , , s, H).  A configuration of a 

k-tape machine M is a k+1 tuple: (state, tape1, …, tapek), where each tape description is identical to the description we 

gave in Section 17.1.4 for a 1-tape machine.  M’s initial configuration will be (s, w,  ,…,).  In other words, its 

input will be on tape 1; all other tapes will initially be blank, with their read/write heads positioned on some blank 

square.  If M halts, we will define its output to be the contents of tape 1; the contents of the other tapes will be ignored.   

 

At each step, M will examine the square under each of its read/write heads.  The set of values so obtained, along with 

the current state, determines M’s next action.  It will write and then move on each of the tapes simultaneously.  

Sometimes M will want to move along one or more of its tapes without moving on others.  So we will now allow the 

move action, stay put, which we will write as .  So  is a function from: 

 

((K-H)    1               to           (K    1'  {, →, } 

   2       2'  {, →, } 

    …      … 

    …      … 

   k)     k'  {, →, }). 

Example 17.14 Exploiting Two Tapes to Duplicate a String 

Suppose that we want to build a Turing machine that, on input w, outputs ww. In Example 17.11 we saw how 

we could do this with a conventional, one-tape machine that went back and forth copying each character of w one at 

a time.  To copy a string of length n took n passes, each of which took n steps, for a total of n2 steps.  But to make that 

process straightforward, we left a blank between the two copies.  So then we had to do a second pass in which we 

shifted the copy one square to the left.  That took an additional n steps.  So the entire process took O(n2) steps.  We 

now show how to do the same thing with a two tape machine MC in O(n) steps. 

 

Let w be the string to be copied.  Initially, w is on tape 1 with the read/write head just to its left.  The second tape is 

empty  The operation of MC is shown in the following series of snapshots:    
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 …  a b b a     … 

 

 

 

 …          … 

 

 

 

The first thing MC will do is to move to the right on both tapes, one square at a time, copying the character from tape 

1 onto the corresponding square of tape 2.  This phase of the processing takes |w| steps.  At the end of this phase, the 

tapes will look like this, with both read/write heads on the blank just to the right of w: 

 

 

 …  a b b a     … 

 

 

 

 …  a b b a     … 

 

 

Next MC moves tape 2’s read/write head all the way back to the left.  This phase also takes |w| steps.  At the end of it, 

the tapes will look like this: 

 

 …  a b b a     … 

 

 

 

 …  a b b a     … 

 

 

In its final phase, MC will sweep to the right, copying w from tape 2 to tape 1.  This phase also takes |w| steps.  At the 

end of it, the tapes will look like this: 

 

 …  a b b a a b b a          … 

 

 

 

 …  a b b a     … 

 

 

MC takes 3|w| = O(|w|) steps. 

 

Example 17.15 Exploiting Two Tapes for Addition 

Exercise 17.3)a) asked you to construct a standard one-tape Turing machine to add two binary numbers.  Let’s now 

build a 2-tape Turing machine MA to do that.  Let x and y be arbitrary binary strings.  On input x;y, MA should output 

z, where z is the binary encoding of the sum of the numbers represented by x and y.   

 

For example, let x = 5 and y = 6.  The initial configuration of tape 1 will be 101;110.  The second tape is empty: 
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 …  1 0 1 ; 1 1 0  … 

 

 

 

 …          … 

 

 

In its first phase, MA moves the read/write head of tape 1 all the way to the right, copying x onto tape 2 and replacing 

it, on tape 1, with ’s. It also replaces the ; with a .  It then moves both read/write heads rightward to the last 

nonblank square.  At the end of this phase, y is on tape 1; x is on tape 2, and each read/write head is pointing to the 

low-order digit of its number: 

 

 …      1 1 0  … 

 

 

 …  1 0 1      … 

 

 

In its second phase, MA moves back to the left, considering one pair of digits at a time.  It sums them, treating a  on 

either tape as a 0, records the result on tape 1, and remembers the carry digit for the next sum.  Once it has encountered 

a blank on both tapes, it writes the carry digit if necessary and then it halts. At that point, its tapes are: 

 

 …     1 0 1 1  … 

 

 

 …  1 0 1      … 

 

 

Theorem 17.1  Equivalence of Multitape and Single-Tape Turing Machines 

Theorem: Let M = (K, , , , s, H) be a k-tape Turing machine, for some k > 1.  Then there is a standard Turing 

machine M' = (K', ', ', ', s', H') such that   ', and each of the following conditions holds: 

 

• For any input string x, M on input x halts with output z on the first tape iff M' on input x halts at the same halting 

state (y, n, or h) and with z on its tape. 

• If, on input x, M halts after n steps, then M' halts in O(n2) steps.  

 

Proof: The proof is by construction.  The idea behind the construction is that M' will simulate M’s k tapes by treating 

its single tape as though it were divided into tracks.  Suppose M has k tapes.  Then an ordered k-tuple of values 

describes the contents of each of the tapes at some particular location.  We also need to record the position of each of 

the k read/write heads.  We do this by assigning two tracks to each of M’s tapes.  The first track contains the value on 

the corresponding square of the tape.  The second track contains a 1 if the read/write head is over that square and a 0 

otherwise.  Because all of M’s tapes are infinite, we need a way to line them up in order to be able to represent a slice 

through them.  We will do this by starting with M’s initial configuration and then lining up the tapes so that all the 

read/write heads form a single column. 

 

To see how this works, let k = 2.  Then M’s initial configuration  is shown in Figure 17.3 (a).  M will encode that pair 

of tapes on its single tape as shown in Figure 17.3 (b). 
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…  a b a a     … 

                   (a)  

 

…          … 

 

 

 

 
    a b a a   

 …  1 0 0 0 0 0  0          …             (b) 
          
   1 0 0 0 0 0 0 

 

Figure 17.3 Encoding multiple tapes as multiple tracks 

 

 

M’s tape, like every Turing machine tape, will contain ’s on all but some finite number of squares, initially equal to 

the length of the input string w.  But, if any of the read/write heads of M moves either left or right into the blank area, 

M will pause and encode the next square on its tape into tracks.   

 

Like all standard Turing machines, when M starts, its tape will contain its input.  The first thing it will do is to reformat 

its tape so that it is encoded as k tracks, as shown above.  It will then compute with the reformatted tape until it halts.  

Its final step will be to reformat the tape again so that its result (the string that is written on its simulated tape 1) is 

written, without the track encoding, on the tape.  So M will need a tape alphabet that can encode both the initial and 

final situations (a single character per tape square) and the encoding of k tapes (with k values plus k read/write head 

bits per tape square).  So M needs a tape alphabet that has a unique symbol for each element of   (  {0, 1})k.  

Thus || = || + (2||)k.  For example, to do the encoding shown above requires that  contain symbols for , a, b, 

(, 1, , 1), (a, 0, ,0), (b, 0, , 0), and so forth.  || = 3 + 62 = 39. 

 

M operates as follows: 

 

1. Set up the multitrack tape:  

1.1. Move one square to the right to the first nonblank character on the tape. 

1.2. While the read/write head is positioned over some non- character c do: 

Write onto the square the symbol that corresponds to a c on tape 1 and ’s on every other track.  On the 

first square, use the encoding that places a 1 on each even-numbered track (corresponding to the 

simulated read/write heads).  On every other square, use the encoding that places a 0 on each even-

numbered track. 

2. Simulate the computation of M until (if) M would halt: (Each step will start with M’s read/write head on the  

immediately to the right of the divided tape.) 

2.1. Scan left and store in the state the k-tuple of characters under the simulated read/write heads.  Move back 

to the  immediately to the right of the divided tape. 

2.2. Scan left and update each track as required by the appropriate transition of M.  If necessary, subdivide a 

new square into tracks. 

2.3. Move back right. 

3. When M would halt, reformat the tape to throw away all but track 1, position the read/write head correctly, and 

then go to M’s halting state. 

 

The construction that we just presented proves that any computation that can be performed by a k-tape Turing machine 

can be performed by a 1-tape machine.  So adding any finite number of tapes adds no power to the Turing machine 

model.  But there is a difference:  The 1-tape machine must execute multiple steps for each single step taken by the k-

tape machine.  How many more?  This question is only well defined if M (and so M) halts.  So, if M halts, let:  
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• w be the input string to M, and  

• n be the number of steps M executes before it halts.  

 

Each time M executes step 2, it must make two passes over the nonblank segment of its tape.  How long is that 

segment?  It starts out with length |w| but if M ever moves off its input then M will extend the encoded area and have 

to sweep over the new section on each succeeding pass.  So we do not know exactly the length of the nonblank 

(encoded part) of M’s tape, but we can put an upper bound on it by observing that M (and thus M) can write on at 

most one additional square at each step.  So an upper bound on the length of encoded tape is |w| + n. 

 

We can now compute an upper bound on the number of steps it will take M to simulate the execution of M on w: 

 

Step 1 (initialization):    = O(|w|). 

Step 2 (computation): 

  Number of passes = n. 

  Steps at each pass: 

   For step 2.1  =  2(length of tape). 

     = 2(|w| + n). 

   For step 2.2  =  2(|w| + n). 

  Total    =  O(n(|w| + n)). 

Step 3 (clean up):   = O(length of tape). 

Total:     =  O(n(|w| + n)). 

 

If n ≥ |w| (which it will be most of the time, including in all cases in which M looks at each square of its input at least 

once), then the total number of steps executed by M is O(n2).  

◼ 

17.3.2 Nondeterministic Turing Machines 
So far, all of our Turing machines have been deterministic.  What happens if we relax that restriction?  Before we 

answer that question, let’s review what we know so far about nondeterminism: 

 

• With FSMs, we saw that nondeterminism is a very useful programming tool.  It makes the task of designing 

certain classes of machines, including pattern matchers, easy.  So it reduces the likelihood of programmer error.  

But nondeterminism adds no real power.  For any NDFSM M, there exists an equivalent deterministic one M.  

Furthermore, although the number of states in M may be as many as 2K, where K is the number of states in M, 

the time it takes to execute M on some input string w is O(|w|), just as it is for M. 

 

• With PDAs, on the other hand, we saw that nondeterminism adds power.  There are context-free languages that 

can be recognized by a nondeterministic PDA for which no equivalent deterministic PDA exists. 

 

So, now, what about Turing machines?  The answer here is mixed: 

 

• Nondeterminism adds no power in the sense that any computation that can be performed by a nondeterministic 

Turing machine can be performed by a corresponding deterministic one.   

 

• But complexity is an issue.  It may take exponentially more steps to solve a problem using a deterministic Turing 

machine than it does to solve the same problem with a nondeterministic Turing machine. 

 

A nondeterministic Turing machine is a sixtuple (K, , , , s, H), where K, , , s, and H are as for standard Turing 

machines, and  is a subset  of ((K - H)  )  (K    {, →}).  In other words, we have replaced the transition 

function  by the transition relation , in much the same way we did when we defined nondeterministic FSMs and 

PDAs.  The primary difference between our definition of nondeterminism for FSMs and PDAs and our definition of 

nondeterminism for Turing machines is that, since the operation of a Turing machine is not tied to the read-only, one-

at-a-time consumption of its input characters, the notion of an -transition no longer makes sense. 
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But, just as before, we now allow multiple competing moves from a single configuration.  And, as before, the easiest 

way to envision the operation of a nondeterministic Turing machine M is as a tree, as shown in Figure 17.4.  Each 

node in the tree corresponds to a configuration of M and each path from the root corresponds to one sequence of 

configurations that M might enter. 

 

 

              s,abab 

 

 

 q2, #abab        q1, abab 

 

 

     q1, abab      q3, bbab 

 

Figure 17.4  Viewing nondeterminism as search through a space of computation paths 

 

 

Just as with PDAs, both the state and the data (in this case the tape) can be different along different paths. 

 

Next we must define what it means for a nondeterministic Turing machine to: 

 

• Decide a language. 

• Semidecide a language. 

• Compute a function. 

 

We will consider each of these in turn. 

Nondeterministic Deciding 

What does it mean for a nondeterministic Turing machine to decide a language?   What happens if the various paths 

disagree?  The definition we will use is analogous to the one we used for both FSMs and PDAs.  Recall that a 

computation of M is a sequence of configurations, starting in an initial configuration and ending in a halting 

configuration. 

 

Let M = (K, , , , s, H) be a nondeterministic Turing machine.  Let w be an element of *.  Then we will say that: 

 

• M accepts w iff at least one of its computations accepts. 

 

• M rejects w iff all of its computations reject. 

 

M decides a language L  * iff, w  *: 

 

• There is a finite number of paths that M can follow on input w, 

• All of those paths are computations (i.e., they halt), and 

• w  L iff M accepts w. 

Example 17.16 Exploiting Nondeterminism For Finding Factors 

Let COMPOSITES = {w  {0, 1}* : w is the binary encoding of a composite number}.  We can build a 

nondeterministic Turing machine M to decide COMPOSITES.  M operates as follows on input w: 

 

1. Nondeterministically choose two binary numbers p and q, both greater than 1, such that |p| and |q|  |w|.  Write 

them on the tape, after w, separated by ;.  For example, consider the input string 110011.  After this step, M’s 

tape, along one of its paths, will look like: 
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   110011;111;1111 

2. Multiply p and q and put the answer, A, on the tape, in place of p and q.  At this point, M’s tape will look like: 

   110011;1101001 

3. Compare A and w.  If they are equal, accept (i.e., go to y); else reject  (i.e., go to n). 

Nondeterministic Semideciding 

Next we must decide what it means for a nondeterministic Turing machine to semidecide a language.  What happens 

if the various paths disagree?  In particular, what happens if some paths halt and others don’t.  Again, the definition 

that we will use requires only that there exist at least one accepting path.  We don’t care how many nonaccepting 

(looping or rejecting) paths there are.  So we will say:   

 

A nondeterministic Turing machine M = (K, , , , s, H) semidecides a language L  * iff, w  *: 

 

• w  L iff (s, w) yields at least one accepting configuration.  In other words, there exists at least one path that 

halts and accepts w. 

 

In the next example, as well as many others to follow, we will consider Turing machines whose inputs are strings that 

represent descriptions of Turing machines.  We will describe later exactly how we can encode a Turing machine as a 

string.  For now, imagine it simply as a program written out as we have been doing.  We will use the notation <M> to 

mean the string that describes some Turing machine M (as opposed to the abstract machine M, which we might actually 

encode in a variety of different ways).   

Example 17.17 Semideciding by Simulation 

Let L = {<M> : M is a Turing machine that halts on at least one string}.  We will describe later how one Turing 

machine can simulate another.  Assuming that we can in fact do that, a Turing machine S to semidecide L will work 

as follows on input <M>: 

 

1. Nondeterministically choose a string w in * and write it on the tape. 

2. Run M on w. 

3. Accept. 

 

Any individual branch of S will halt iff M halts on that branch’s string.  If a branch halts, it accepts.  So at least one 

branch of S will halt and accept iff there is at least one string on which M halts. 

 

As we will see in Chapter 21, semideciding is the best we are going to be able to do for L.  We will also see that the 

approach that we have taken to designing S, namely to simulate some other machine and see whether it halts, will be 

one that we will use a lot when semideciding is the best that we can do. 

Nondeterministic Function Computation 

What about Turing machines that compute functions?  Suppose, for example, that there are two paths through some 

Turing machine M on input w and they each return a different value.  What value should M return?  The first one it 

finds?  Some sort of average of the two?  Neither of these definitions seems to capture what we mean by a computation.  

And what if one path halts and the other doesn’t?  Should we say that M halts and returns a value?  We choose a strict 

definition: 

 

A nondeterministic Turing machine M = (K, , , , s, H) computes a function f iff, w  *: 

 

• All paths that M can follow on input w halt (i.e., all paths are computations), and 

• All of M's computations result in f(w). 
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Does Nondeterminism Add Power? 

One of the most important results that we will prove about Turing machines is that nondeterminism adds no power to 

the original model.  Nondeterministic machines may be easier to design and they may run substantially faster, but 

there is nothing that they can do that cannot be done with some equivalent deterministic machine.   

Theorem 17.2  Nondeterminism in Deciding and Semideciding Turing Machines 

Theorem: If a nondeterministic Turing machine M = (K, , , , s, H) decides a language L, then there exists a 

deterministic Turing machine M' that decides L. If a nondeterministic Turing machine M semidecides a language L, 

then there exists a deterministic Turing machine M' that semidecides L. 

 

Proof Strategy: The proof will be by construction.  The first idea we consider is the one we used to show that 

nondeterminism does not add power to FSMs.  There we showed how to construct a new FSM M that simulated the 

parallel execution of all of the paths of the original FSM M.  Since M had a finite number of states, the number of sets 

of states that M could be in was finite.  So we simply constructed M so that its states corresponded to sets of states 

from M.  But that simple technique will not work for Turing machines because we must now consider the tape.  Each 

path will need its own copy of the tape.  Perhaps we could solve that problem by exploiting the technique from Section 

17.3.1, where we used a single tape to encode multiple tapes.  But that technique depended on advance knowledge of 

k, the number of tapes to be encoded.  Since each path of M will need a new copy of the tape, it isn’t possible to put 

a bound on k.  So we must reject this idea. 

 

A second idea we might consider is simple depth-first search.  If any path rejects, M will back up and try an alternative.  

If any path accepts, M will halt and accept.  If M explores the entire tree and all paths have rejected, then it rejects.  

But there is a big problem with this approach.  What if one of the early paths is one that doesn’t halt?  Then M will 

get stuck and never find some accepting path later in the tree.  If we are concerned only with finding deterministic 

equivalents for nondeterministic deciding Turing machines, this is not an issue since all paths of any deciding machine 

must halt.  But we must also show that every nondeterministic semideciding Turing machine has an equivalent 

deterministic machine.  So we must abandon the idea of a depth-first search. 

 

But we can build an M that conducts a breadth-first search of the tree of computational paths that M generates.  

Suppose that there are never more than b competing moves available from any configuration of M.  And suppose that 

h is the length of the longest path that M might have to follow before it can accept.  Then M may require O(bh+1) 

moves to find a solution since it may have to explore an entire tree of height h.  Is an exponential increase in the time 

it takes a deterministic machine to simulate the computation of a nondeterministic one the best we can do?  No one 

knows.  Most people will bet yes.  Yet no one has been able to prove that no better approach exists.  A proof of the 

correctness of either a yes or a no answer to this question is worth $1,000,000 .  We will return to this question in 

Part V.  There we will see that the standard way in which this question is asked is, “Does P = NP?” 

 

For now though we will continue with the search-based approach.  To complete this proof with such a construction 

requires that we show how to implement the search process on a Turing machine.  Because breadth-first search requires 

substantial bookkeeping that is difficult to describe, we’ll use an alternative but computationally similar technique, 

iterative deepening.  We describe the construction in detail in B 643.  
◼ 

Theorem 17.3  Nondeterminism in Turing Machines that Compute Functions 

Theorem: If a nondeterministic Turing machine M = (K, , , , s, H) computes a function f then there exists a 

deterministic Turing machine M that computes f. 

 

Proof:  The proof is by construction.  It is very similar to the proof of Theorem 17.2 and is left as an exercise. 
◼ 
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17.4 Simulating a “Real” Computer  
We’ve now seen that adding multiple tapes does not increase the power of Turing Machines.  Neither does adding 

nondeterminism.  What about adding features that would make a Turing Machine look more like a standard computer?  

Consider, for example, a simple computer that is composed of: 

 

• An unbounded number of memory cells addressed by the integers starting at 0.  These memory cells may be used 

to contain both program instructions and data.  We’ll encode both in binary.  Assume no limit on the number of 

bits that are stored in each cell. 

• An instruction set composed of basic operations including read (R), move input pointer right or left (MIR, MIL), 

load (L), store (ST), add (A), subtract (S), jump (JUMP), conditional jump (CJUMP), and halt (H).  Here’s a simple 

example program: 

 

R 10  /* Read 2 bits from the input tape and put them into the accumulator. 

MIR 10  /* Move the input pointer two bits to the right. 

CJUMP 1001  /* If the value in the accumulator is 0, jump to location 1001. 

A 10111  /* Add to the value in the accumulator the value at location 10111. 

ST 10111  /* Store the result back in location 10111. 

 

• A program counter. 

• An address register. 

• An accumulator in which operations are performed. 

• A small fixed number of special purpose registers. 

• An input file. 

• An output file. 

 

Can a Turing machine simulate the operation of such a computer?  The answer is yes. 

Theorem 17.4  A Real Computer Can be Simulated by a Turing Machine 

Theorem: A random-access, stored program computer can be simulated by a Turing Machine.  If the computer requires 

n steps to perform some operation, the Turing Machine simulation will require O(n6) steps. 

 

Proof:  The proof is by construction of a simulator we’ll call simcomputer.   

 

The simulator simcomputer will use 7 tapes: 

 

• Tape 1 will hold the computer’s memory.  It will be organized as a series of (address, value) pairs, separated by 

the delimiter #.  The addresses will be represented in binary.  The values will also be represented in binary.  This 

means that we need a binary encoding of programs such as the addition one we saw above.  We’ll use the first 4 

bits of any instruction word for the operation code.  The remainder of the word will store the address.  So tape 1 

will look like this: 

 

#0,value0#1,value1#10,value2#11,value3#100,value4# …# 

 

With an appropriate assignment of operations to binary encodings, our example program, if stored starting at location 

0, would look like: 

 

#0,000110010#1,11111001#10,001110011#11,001010111#.... 

 

Notice that we must explicitly delimit the words because there is no bound on their length.  Addresses may get longer 

as the simulated program uses more words of its memory.  Numeric values may increase as old values are added to 

produce new ones. 

• Tape 2 will hold the program counter, which is just an index into the memory stored on tape 1. 

• Tape 3 will hold the address register. 

• Tape 4 will hold the accumulator.   
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• Tape 5 will hold the operation code of the current instruction. 

• Tape 6 will hold the input file. 

• Tape 7 will hold the output file, which will initially be blank. 

 

Like all other multitape Turing machines, simcomputer will begin with its input on tape 1 and all other tapes blank.  

Simcomputer requires two inputs, the program to be simulated and the input on which the simulation is to be run.  So 

we will encode them both on tape 1, separated by a special character that we will write as %. 

 

We will assume that the program is stored starting in memory location 0, so the program counter will initially need to 

be initialized to 0.  The simulator simcomputer operates as follows: 

 

     simcomputer(program) =  

       /* Initialize. 

1. Move the input string to tape 6. 

2. Initialize the program counter (tape 2) to 0. 

 

/* Execute one pass through this loop for every instruction executed by program. 

3. Loop: 

3.1. Starting at the left of the nonblank portion of tape 1, scan to the right looking for an index that matches 

the contents of tape 2 (the program counter). 

 

/* Decode the current instruction and increment the program counter. 

3.2. Copy the operation code to tape 5. 

3.3. Copy the address to tape 3. 

3.4. Add 1 to the value on tape 2. 

 

/* Retrieve the operand. 

3.5. Starting at the left again, scan to the right looking for the address that is stored on tape 3. 

 

/* Execute the instruction. 

3.6. If the operation is Load, copy the operand to tape 4 (the accumulator). 

3.7. If the operation is Add, add the operand to the value on tape 4. 

3.8. If the operation is Jump, copy the value on tape 3 to tape 2 (the program counter). 

3.9. And so forth for the other operations. 

 

How many steps must simcomputer execute to simulate a program that runs in n steps?  It executes the outer loop of 

step 3 n times.  How many steps are required at each pass through the loop?  Step 3.1 may take t steps, if t is the length 

of tape 1.  Step 3.2 takes a constant number of steps.  Step 3.3 may take a steps if a is the number of bits required to 

store the longest address that is used on tape 1.  Step 3.4 may also take a steps.  Step 3.5 again may have to scan all 

of tape 1, so it may take t steps.  The number of steps required to execute the instruction varies: 

 

• Addition takes v steps if v is the length of the longer operand. 

• Load takes v steps if v is the length of the value to be loaded. 

• Store generally takes v steps if v is the length of the value to be stored.  However, suppose that the value to be 

stored is longer than the value that is already stored at that location.  Then simcomputer must shift the remainder 

of Tape 1 one square to the right in order to have room for the new value.  So executing a Store instruction could 

take t steps (where t is the length of tape 1). 

 

The remainder of the operations can be analyzed similarly.  Notice that we have included no complex operations like 

multiply.  (But this is not a limitation.  Multiply can be implemented as a sequence of additions.)  So it is 

straightforward to see that the number of steps required to perform any of the operations that we have defined is, in 

the worst case, a linear function of t, the length of tape 1.  

 

So how long is tape 1?  It starts out at some length k.  Each instruction has the ability to increase the number of memory 

locations by 1 since a store instruction can store to an address that was not already represented on the tape.  And each 
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instruction has the ability to increase by 1 the length of a machine “word”, since the add instruction can create a value 

that is one bit longer than either of its operands.  So, after n simulated steps, t, the length of the tape, could be k + n2 

(if new words are created and each word gets longer).  If we assume that n is large relative to k, we can say that the 

length of the tape, after n steps, is O(n2).  So the number of steps that simcomputer must execute to simulate each step 

of the original program is O(n2).  Since simcomputer must simulate n steps of the original program, the total number 

of steps executed by simcomputer is O(n3).  

 

The simulator simcomputer uses 7 tapes.  We know, from Theorem 17.1, that a k-tape Turing machine that executes 

n steps can be simulated in O(n2) steps by a one-tape, standard Turing Machine.  So the total number of steps it would 

take a one-tape standard Turing Machine to simulate one of our programs executing n steps is O(n6).  While this 

represents a nontrivial increase in the number of steps, it is important to note that the increase is a polynomial function 

of n.  It does not grow exponentially, the way the simulation of a nondeterministic Turing Machine did.   
◼ 

 

Any program that can be written in any modern programming language can be compiled into code for a machine such 

as the simple random access machine that we have just described.  Since we have shown that any such machine can 

be simulated by a Turing machine, we will begin to use clear pseudocode to define Turing machines. 

17.5 Alternative Turing Machine Definitions  
We have provided one definition for what a Turing machine is and how it operates.  There are many equivalent 

alternatives.  In this section we will explore two of them.    

17.5.1 One-Way vs. Two-Way Infinite Tape 
Many books define a Turing machine to have a tape that is infinite in only one direction.  We use a two-way infinite 

tape.  Does this difference matter?  In other words, are there any problems that one kind of machine can solve that the 

other one cannot?   The answer is no. 

Theorem 17.5  A One-Way Infinite Tape is Equivalent to a Two-Way Infinite Tape 

Theorem: Any computation by a Turing machine with a two-way infinite tape can be simulated by a Turing machine 

with a one-way infinite tape. 

 

Proof: Let M be a Turing machine with a two-way infinite tape.  We describe M, an equivalent machine whose tapes 

are infinite in only one direction.  M will use three tapes.  The first will hold that part of M’s tape that starts with the 

square under the read/write head and goes to the right.  The second of M’s tapes will hold that part of M’s tape to the 

left of the read/write head.  The third tape will count, in unary, the number of moves that M has made so far.  An 

example of this encoding is shown in Figure 17.5. 

 

 

 

The two-way tape: 

 

   …  g f e a b c d  … 
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The simulation: 

 

     Tape 1   a b c d  … 

 

 

 

     Tape 2   e f g   … 

 

 

 

     Tape 3        … 

 

 

Figure 17.5 Simulating a two-way infinite tape on a one-way infinite tape 

 

 

M’s read/write head is shown above as a dashed arrow.  M has three read/write heads (shown as dark arrows above), 

one for each tape.  It will use its finite state controller to keep track of whether the simulated read/write head is on 

tape 1 or tape 2.  If the simulated read/write head is on tape 1, square t , then M’s tape 1 read/write head will be on 

square t and its tape 2 read/write head will be on the leftmost square.  Similarly if the simulated read/write head is on 

tape 2.   

 

Initially, M’s tape 1 will be identical to M’s tape, M’s tape 2 will be blank, and M’s tape 3 will also be blank (since 

no moves have yet been made). 

 

The simulation:  M simulates each step of M.  If M attempts to move to the left, off the end of its tape, M will begin 

writing at the left end of tape 2.  If M continues to move left, M will move right on tape 2.  If M moves right and goes 

back onto its original tape, M will begin moving right on tape 1.  If M would halt, then M halts the simulation.   

 

But, if M is computing a function, then M must also make sure, when it halts, that its tape 1 contains exactly what 

M’s tape would have contained.  Some of that may be on tape 2.  If it is, then the contents of tape 1 must be shifted to 

the right far enough to allow the contents of tape 2 to be moved up.  The maximum number of symbols that M may 

have written on tape 2 is n, where n is the number of steps executed by M.  Tape 3 contains n.  So M  moves n squares 

to the right on tape 2.  Then it moves leftward, one square at a time as long as it reads only blanks.  Each time it moves 

to the left, it erases a 1 from tape 3.  When it hits the first nonblank character, tape 3 will contain the unary 

representation of the number of times M must shift tape 1 one square to the right and then copy one symbol from tape 

2 to tape 1.  M executes this shifting process the required number of times and then halts.  
◼ 

17.5.2 Stacks vs. a Tape  
When we switched from working with PDAs to working with Turing machines, we gave up the use of a stack.  The 

Turing machine’s infinite tape has given us more power than we had with the PDA’s stack.  But it makes sense to take 

one more look at the stack as a memory device and to ask two questions: 

 

1. Did we lose anything by giving up the PDA’s stack in favor of the Turing machine’s tape? 

2. Could we have gotten the power of a Turing machine’s tape using just stacks? 

Simulating a Stack by a Turing Machine Tape 

Theorem 17.6  A PDA Can be Simulated by a Turing Machine 

Theorem: The operation of any PDA P can be simulated by some Turing machine M. 
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Proof:  The proof is by construction.  Given some PDA P, we construct a (possibly) nondeterministic Turing machine 

M to simulate the operation of P.  Since there is a finite number of states in P, M can keep track of the current state of 

P in its own finite state controller.   

 

Each branch of M will use two tapes, one for the input and one for the stack, as shown in Figure 17.6.  Tape 1 will 

function just like the read-only stream of input that is fed to the PDA.  M will never write on tape 1 and will only 

move to the right, one square at a time.  Tape 2 will mimic the behavior of M’s stack, with its read/write head moving 

back and forth as symbols are pushed onto and popped from the stack. 

 

 

 

 

Tape 1    … a a a b b  … 

  (Input) 

 

Tape 2    … # b a    … 

 

 

Corresponding to 
    a 

    b 

 

 

Figure 17.6  Simulating a PDA by a Turing machine 

 

 

M will operate as follows: 

 

1. Initialization: write #, indicating the bottom of the stack, under the read/write head of Tape 2.  Tape 2’s read/write 

head will always remain positioned on the top of the stack.  Set the simulated state Ssim to s. 

2. Simulation: let the character under the read/write head of Tape 1 be c.  At each step of the operation of P do: 

2.1. If c = , halt and accept if Ssim is an accept state of P and reject otherwise. 

2.2. Nondeterministically choose from  a transition of the form ((Ssim, c, pop), (q2, push)) or ((Ssim, , pop), (q2, 

push)).  In other words, chose some transition from the current state that either reads the current input 

character or reads .    

2.3. Scan leftward on Tape 2 |pop| squares, checking to see whether Tape 2 matches pop.  If it does not, terminate 

this path.  If it does, then move rightward on Tape 2 |push| squares copying push onto Tape 2.   

2.4. If we are not following an -transition, move the read/write head of Tape 1 one square to the right and set c 

to the character on that square.     

2.5. Set Ssim to q2 and repeat. 
◼ 

 

So we gave up no power when we abandoned the PDA’s stack in favor of the Turing machine’s tape. 

Simulating a Turing Machine Tape by Using Two Stacks 

What about the other way around?  Is there any way to use stacks to get the power of an infinite, writeable tape?  The 

answer is yes.  Any Turing machine M can be simulated by a PDA P with two stacks.  Suppose that M’s tape is as 

shown in Figure 17.7 (a).  Then P’s two stacks will be as shown in Figure 17.7 (b). 
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                     …     b  a b  a a  b a  a b  a     …    (a) 

                                                          

 

 

 
   a          b 
  a          a 

  b          a        (b) 
  a          b 

  b           a 

                       Stack 1          Stack 2  

 

Figure 17.7  Simulating a Turing machine tape with two stacks 

 

 

Stack 1 contains M’s active tape up to and including the square that is currently under the read/write head.  Stack 2 

contains the remainder of M’s active tape.  If M moves to the left, the top character from stack 1 is popped and then 

pushed onto stack 2.   If M moves onto the blank region to the left of its tape, then the character that it writes is simply 

pushed onto the top of stack 1.  If M moves to the right, the top character from stack 2 is popped and then pushed onto 

stack 1.  If M moves onto the blank region to the right of its tape, then the character that it writes is simply pushed 

onto the top of stack 1.   

17.6 Encoding Turing Machines as Strings 
So far, all of our Turing machines have been hardwired (just like early computers).  Does it make sense, just as it did 

with real computers, to develop a programmable Turing machine: a single Turing machine that accepts as input a (M: 

Turing machine, s: input string) pair and outputs whatever M would output when started up on s?  The answer is yes.  

We will call such a device the universal Turing machine or simply U. 

 

To define U we need to do two things: 

 

1. Define an encoding scheme that can be used to describe to U a (Turing machine, input string) pair. 

2. Describe the operation of U given such an encoded pair. 

17.6.1 An Encoding Scheme for Turing Machines 

We need to be able to describe an arbitrary Turing machine M = (K, , , , s, H) as a string that we will write as 

<M>.  When we define the universal Turing machine, we will have to assign it a fixed input alphabet.  But the machines 

we wish to input to it may have an arbitrary number of states and they may exploit alphabets of arbitrary size.  So we 

need to find a way to encode an arbitrary number of states and a tape alphabet of arbitrary size using some new 

alphabet of fixed size.  The obvious solution is to encode both state sets and alphabets as binary strings. 

 

We begin with K.  We will determine i, the number of binary digits required to encode the numbers from 0 to |K|-1.  

Then we will number the states from 0 to |K|-1 and assign to each state the binary string of length i that corresponds 

to its assigned number.  By convention, the start state s will be numbered 0.  The others may be numbered in any 

order.  Let t be the binary string assigned to state t. Then we assign strings to states as follows: 

 

• If t is the halting state y, assign it the string yt. 

• If t is the halting state n, assign it the string nt. 

• If t is any other state, assign it the string qt. 
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Example 17.18 Encoding the States of a Turing Machine 

Suppose that we are encoding a Turing machine M with 9 states.  Then it will take four binary digits to encode the 

names of the 9 states.  The start state s will be encoded as q0000.  Assuming that y has been assigned the number 3 

and n has been assigned the number 4, the remaining states will be encoded as q0001, q0010, y0011, n0100, 

q0101, q0110, q0111, and q1000. 

 

 

Next we will encode the tape alphabet in a similar fashion.  We will begin by determining j, the number of binary 

digits required to encode the numbers from 0 to ||-1.  Then we will number the characters (in any order) from 0 to 

||-1 and assign to each character the binary string of length j that corresponds to its assigned number.  Finally, we 

will assign to each symbol y the string ay, where y is the binary string already assigned to y. 

 

Example 17.19 Encoding the Tape Alphabet of a Turing Machine 

Suppose that we are encoding a Turing machine M with  = {, a, b, c}.  Then it will take two binary digits to encode 

the names of the four characters.  The assignment of numbers to the characters is arbitrary.  It just must be done 

consistently throughout the encoding.  So, for example, we could let: 

 

  =  a00 

  a =  a01 

  b =  a10 

  c =  a11 

 

Next we need a way to encode the transitions of , each of which is a 5-tuple: (state, input character, state, output 

character, move).  We have just described how we will encode states and tape characters.  There are only two allowable 

moves, → and , so we can just use those two symbols to stand for their respective moves.  We will encode each 

transition in  as a string of exactly the form (state,character,state,character,move), using the state, character, and 

move encodings that we have just described.  Then we can specify  as a list of transitions separated by commas. 

 

The only thing we have left to specify is H, which we will do as follows: 

 

• States with no transitions out are in H (in other words, we don’t need to say anything explicitly about this). 

• If M decides a language, then H = {y, n}, and we will adopt the convention that y is the lexicographically 

smaller of the two halting states. 

• If M has only one halting state (which is possible if it semidecides a language), we will take it to be y. 

 

 

With these conventions, we can completely specify almost all Turing machines simply as a list of transitions.  But we 

must also consider the special case of the simple Turing machine Mnone, shown in Figure 17.8.  Mnone has no transitions 

but it is a legal Turing machine (that semidecides *).  To enable us to represent machines like Mnone, we add one 

more convention:  When encoding a Turing machine M, for any state q in M that has no incoming transitions, add to 

M’s encoding the substring (q).  So Mnone would be encoded as simply (q0). 

 

 

 

  q0  Figure 17.8  Encoding a Turing machine with no transitions 
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Example 17.20 Encoding a Complete Turing Machine Description 

Consider M = ({s, q, h}, {a, b, c}, {, a, b, c}, , s, {h}),  where  = 

 

state symbol  

s  (q, , →) 

s a (s, b,→) 

s b (q, a, ) 

s c (q, b, ) 

q  (s, a →) 

q a (q, b,→) 

q b (q, b, ) 

q c (h, a, ) 

 

We start encoding M by determining encodings for each of its states and tape symbols: 

 

state/symbol representation 

s q00 

q q01 

h h10 

 a00 

a a01 

b a10 

c a11 

 

The complete encoding of M, which we will denote by <M>, is then: 

 

  (q00,a00,q01,a00,→), (q00,a01,q00,a10,→), (q00,a10,q01,a01, ), (q00,a11,q01,a10,),  

(q01,a00,q00,a01,→), (q01,a01,q01,a10,→), (q01,a10,q01,a10,), (q01,a11,h10,a01,). 

17.6.2 Enumerating Turing Machines 
Now that we have an encoding scheme for Turing machines, it is possible to create an enumeration of them.   

Theorem 17.7  We Can Lexicographically Enumerate the Valid Turing Machines 

Theorem: There exists an infinite lexicographic enumeration of: 

 

(a) All syntactically valid Turing machines. 

(b) All syntactically valid Turing machines whose input alphabet is some particular set . 

(c) All syntactically valid Turing machines whose input alphabet is some particular set  and whose tape alphabet is 

some particular set . 

 

Proof: Fix an alphabet  = {(, ), a, q, 0, 1, comma, →, }, i.e., the set of characters that are used in the Turing 

machine encoding scheme that we just described.  Let the symbols in  be ordered as shown in the list we just gave.  

The following procedure lexicographically enumerates all syntactically valid Turing machines: 

 

1. Lexicographically enumerate the strings in *. 

2. As each string s is generated, check to see whether it is a syntactically valid Turing machine description.  If it is, 

output it. 

 

To enumerate just those Turing machines whose input and/or tape alphabets are limited to the symbols in some 

particular sets  and , add to step 2 a check to see that only alphabets of the appropriate sizes are allowed. 
◼ 
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With this procedure in hand, we can now talk about the ith Turing machine.  It is the ith element generated by the 

enumeration procedure. 

17.6.3 Another Win of Encoding 
Our motivation for defining what we mean by <M> was that we would like to be able to input a definition of M to the 

universal Turing machine U, which will then execute M.  But it turns out that, now that we have a well-defined string 

encoding <M> for any Turing machine M, we can pass <M> as input to programs other than U and ask those programs 

to operate on M.  So we can talk about some Turing machine T that takes the description of another Turing machine 

(say M1) as input and transforms it into a description of a different machine (say M2) that performs some different, but 

possibly related task.  We show this schematically in Figure 17.9. 

 

 

 

 

 <M1>                                     <M2> 

 

             T 

 

 

 

Figure 17.9  Turing machine T takes one Turing machine as input and creates another as its output 

 

 

We will make extensive use of this idea of transforming one Turing machine into another when we discuss the use of 

reduction to show that various problems are undecidable. 

Example 17.21 One Turing Machine Operates on the Description of Another 

Define a Turing machine T whose specifications are: 

 

Input: <M1>, where M1 is a Turing machine that reads its input tape and performs some operation P on it.   

Output: <M2>, where M2 is a Turing machine that performs P on an empty input tape. 

 

The job of T is shown in the following diagram.  We have, for convenience here, described <M2> using our macro 

language, but we could have written out the detailed string encoding of it.   

 

 

     >R     x             

     

 <M1>         

    

              T      M1 

 

T constructs the machine M2 that starts by erasing its input tape.  Then it passes control to M1.  So we can define T as 

follows: 

 

     T(<M1>) =  

      Output the machine shown on the right above. 

17.6.4 Encoding Multiple Inputs to a Turing Machine 
Every Turing machine takes a single string as its input.  Sometimes, however, we wish to define a Turing machine 

that operates on more than one object.  For example, we are going to define the universal Turing machine U to accept 

a machine M and a string w and to simulate the execution of M on w.  To do this, we need to encode both arguments 

as a single string.  We can easily do that by encoding each argument separately and then concatenating them together, 
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separated by some character that is not in any of the alphabets used in forming the individual strings.  For example, 

we could encode the pair (<M>, <aabb>) as <M>;<aabb>.  We will use the notation <x1, x2, …xn> to mean a single 

string that encodes the sequence of individual values x1, x2, …xn. 

17.7 The Universal Turing Machine 
We are now in a position to return to the problem of building a universal Turing machine, which we’ll call U.  U is 

not truly “universal” in the sense that it can compute “everything”.  As we’ll see in the next few chapters, there are 

things that cannot be computed by any Turing machine.  U is, however, universal in the sense that, given an arbitrary 

Turing machine M and an input w, U will simulate the operation of M on w.  

 

We can state U’s specification as follows:  On input <M, w>, U must: 

 

• Halt iff M halts on w. 

• If M is a deciding or a semideciding machine, then: 

• If M accepts, accept. 

• If M rejects, reject. 

• If M computes a function, then U(<M, w>) must equal M(w). 

 

U will use three tapes to simulate the execution of M on w: 

 

• Tape 1 will correspond to M’s tape.   

• Tape 2 will contain <M>, the “program” that U is running. 

• Tape 3 will contain the encoding of the state that M is in at any point during the simulation.  Think of tape 3 as 

holding the program counter. 

 

When U begins, it will have <M, w> on tape 1.  (Like all multitape machines, it starts with its input on tape 1 and all 

other tapes blank.)  Figure 17.10 (a) illustrates U’s three tapes when it begins.  It uses the multitrack encoding of three 

tapes that we described in Section 17.3.1. 

 

U’s first job is to initialize its tapes.  To do so, it must do the following: 

 

1. Transfer <M> from tape 1 to tape 2 (erasing it from tape 1). 

2. Examine <M> to determine the number of states in M and thus i, the number of binary digits required to encode 

M’s states.  Write q0i (corresponding to the start state of M) on tape 3. 

 

Assume that it takes three bits to encode the states of M.  Then, after initialization, U’s tapes will be as shown in Figure 

17.10 (b). 
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            <M ------------------------------ M,       w------------------------w>  
   1 0 0 0 0 0 0     

                           (a) 
   1 0 0 0 0 0 0  

           
   1 0 0 0 0 0 0  

 

 

                                           <w--------------------w>   
   0 0 0 0 1 0 0     

           <M ---------------------------- M>                     (b) 
   1 0 0 0 0 0 0  

   q 0 0 0     

   1        

 

Figure 17.10  The tapes of the universal Turing machine U 

 

 

U begins simulating M with the read/write heads of its three tapes as shown above.  More generally, it will start each 

step of its simulation with the read/write heads placed as follows: 

 

• Tape 1’s read/write head will be over the a that is the first character of the encoding of the current character on 

M’s tape. 

• Tape 2’s read/write head will be at the beginning of <M>. 

• Tape 3’s read/write head will be over the q of the program counter. 

 

Following initialization as described above, U operates as follows: 

 

1. Until M would halt do: 

1.1. Scan tape 2 for a quintuple that matches the current state, input pair.  

1.2. Perform the associated action, by changing tapes 1 and 3.  If necessary, extend the simulated tape that is 

encoded on tape 1. 

1.3. If no matching quintuple found, halt.   

2. Report the same result M would report:   

• If M is viewed as a deciding or semideciding machine for some language L: if the simulated state of M is y, 

then accept.  If the simulated state is n, then reject. 

• If M is viewed as a machine that computes a function: reformat the tape so that the value of tape 1 is all that is 

left. 

 

How long does it take U to simulate the computation of M?  If M would halt in k steps, then U must go through its 

loop k times.  Each time through the loop, it must scan <M> to find out what to do.  So U takes O(|M|k) steps. 

 

Now we know that if we wanted to build real Turing machines we could build one physical machine and feed it 

descriptions of any other Turing machines that we wanted to run.  So this is yet another way in which the Turing 

machine is a good general model of computation. 

 

The existence of U enables us to prove the following theorem: 

Theorem 17.8  One Turing Machine Can Simulate Another 

Theorem: Given any Turing machine M and input string w, there exists a Turing machine M that simulates the 

execution of M on w and: 

 

• halts iff M halts on w, and 

• if it halts, returns whatever result M returns. 
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Proof:  Given a particular M and w, we construct a specific M to operate as follows: 

 

      M (x) =  

Invoke the universal Turing machine U on the string <M, w>. 

 

Notice that M ignores its own input (which we’ve called x).  It is a constant function.  M halts iff U halts and, if it 

halts, will return the result of executing M on w.   
◼ 

 

Theorem 17.8 enables us to write, in a Turing machine definition, the pseudocode, “Run M on w,” and then branch 

based on whether or not M halts (and, if it halts, what it returns). 

 

If the universal Turing machine is a good idea, what about universal other things?  Could we, for example, define a 

universal FSM?  Such an FSM would accept the language L = {<F, w> : F is a finite state machine and w  L(F).}  

The answer is no.  Since any FSM has only a finite amount of memory, it has no way to remember and then execute 

a program of arbitrary length.  We have waited until now to introduce the idea of a universal machine because we had 

to. 

17.8 Exercises 
1) Give a short English description of what each of these Turing machines does: 

a) M = {a, b}. M = 

 

 

 >R L      b       R a L  

 
                  
                        a 

 

                 h          R b L 


b) M = {a, b}. M = 

 

 

 >R      a       R R 1 L L 

 
               
                       b 

 

                 h               
 

2) Construct a standard, deterministic, one-tape Turing machine M to decide each of the following languages L.  You 

may find it useful to define subroutines.  Describe M in the macro language defined in Section 17.1.5. 

a) {x  y = z : x, y, z  1+ and, when x, y, and z are viewed as unary numbers, xy = z}.  For example, the string 

111111=11111111  L. 

b) {aibjcidj, i, j  0}. 

c) {w  {a, b, c, d}*: #b(w)  #c(w) #d(w)  0}. 

 

3) Construct a standard, deterministic, one-tape Turing machine M to compute each of the following functions: 

a) The function sub3, which is defined as follows: 

           sub3(n) =  n-3 if n > 2 

0 if n  2. 

Specifically, compute  sub3 of a natural number represented in binary.  For example, on input 10111, M 

should output 10100.  On input 11101, M should output 11010.  (Hint: you may want to define a 

subroutine.) 
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b) Addition of two binary natural numbers (as described in Example 17.13).  Specifically, given the input string 

<x>;<y>, where <x> is the binary encoding of a natural number x and <y> is the binary encoding of a natural 

number y, M should output <z>, where z is the binary encoding of x + y.  For example, on input 101;11, M 

should output 1000. 

c) Multiplication of two unary numbers.  Specifically, given the input string <x>;<y>, where <x> is the unary 

encoding of a natural number x and <y> is the unary encoding of a natural number y, M should output <z>, 

where z is the unary encoding of xy.  For example, on input 111;1111, M should output 111111111111. 

d) The proper subtraction function monus, which is defined as follows: 

   monus(n, m) =  n - m if n > m  

0        if n  m. 

Specifically, compute monus of two natural numbers represented in binary.  For example, on input 101;11, 

M should output 1.  On input 11;101, M should output 0. 

 

4) Construct a Turing machine M that computes the function f: {a, b}* → N, where: 

 

f(x) = the unary encoding of max(#a(x), #b(x)).   

 

For example, on input aaaabb, M should output 1111.  M may use more than one tape.  It is not necessary to 

write the exact transition function for M.  Describe it in clear English. 

 

5) Construct a Turing machine M that converts binary numbers to their unary representations.  So, specifically, on 

input <w>, where w is the binary encoding of a natural number n, M will output 1n.  (Hint: use more than one 

tape.) 

 

6) Let M be a three-tape Turing machine with  = {a, b, c} and  = {a, b, c, , 1, 2}.  We want to build an 

equivalent one-tape Turing machine M using the technique described in Section 17.3.1.  How many symbols 

must there be in ? 

 

7) In Example 13.2, we showed that the language L = { a n2

, n  0} is not context-free.  Show that it is in D by 

describing, in clear English, a Turing machine that decides it. (Hint: use more than one tape.) 

 

8) In Example 17.9, we showed a Turing machine that decides the language WcW.  If we remove the middle marker 

c, we get the language WW.  Construct a Turing machine M that decides WW.  You may want to exploit 

nondeterminism.  It is not necessary to write the exact transition function for M.  Describe it in clear English. 

 

9) In Example 4.9, we described the Boolean satisfiability problem and we sketched a nondeterministic program 

that solves it using the function choose.  Now define the language SAT = {<w> : w is a wff in Boolean logic and 

w is satisfiable}.  Describe in clear English the operation of a nondeterministic (and possibly n-tape) Turing 

machine that decides SAT. 

 

10) Prove Theorem 17.3. 

 

11) Prove rigorously that the set of regular languages is a proper subset of D. 

 

12) In this question, we explore the equivalence between function computation and language recognition as performed 

by Turing machines.  For simplicity, we will consider only functions from the nonnegative integers to the 

nonnegative integers (both encoded in binary).  But the ideas of these questions apply to any computable function.  

We’ll start with the following definition: 

 

• Define the graph of a function f to be the set of all strings of the form [x, f(x)], where x is the binary encoding 

of a nonnegative integer, and f(x) is the binary encoding of the result of applying f to x. 

 

For example, the graph of the function succ is the set {[0, 1], [1, 10], [10, 11], …}. 
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a) Describe in clear English an algorithm that, given a Turing machine M that computes f, constructs a Turing 

machine M that decides the language L that contains exactly the graph of f. 

b) Describe in clear English an algorithm that, given a Turing machine M that decides the language L that 

contains the graph of some function f, constructs a Turing machine M that computes f. 

c) A function is said to be partial if it may be undefined for some arguments.  If we extend the ideas of this 

exercise to partial functions, then we do not require that the Turing machine that computes f halts if it is given 

some input x for which f(x) is undefined.  Then L (the graph language for f), will contain entries of the form 

[x, f(x)] for only those values of x for which f is defined.  In that case, it may not be possible to decide L, but 

it will be possible to semidecide it.  Do your constructions for parts (a) and (b) work if the function f is partial?  

If not, explain how you could modify them so they will work correctly. By “work”, we mean:  

• For part (a): given a Turing machine that computes f(x) for all values on which f is defined, build a Turing 

machine that semidecides the language L that contains exactly the graph of f;  

• For part (b): given a Turing machine that semidecides the graph language of f (and thus accepts all strings 

of the form[x, f(x)] when f(x) is defined), build a Turing machine that computes f. 

 

13) What is the minimum number of tapes required to implement a universal Turing machine? 

 

14) Encode the following Turing Machine as an input to the universal Turing machine that is described in Section 

17.7: 

 

M = (K, , , , q0, {h}), where: 

K = {q0, q1, h}, 

 = {a, b}, 

 = {a, b, c, }, and 

 is given by the following table: 

 

q  (q, ) 

q0 a (q1, b, →) 

q0 b (q1, a, →) 

q0  (h,  , →) 

q0 c (q0, c, →) 

q1 a (q0, c, →) 

q1 b (q0, b, ) 

q1  (q0, c, →) 

q1 c (q1, c, →) 
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18 The Church-Turing Thesis 

The Turing machine is the most powerful of the models of computation that we have so far considered.  There are 

problems that can be solved by a Turing machine that cannot be solved by a PDA, just as there are problems that could 

be solved by a PDA but not by an FSM.  Is this the end of the line, or should we expect a sequence of even more 

powerful models? 

 

One way of looking at things suggests that we should expect to keep going.  A simple counting argument shows that 

there are more languages than there are Turing machines: 

 

• There is at most a countably infinite number of Turing machines since we can lexicographically enumerate all 

the strings that correspond to syntactically legal Turing machines. 

• There is an uncountably infinite number of languages over any nonempty alphabet. 

• So there are more languages than there are Turing machines. 

 

So there are languages that cannot be recognized by any Turing machine.  But can we do better by creating some new 

formalism?  If any such new formalism shares with Turing machines the property that each instance of it has a finite 

description (for example a finite length Java program or a finite length grammar) then the same argument will apply 

to it and there will still be languages that it cannot describe.    

 

But there might be some alternative model in which we could write finite length programs and for which no equivalent 

Turing machine exists.  Is there?  We showed in the last chapter that there are several features (e.g., multiple tapes, 

nondeterminism) that we could add to our definition of a Turing machine without increasing its power.  But does that 

mean that there is nothing we could add that would make a difference?  Or might there be some completely different 

model that has more power than the Turing machine?   

18.1 The Thesis  
Another way to ask the question about the existence of a more powerful model is this: recall that we have defined an 

algorithm to be a detailed procedure that accomplishes some clearly specified task.  Note that this definition is general 

enough to include decision procedures (functions that return Boolean values), as well as functions that return values 

of other types.  In fact, it is general enough to include recipes for beef Wellington.  We will, however, focus just on 

tasks that involve computation.  Now we can restate our question: “Is there any computational algorithm that cannot 

be implemented by some Turing machine?  Then, if there is, can we find some more powerful model in which we 

could implement that algorithm?”  Note that we are assuming here that both real-world inputs and real-world outputs 

can be appropriately encoded into symbols that can be written onto a device such as the Turing machine’s tape.  We 

are not talking about whether an abstract Turing machine can actually chop mushrooms, take pictures, produce sound 

waves, or turn a steering wheel. 

 

During the first third of the 20th century, a group of influential mathematicians was focused on developing a completely 

formal basis for mathematics.  Out of this effort emerged, among other things, Principia Mathematica [Whitehead 

and Russell 1910, 1912, 1913], which is often described as the most influential work on logic ever written.  Among 

its achievements was the introduction of a theory of types that offers a way out of Russell’s paradox8.  The continuation 

and the ultimate success of this line of work depended on positive answers to two key questions: 

 

1. Is it possible to axiomatize all of the mathematical structures of interest in such a way that every true statement 

becomes a theorem?  We will allow the set of axioms to be infinite, but it must be decidable.  In other words, 

there must exist an algorithm that can examine a string and determine whether or not it is an axiom. 

 

                                                           
8 Let M be “the set of all sets that are not members of themselves”.  Is M a member of M?  The fact that either answer 

to this question leads to a contradiction was noticed by Bertrand Russell probably in about 1901.  The question is 

called “Russell’s paradox”. 
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2. Does there exist an algorithm to decide, given a set of axioms, whether a given statement is a theorem?  In other 

words, does there exist an algorithm that always halts and that returns True when given a theorem and False 

otherwise? 

 

Principia Mathematica played a landmark role in the development of mathematical logic in the 

early part of the 20th century.  45 years later it played another landmark role, this time in a 

discipline that Whitehead and Russell could never have imagined.  In 1956, the Logic Theorist, 

often regarded as the first artificial intelligence program, proved most of the theorems in Chapter 

2 of Principia Mathematica.  C 760. 

 

It was widely believed that the answer to both of these questions was yes.  Had it been, perhaps the goal of formalizing 

all of mathematics could have been attained.  But the answer to both questions is no.  Three papers that appeared 

within a few years of each other shattered that dream.   

 

Kurt Gödel showed, in the proof of his Incompleteness Theorem [Gödel 1931], that the answer to question 1 is no.  In 

particular, he showed that there exists no decidable axiomatization of Peano arithmetic (the natural numbers plus the 

operations plus and times) that is both consistent and complete.  By complete we mean that all true statements in the 

language of the theory are theorems.  Note that an infinite set of axioms is allowed, but it must be decidable.  So an 

infinite number of true statements can be made theorems simply by adding new axioms.  But Gödel showed that, no 

matter how often that is done, there must remain other true statements that are unprovable.   

 

Question 2 had been clearly articulated a few years earlier in a paper by David Hilbert and Wilhelm Ackermann 

[Hilbert and Ackermann 1928].  They called it the Entscheidungsproblem.  (“Entscheidungsproblem” is just the 

German word for “decision problem”.)  There are three equivalent ways to state the problem: 

 

• “Does there exist an algorithm to decide, given an arbitrary sentence w in first order logic, whether w is valid (i.e., 

true in all interpretations)?” 

• “Given a set of axioms A and a sentence w, does there exist an algorithm to decide whether w is entailed by A?”  

Note that this formulation is equivalent to the first one since the sentence A → w is valid iff s is entailed by A. 

• “Given a set of axioms A and a sentence w, does there exist an algorithm to decide whether w can be proved from 

A?”  Note that this formulation is equivalent to the second one since Gödel’s Completeness Theorem tells us that 

there exists, for first-order logic, an inference procedure that is powerful enough to derive, from A, every sentence 

that is entailed by A. 

 

Note that questions 1 and 2 (i.e., “Can the facts be axiomatized?” and “Can theoremhood be decided?”), while related, 

are different in an important way.  The fact that the answer to question 1 is no does not obviously imply that the answer 

to the Entscheidungsproblem is no.  While some true statements are not theorems, it might still have turned out to be 

possible to define an algorithm that distinguishes theorems from nontheorems. 

 

The Entscheidungsproblem had captured the attention of several logicians of the time, including Alan Turing and 

Alonzo Church.  Turing and Church, working independently, realized that, in order to solve the 

Entscheidungsproblem, it was necessary first to formalize what was meant by an algorithm.  Turing’s formalization 

was what we now call a Turing machine.  Church’s formalization was the lambda calculus, which we will discuss 

briefly below.  The two formalizations look very different.  But Turing showed that they are equivalent in power.  Any 

problem that can be solved in one can be solved in the other.  As it turns out ([Turing 1936] and [Church 1936]), the 

Entscheidungsproblem can be solved in neither.  We’ll see why this is so in Chapter 19. 

 

But out of the negative results that formed the core of the Church and Turing papers emerged an important new idea: 

Turing machines and the lambda calculus are equivalent.  Perhaps that observation can be extended. 

 

The Church-Turing thesis, or sometimes just Church’s thesis, states that all formalisms powerful enough to describe 

everything we think of as a computational algorithm are equivalent.    

 

We should point out that this statement is stronger than anything that either Church or Turing actually said.  This 

version is based on a substantial body of work that has occurred since Turing and Church’s seminal papers.  Also note 
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that we have carefully used the word thesis here, rather than theorem.  There exists no proof of the Church-Turing 

thesis because its statement depends on our informal definition of a computational algorithm.  It is in principle possible 

that someone may come up with a more powerful model.  Many very different models have been proposed over the 

years.  We will examine a few of them below.  All have been shown to be no more powerful than the Turing machine. 

 

The Church-Turing thesis is significant.  In the next several chapters, we are going to prove that there are important 

problems whose solutions cannot be computed by any Turing machine.  The Church-Turing thesis tells us that we 

should not expect to find some other reasonable computational model in which those same problems can be solved.  

Moreover, the equivalence proofs that support the thesis tell us that it is certain that those problems cannot be solved 

in any of the computational models that have so far been considered and compared to the Turing machine. 

18.2 Examples of Equivalent Formalisms  
All of the following models have been shown to be equivalent to our basic definition of a Turing machine: 

 

• Modern computers, if we assume that there is an unbounded amount of memory available. 

• Lambda calculus. 

• Recursive functions (in which the class of computable functions is built from a small number of primitive 

functions and a small set of combining operations). 

• Tag systems (in which we augment an FSM with a FIFO queue rather than a stack). 

• Unrestricted grammars (in which we remove the constraint that the left-hand side of each production must consist 

of just a single nonterminal). 

• Post production systems (in which we allow grammar-like rules with variables). 

• Markov algorithms. 

• Conway’s Game of Life. 

• One dimensional cellular automata. 

• Various theoretical models of DNA-based computing. 

• Lindenmayer systems.  

 

We will describe recursive functions in Chapter 25, unrestricted grammars in Chapter 23, and Lindenmayer systems 

(also called L-systems) in Section 24.4.  In the remainder of this chapter and we will briefly discuss the others. 

18.2.1 Modern Computers 
We showed in Section 17.4 that the functionality of modern “real” computers can be implemented with Turing 

machines.  This observation suggests a slightly different way to define the decidable languages (i.e., those that are in 

D).  A language L is decidable if there exists a decision procedure for it. 

18.2.2 Lambda Calculus  
Alonzo Church developed the lambda calculus  as a way to formalize the notion of an algorithm.  While Turing’s 

solution to that same problem has the feel of a procedure, Church’s solution feels more like a mathematical 

specification.   

 

The lambda calculus is the basis for modern functional programming languages like Lisp, Scheme, 

ML, and Haskell.  C 671.  

 

The lambda calculus is an expression language.  Each expression defines a function of a single argument, which is 

written as a variable bound by the operator λ.  For example, the following simple lambda calculus expression describes 

the successor function: 

 

(λ x. x + 1). 

 

Functions can be applied to arguments by binding each argument to a formal parameter.  So: 

 

(λ x. x + 1) 3.  
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is evaluated by binding 3 to x and computing the result, 4. 

 

Functions may be arguments to other functions and the value that is computed by a function may be another function.  

One of the most common uses of this feature is to define functions that we may think of as taking more than one 

argument.  For example, we can define a function to add two numbers by writing: 

 

(λ x. λ y. x + y)  

 

Function application is left associative.  So we can apply the addition function that we just described by writing, for 

example: 

 

(λ x. λ y. x + y) 3 4 

 

This expression is evaluated by binding 3 to x to create the new function (λ y. 3 + y), which is then applied to 4 to 

return 7. 

 

In the pure lambda calculus, there is no built-in data type number.  All expressions are functions.  But the natural 

numbers can be defined as lambda calculus functions.  So the lambda calculus can effectively describe numeric 

functions just as we have done. 

 

The lambda calculus can be shown to be equivalent in power to the Turing machine.  In other words, the set of 

functions that can be defined in the lambda calculus is equal to the set of functions that can be computed by a Turing 

machine.  Because of this equivalence, any problem that is undecidable for Turing machines is also undecidable for 

the lambda calculus.  For example, we’ll see in Chapter 21 that it is undecidable whether two Turing machines are 

equivalent.  It is also undecidable whether two expressions in the lambda calculus are equivalent.  In fact, Church’s 

proof of that result was the first formal undecidability proof.  (It appeared month’s before Turing’s proof of the 

undecidability of questions involving Turing machines.) 

18.2.3 Tag Systems 
In the 1920’s, a decade or so before the pioneering work of Gödel, Turing, and Church was published, the Polish 

logician Emil Post began working on the decidability of logical theories.  Out of his work emerged two formalisms 

that are now known to be equivalent to the Turing machine.  We’ll mention the first, tag systems, here and the second, 

Post production systems, in the next section. 

 

Post, and others, defined various versions (with differing restrictions on the alphabet and on the form of the operations 

that are allowed) of the basic tag system architecture.  We describe the simplest here:  A tag system, sometimes now 

called a Post machine, is a finite state machine that is augmented with a first-in, first out (FIFO) queue.  In other 

words, it’s a PDA with a FIFO queue rather than a stack.   

 

It is easy to see that there are languages that are not context-free (and so cannot be accepted by any PDA) but that can 

be accepted by a tag system.  Recall that while PalEven = {wwR : w  {a, b}*} is context-free, its cousin, WW = {ww 

: w  {a, b}*}, in which the second half of the string is not reversed, is not context-free.  We could not build a PDA 

for WW because, using a stack, there was no way to compare the characters in the second half of a string to the 

characters in the first half except by reversing them.  If we can use a FIFO queue instead of a stack, we no longer have 

this problem.  So a simple tag system to accept WW writes the first half of its input string into its queue and then 

removes characters from the head of the queue, one at a time, and checks each of them against the characters in the 

second half of the input string.   

 

But have we simply traded one set of languages for another?  Or can we build a tag system to accept PalEven as well 

as WW?  The answer is that, while there is not a simple tag system to accept PalEven, there is a tag system.  In fact, 

any language that can be accepted by a Turing machine can also be accepted by a tag system.  To see why, we’ll 

sketch a technique for simulating a Turing machine with a tag system.  Let the tag system’s queue correspond to the 

Turing machine’s active tape plus a blank on either side and let the head of the tag system’s queue contain the square 

that is under the Turing machine’s read/write head.   
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Now we just need a way to move both left and right in the queue, which would be easy if the tag system’s queue were 

a loop (i.e., if its front and back were glued together).  It isn’t a loop, but we can treat it as though it were.  To simulate 

a Turing machine that moves its head one square to the right, remove the symbol at the head of the queue and add it 

to the tail.  To simulate a Turing machine that moves its head one square to the left, consider a queue that contains n 

symbols.  One at a time, remove the first n-1 symbols from the head of the queue and add them to the tail.  To simulate 

a Turing machine that moves onto the blank region of its tape, exploit the fact that a tag system is allowed to push 

more than one symbol onto the end of its queue.  So push two, one of which corresponds to the newly nonblank square. 

18.2.4 Post Production Systems 
We next consider a second formalism that is derived from Post’s early work.  This one is based on the idea of a rewrite 

or production or rule-based system.  A Post production system (or simply Post system), as such systems have come to 

be known (although Post never called them that), shares with the grammar formalisms that we have considered the 

property that computation is accomplished by applying a set of production rules whose left-hand sides are matched 

against a current working string and whose right-hand sides are used to rewrite the working string.   

 

Post’s early work inspired the development of many modern rule-based systems, including 

context-free grammars described in BNF, C 664, rule-based expert systems C 771, production 

rule-based cognitive architectures C 773, and rule-based specifications for the behavior of NPCs 

in interactive games, C 791. 

 

Based on the ideas described in Post’s work, we define a Post system P to be a quintuple (V, , X, R, S), where: 

 

• V is the rule alphabet, which contains nonterminal and terminal symbols, 

•  (the set of terminals) is a subset of V, 

• X is a set of variables whose values are drawn from V*, 

• R (the set of rules) is a finite subset of (V  X)*  (V  X)*, with the additional constraint that every variable that 

occurs on the right-hand side of a rule must also have occurred on the left-hand side, and 

• S (the start symbol) can be any element of V - . 

 

There are three important differences between Post systems, as just defined, and both the regular and context-free 

grammar formalisms that we have already considered: 

 

1. In a Post system, the left-hand side of a rule may contain two or more symbols. 

2. In a Post system, rules may contain variables.  When a variable occurs on the left-hand side of a rule, it may match 

any element of V*.  When a variable occurs on the right-hand side, it will generate whatever value it matched. 

3. In a Post system, a rule may be applied only if its left-hand side matches the entire working string.  When a rule 

is applied, the entire working string is replaced by the string that is specified by the rule’s right-hand side.  Note 

that this contrasts with the definition of rule application that we use in our other rule-based formalisms.  In them, 

a rule may match any substring of the working string and just that substring is replaced as directed by the rule’s 

right-hand side.  So, suppose that we wanted to write a rule A → B that replaced an A anywhere in the string with 

a B.  We would have to write instead the rule XAY → XBY.  The variables X and Y can match everything before 

the A and after it, respectively. 

 

As with regular and context-free grammars, let x P y mean that the string y can be derived from the string x by 

applying a single rule in RP.  Let x P* y mean that y can be derived from x by applying zero or more rules in RP.  The 

language generated by P, denoted L(P) is {w  * : S P* w}. 

Example 18.1 A Post System for WW 

Recall the language WW = {ww : w  {a, b}*}, which is in D (i.e., it is decidable) but is not context-free.  We can 

build a Post system P that generates WW.  P = ({S, a, b}, {a, b}, {X}, R, S), where R =  
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   (1) XS → XaS  /* Generate (a  b)* S. 

   (2) XS → XbS    

   (3) XS → XX  /* Create a second copy of X.  

 

This Post system can generate, for example, the string abbabb.  It does so as follows: 

 

             S     (using rule (1) and letting X match )  

          aS    (using rule (2) and letting X match a) 

        abS    (using rule (2) and letting X match ab) 

      abbS    (using rule (3) and letting X match abb) 
              abbabb   

  

Post systems, as we have just defined them, are equivalent in power to Turing machines.  The set of languages that 

can be generated by a Post system is exactly SD, the set of semidecidable languages.  The proof of this claim is by 

construction.  For any Post system P, it is possible to build a Turing machine M that simulates P.  And, for any Turing 

machine M, it is possible to build a Post system P that simulates M. 

18.2.5 Unrestricted Grammars 
While the availability of variables in Post systems is convenient, variables are not actually required to give Post 

systems their power.  In Chapter 23, we will describe another formalism that we will call an unrestricted grammar.  

The rules in an unrestricted grammar may not contain variables, but their left-hand sides may contain any number of 

terminal and nonterminal symbols, subject to the sole constraint that there be at least one symbol.  Unrestricted 

grammars have exactly the same power as do Post systems and Turing machines.  They can generate exactly the 

semidecidable (SD) languages.  In Example 23.3 we’ll show an unrestricted grammar that generates WW (the 

language we considered above in Example 18.1). 

18.2.6 Markov Algorithms 
Next we consider yet another formalism based on rewrite rules.  A Markov algorithm  (named for its inventor, 

Andrey A. Markov, Jr., the son of the inventor of the stochastic Markov model that we described in Section 5.11.1), 

is simply an ordered list of rules, each of which has a left-hand side that is a single string and a right-hand side that is 

also a single string.  Formally a Markov algorithm M is a triple (V, , R), where: 

 

• V is the rule alphabet, which contains both working symbols and input symbols.  Whenever the job of M is to 

semidecide or decide a language (as opposed to compute a function), V will contain two special working symbols, 

Accept and Reject. 

•  (the set of input symbols) is a subset of V, and 

• R (the rules) is an ordered list of rules, each of which is an element of V*  V*.  There are two kinds of rules, 

continuing and terminating.  Whenever a terminating rule is applied, the algorithm halts.  We will write continuing 

rules, as usual, as X → Y.  We will write terminating rules by adding a dot after the arrow.  So we will have X →• 

Y.  

 

Notice that there is no start symbol.  Markov algorithms, like Turing machines, are given an input string.  The job of 

the algorithm is to examine its input and return the appropriate result. 

 

The rules are interpreted by the following algorithm: 
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     Markovalgorithm(M: Markov algorithm, w: input string) = 

1. Until no rules apply or the process has been terminated by executing a terminal rule do: 

1.1. Find the first rule in the list R that matches against w.  If that rule matches w in more than one place, 

choose the leftmost match. 

1.2. If no rule matches then exit. 

1.3. Apply the matched rule to w by replacing the substring that matched the rule’s left-hand side with the 

rule’s right-hand side. 

1.4. If the matched rule is a terminating rule, exit. 

2. If w contains the symbol Accept then accept. 

3. If w contains the symbol Reject then reject. 

4. Otherwise, return w.   

 

Notice that a Markov algorithm (unlike a program in any of the other rule-based formalisms that we have considered 

so far) is completely deterministic.  At any step, either no match exists, in which case the algorithm halts, or exactly 

one match can be selected.   

 

The logic programming language Prolog executes programs (sets of rules) in very much the same 

way that the Markov algorithm interpreter does.  Programs are deterministic and programmers 

control the order in which rules are applied by choosing the order in which to write them C 762.   

 

The Markov algorithm formalism is equivalent in power to the Turing machine.  This means that Markov algorithms 

can semidecide exactly the set of SD languages (in which case they may accept or reject) and they can compute exactly 

the set of computable functions (in which case they may return a value).  The proof of this claim is by construction:  

It is possible to show that a Markov algorithm can simulate the universal Turing machine U, and vice versa.   

Example 18.2 A Markov Algorithm for AnBnCn 

We show a Markov algorithm M to decide the language AnBnCn = {anbncn : n  0}.  Let M = ({a, b, c, #, %, ?, Accept, 

Reject}, {a, b, c}, R), where R =  

 

 (1) #a → %   /* If the first character is an a, erase it and look for a b next. 

 (2) #b →• Reject  /* If the first character is a b, reject. 

 (3) #c →• Reject  /* If the first character is a c, reject. 

 (4) %a → a%  /* Move the % past the a’s until it finds a b. 

 (5) %b → ?   /* If it finds a b, erase it and look for a c next. 

 (6) % →• Reject  /* No b found.  Just c’s or end of string.  Reject. 

 (7) ?b → b?  /* Move the ? past the b’s until it finds a c. 

 (8) ?c →    /* If it finds a c, erase it.  Then only rule (11) can fire next. 

 (9) ? →• Reject  /* No c found.  Just a’s or b’s or end of string.  Reject. 

 (10) # → • Accept  /* A # was created but there are no input characters left.  Accept. 

 (11)  → #   /* This one goes first since none of the others can. 

 

When M begins, the only rule that can fire is (11), since all the others must match some working symbol.  So rule (11) 

matches at the far left of the input string and adds a # to the left of the string.  If the first input character is an a, it will 

be picked up by rule (1), then erased and replaced by a new working symbol %.  The job of the % is to sweep past any 

other a’s and find the first b.  If there is no b or if a c comes first, M will reject.  If there is a b, it will be picked up 

by rule (5), then erased and replaced by a third working symbol ?, whose job is to sweep past any remaining b’s and 

find the first c.  If there is no c, M will reject.  If there is, it will be erased by rule (8).  At that point, there are no 

remaining working symbols, so the only thing that can happen is that rule (11) fires and the process repeats until all 

matched sets of a’s, b’s, and c’s have been erased.  If that happens, the final # that rule (11) adds will be the only 

symbol left.  Rule (10) will fire and accept. 
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18.2.7 Conway’s Game of Life  
The Game of Life  was first proposed by John Conway.  In the game, the board (the world) starts out in some initial 

configuration in which each square is either alive (shown in black) or dead (shown in white).  A simple example is 

shown in Figure 18.1. 

 

 

 

 

 

     Figure 18.1 An example of the Game of Life 

 

 

 

 

 

Life is not a game in the usual sense of having players.  It is more like a movie that we can watch.  It proceeds in 

discrete steps.   At each step, the value for each cell is determined by computing the number of immediate neighbors 

(including the four on the diagonals, so up to a maximum of eight) it currently has, according to the following rules: 

 

• A dead cell with exactly three live neighbors becomes a live cell (birth). 

• A live cell with two or three live neighbors stays alive (survival). 

• In all other cases, a cell dies or remains dead (overcrowding or loneliness). 

 

Once values for all the cells at the next step have been determined, all of them change values simultaneously.  Then 

the next step begins. 

 

Life is fascinating to watch .   

 

Life can be played on a board of any size and it can be given any desired starting configuration.  Depending on the 

starting configuration, Life may end (all the cells die), it may reach some other stable configuration (it looks the same 

from one step to the next), or it may enter a cycle of configurations.  We’ll say that the game of Life halts iff it reaches 

some stable configuration. 

 

We can imagine the Life simulator as a computing device that takes the initial board configuration as input, knows 

one operation (namely how to move from one configuration to the next), may or may not halt, and if it halts, produces 

some stable configuration as its result.  Conway and others have shown that, with an appropriate encoding of Turing 

machines and input strings as board configurations, the operation of any Turing machine can be simulated by the game 

of Life.  And a Life simulator can be written as a Turing machine.  So Life is equivalent in power to a Turing machine. 

18.2.8 One Dimensional Elementary Cellular Automata 
The game of Life can be thought of as a two-dimensional cellular automaton.  Each square looks at its neighboring 

cells in two dimensions to decide what should happen to it at the next step.  But we don’t need two dimensions to 

simulate a Turing machine.  Wolfram [2002] describes one-dimensional cellular automata  that look like the one 

shown in Figure 18.2.  As in the game of Life, each cell is either on or off (black or white), an initial configuration is 

specified, and the configuration of the automaton at each later step t is determined by independently computing the 

value for each cell, which in turn is a function solely of the values of itself and its neighbors (in this case two) at step 

t − 1.  

 

 

 

 

 

Figure 18.2  A one-dimensional cellular automaton 
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In the game of Life, Conway specified the rule that is to be used to compute the value of each cell at the next step.  

What rule shall we use for these one-dimensional automata?  Since each cell can have one of the two values (black or 

white) and each cell’s next configuration depends on the current configuration of three cells (itself and its two 

neighbors), there are 256 (28) rules that we could use.  Each rule contains 8 (23) parts, specifying what should happen 

next for each of the 8 possible current situations.  Figure 18.3 shows the rule that Wolfram numbers 110.  Wolfram 

describes a proof that Rule 110, with an appropriate (and complex) encoding of Turing machines and strings as cellular 

automata, is equivalent in power to the Turing machine. 

 

 

 

     Current: 

 

     Next: 

 

 

Figure 18.3  Rule 110 

 

 

 

18.2.9 DNA Computing 
 

See C 727 for a very short introduction to molecular biology and genetics. 

 

In 1993, Len Adleman observed that DNA molecules and Turing machine tapes both do the same thing: they encode 

information as strings.  Further, he observed that both nature and the Turing machine offer simple operations for 

manipulating those strings.  So he wondered: can DNA compute?  To begin to answer that question, he performed a 

fascinating experiment .  In a laboratory, he solved an instance of the Hamiltonian path problem9 using DNA 

molecules.  More precisely, what he did was the following: 

 

1. He chose a particular graph G (with 7 vertices and 14 edges). 

 

2. He encoded each vertex of G as a sequence of 8 nucleotides.  For example, a vertex might be represented as 

ACCTGCAG.   

 

3. He encoded each directed edge of G as a sequence of 8 nucleotides, namely the last four from the encoding of the 

start vertex and the first four from the encoding of the end vertex.  So, for example, if there was an edge from 

ACTTGCAG to TCGGACTG, then it would be encoded as GCAGTCGG. 

 

4. He synthesized many copies of each of the edge sequences, as well as many copies of the DNA complements10 

of all the vertex encodings.  So for example, since one of the vertices was encoded as ACTTGCAG, its complement, 

the sequence TGAACGTC, was synthesized.   

                                                           
9 The definition that Adleman uses for the Hamiltonian path problem is the following: let G be a directed graph, with 

one node s designated as the start node and another node d designated as the end node.  A Hamiltonian path through 

G is a path that begins at s, ends at d, and visits each other node in G exactly once.  A Hamiltonian path problem is 

then the following decision problem: given a directed graph G, with designated s and d, does there exist a Hamiltonian 

path through it?  We will return to this problem in Part V.  There we will use a slightly different definition that asks 

for any Hamiltonian path through G.  It will not specify a particular start and end vertex. 
10 Each DNA molecule is a double strand of nucleotide sequences.  Each nucleotide contains one of the four bases: 

adenine (A), thymine (T), guanine (G) and cytosine (C).  Each of these has a complement: C and G are complements 

and A and T are complements.  When a double strand of DNA is examined as a sequence of base pairs (one from each 
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5. He combined the vertex-complement molecules and the edge molecules in a test tube, along with water, salt, some 

important enzymes, and a few other chemicals required to support the natural biological processes. 

 

6. He allowed to happen the natural process by which complementary strands of DNA in solution will meet and 

stick together (anneal).  So for example, consider again the edge GCAGTCGG.  It begins at the vertex whose 

encoding is ACTTGCAG and it ends at a vertex whose encoding is TCGGACTG.  The complements of those vertices 

are TGAACGTC and AGCCTGAC.  So, in solution, the edge strands will anneal with the vertex-complement strands 

to produce the double strand:  

 

path of length one (i.e., one edge):          G C A G T C G G 

complement of sequence of two vertices:    T G A A C G T C A G C C T G A C 

 

But then, suppose that there is an edge from the second vertex to some third one.  Then that edge will anneal to 

the lower string that was produced above, generating:  

 

path of length two:           G C A G T C G G A C T G G G C T 

complement of sequence of two vertices:   T G A A C G T C A G C C T G A C 

 

Then a third vertex may anneal to the right end of the path sequence.  And so forth.  Eventually, if there is a path 

from the start vertex to the end one, there will be a sequence of fragments, like our top one, that corresponds to 

that path. 

 

7. He allowed a second biological reaction to occur.  The enzyme ligase that had been added to the mixture joins 

adjacent sequences of DNA.  So instead of strands of fragments, as above, the following strands will be produced:  

 

path of length two:           G C A G T C G G A C T G G G C T 

complement of sequence of three vertices:   T G A A C G T C A G C C T G A C C C G A T A C A 

 

8. He used the polymerase chain reaction (PCR) technique to make massive numbers of copies of exactly those 

sequences that started at the start vertex and ended at the end one.  Other sequences were still present in the mix 

after this step, but in much lower numbers. 

 

9. He used gel electrophoresis to select only those molecules whose length corresponded to a Hamiltonian path 

through the graph.  

 

10. He checked that each of the vertices other than the source and the destination did in fact occur in the selected 

molecules.  To do this required one pass through the following procedure for each intermediate vertex: 

10.1. Use a DNA “probe” that attracts molecules that contain a particular DNA sequence (i.e., the one for the 

vertex that is being checked).   

10.2. Use a magnet to attract the probes. 

10.3. Throw away the rest of the solution, thus losing those molecules that were not attached to the probe. 

 

11. He checked that some DNA molecules remained at the end.  Only molecules that corresponded to paths that 

started at the start vertex, ended at the end vertex, had the correct length for a path that visited each vertex exactly 

once, and contained each of the vertices could still be present.  So if any DNA was left, a Hamiltonian path 

existed. 

 

Since that early experiment, other scientists have tried other ways of encoding information in DNA molecules and 

using biological operations to compute with it .  The question then arises: is DNA computing Turing-equivalent?  

The answer depends on exactly what we mean by DNA computing.  In particular, what operations are allowed?  For 

example, must the model be limited only to operations that can be performed only by naturally occurring enzymes?  

                                                           

strand), every base occurs across from its complement.  So, whenever one strand has a C, the other has a G.  And 

whenever one strand has an A, the other has a T.   
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It has been shown that, given some reasonable assumptions about allowed operations, DNA computing is Turing-

equivalent.   

 

18.3 Exercises 
1) Church’s Thesis makes the claim that all reasonable formal models of computation are equivalent.  And we 

showed in, Section 17.4, a construction that proved that a simple accumulator/register machine can be 

implemented as a Turing machine.  By extending that construction, we can show that any computer can be 

implemented as a Turing machine.  So the existence of a decision procedure (stated in any notation that makes 

the algorithm clear) to answer a question means that the question is decidable by a Turing machine.   

 

Now suppose that we take an arbitrary question for which a decision procedure exists.  If the question can be 

reformulated as a language, then the language will be in D iff there exists a decision procedure to answer the 

question.  For each of the following problems, your answers should be a precise description of an algorithm.  It 

need not be the description of a Turing Machine: 

a) Let L = {<M> : M is a DFSM that doesn’t accept any string containing an odd number of 1’s}.  Show that L 

is in D. 

b) Let L = {<E> : E is a regular expression that describes a language that contains at least one string w that 

contains 111 as a substring}.  Show that L is in D. 

c) Consider the problem of testing whether a DFSM and a regular expression are equivalent.  Express this 

problem as a language and show that it is in D. 

 

2) Consider the language L = {w = xy : x, y  {a, b}* and y is identical to x except that each character is duplicated}.  

For example ababaabbaabb  L. 

a) Show that L is not context-free. 

b) Show a Post system (as defined in Section 18.2.4) that generates L. 

 

3) Show a Post system that generates AnBnCn. 

 

4) Show a Markov algorithm (as defined in Section 18.2.6) to subtract two unary numbers.  For example, on input 

111-1, it should halt with the string 11.  On input 1-111, it should halt with the string -11. 

 

5) Show a Markov algorithm to decide WW. 

 

6) Consider Conway’s Game of Life, as described in Section 18.2.7.  Draw an example of a simple Life initial 

configuration that is an oscillator, meaning that it changes from step to step but it eventually repeats a previous 

configuration.  
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19 The Unsolvability of the Halting Problem 

So far, we have focused on solvable problems and we have described an increasingly powerful sequence of formal 

models for computing devices that can implement solutions to those problems.  Our last attempt is the Turing machine 

and we’ve shown how to use Turing machines to solve several of the problems that were not solvable with a PDA or 

an FSM.  The Church-Turing thesis suggests that, although there are alternatives to Turing machines, none of them is 

any more powerful.  So, are we done?  Can we build a Turing machine to solve any problem we can formally describe? 

 

Until a bit before the middle of the 20th century, western mathematicians believed that it would eventually be possible 

to prove any true mathematical statement and to define an algorithm to solve any clearly stated mathematical problem.  

Had they been right, our work would be done.  But they were wrong.  And, as a consequence, the answer to the 

question in the last paragraph is no.  There are well-defined problems for which no Turing machine exists. 

 

In this chapter we will prove our first result that shows the limits of what we can compute.  In later chapters, we will 

discuss other unsolvable problems and we will see how to analyze new problems and then prove either that they are 

solvable or that they are not.  We will do this by showing that there are languages that are not in decidable (i.e., they 

are not in D).  So, recall the definitions of the sets D and SD that we presented in Chapter 17: 

 

• A Turing machine M with input alphabet  decides a language L  * (or, alternatively, implements a decision 

procedure for L) iff, for any string w  *: 

 

• If w  L then M accepts w, and 

• If w  L then M rejects w.  

 

A language L is decidable (and thus an element of D) iff there is a Turing machine M that decides it.   

 

• A Turing machine M with input alphabet  semidecides a language L  * (or, alternatively, implements a 

semidecision procedure for L) iff for any string w  *: 

 

• If w  L then M accepts w, and 

• If w  L then M does not accept w.  (Note that M may fail to accept either by rejecting or by failing to halt.) 

 

A language L is semidecidable (and thus an element of SD) iff there is a Turing machine that semidecides it.   

 

Many of the languages that we are about to consider are composed of strings that correspond, at least in part, to 

encodings of Turing machines.  Some of them may also contain other fragments.  So we will be considering languages 

such as: 

 

• L1 = {<M, w> : Turing machine M halts on input string w}. 

• L2 = {<M> : there exists no string on which Turing machine M halts}. 

• L3 = {<Ma, Mb> : Ma and Mb are Turing machines that halt on the same strings}. 

 

Recall that <M> is the notation that we use for the encoding of a Turing machine M using the scheme described in 

Section 17.6.  <M, w> means the encoding of a pair of inputs: a Turing machine M and an input string w.  <Ma, Mb> 

means the encoding of a pair of inputs, both of which are Turing machines. 

 

Consider L1 above.  It consists of the set of strings that encode a (Turing machine, string) pair with the property that 

the Turing machine M, when started with w on its tape, halts.  So, in order for some string s to be in language L1, it 

must possess two properties: 

 

• It must be syntactically well-formed, and 

• It must encode a machine M and a string w such that M would halt if started on w. 
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We will be attempting to find Turing machines that can decide (or semidecide) languages like L1, L2, and L3.  Building 

a Turing machine to check for syntactic validity is easy.  We would like to focus on the other part.  So, in our discussion 

of languages such as these, we will define the universe from which we are drawing strings to be the set that contains 

only those strings that meet the syntactic requirements of the language definition.  For example, that could be the set 

that contains descriptions of Turing machines (strings of the form <M>), or the set that contains descriptions of a 

Turing machine and a string (strings of the form <M, w>).  This contrasts with the convention we have been using up 

until now, in which the universe was *, where  is the alphabet over which L is defined.  This change in convention 

will be important whenever we talk about the complement of a language such as L1, L2, or L3.  So, for example, we 

have: 

 

 L1 = {<M, w> : Turing machine M does not halt on input string w}. 

 

Note that this convention has no impact on the decidability of any of these languages since the set of syntactically 

valid strings is in D.  So it is straightforward to build a precondition checker that accepts exactly the syntactically 

well-formed strings and rejects all others. 

19.1 The Language H is Semidecidable but Not Decidable 
We begin by considering the language we called L1 in the last section.  We’re now going to call it H, the halting 

problem language.  So, define: 

 

• H = {<M, w> : Turing machine M halts on input string w}.   

 

H is: 

• easy to state and to understand. 

• of great practical importance since a program to decide H could be a very useful part of a program-correctness 

checker.  You don’t want to go online to pay a bill and have the system go into an infinite loop after it has debited 

your bank account and before it credits the payment to your electric bill. 

• semidecidable. 

• not decidable. 

 

We need to prove these last two claims.  Before we attempt to do that, let’s consider them.   H would be decidable if 

there existed an algorithm that could take as input a program M and an input w and decide whether M will halt on w.  

It is easy to define such an algorithm that works some of the time.  For example, it would be easy to design an algorithm 

that could discover that the following program (and many others like it that contain no loops) halts on all inputs: 

 

1. Concatenate 0 to the end of the input string. 

2. Halt. 

 

It would also be easy to design an algorithm that could discover that the following program (and many others like it) 

halts on no inputs: 

 

1. Concatenate 0 to the end of the input string. 

2. Move right one square. 

3. Go to step 1. 

 

But, for H to be decidable, we would need an algorithm that decides the question in all cases.  Consider the following 

program: 

 

      times3(x: positive integer) =  

 While x  1 do: 

      If x is even then x = x/2. 

      Else x = 3x + 1. 

 

It is easy to prove that times3 halts on any positive integer that is a power of 2.  In that case, x decreases each time 

through the loop and must eventually hit 1.  But what about other inputs?  Will it halt, for example on 23,478?  It is 
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conjectured that, for any positive integer input, the answer to this question is yes.  But, so far, no one has been able 

either to prove that conjecture or to find a counterexample.  The problem of determining whether times3 must always 

halt is called the 3x+1 problem .   

 

So there appear to be programs whose halting behavior is difficult to determine.  We now prove that the problem of 

deciding halting behavior for an arbitrary (machine, input) pair is semidecidable but not decidable. 

Theorem 19.1  Semidecidability of the Halting Problem 

Theorem: The language H = {<M, w> : Turing machine M halts on input string w} is semidecidable.   

 

Proof: The proof is by construction of a semideciding Turing machine MSH. The design of MSH is simple.  All it has 

to do is to run M on w and accept if M halts.  So: 

 

MSH(<M, w>) =  

1. Run M on w.  

2. Accept. 

 

MSH accepts iff M halts on w.  Thus MSH semidecides H.   
◼ 

 

But H is not decidable.  This single fact is going to turn out to be the cornerstone of the entire theory of undecidability 

that we will discuss in the next several chapters. 

 

Compilers check for various kinds of errors in programs.  But, because H is undecidable, no 

compiler can offer a guarantee that a program is free of infinite loops.  C 669. 

 

Theorem 19.2  Undecidability of the Halting Problem 

Theorem: The language H = {<M, w> : Turing machine M halts on input string w} is not decidable. 

 

Proof:  If H were decidable, then there would be some Turing machine MH that decided it.  MH would implement the 

following specification: 

 

halts(<M: string, w: string>) = 

If <M> is the description of a Turing machine that halts on input w, then accept; else reject. 

 

Note that we have said nothing about how MH would work.  It might use simulation.  It might examine M for loops.  

It might use a crystal ball.  The only claim we are making about MH is that it can implement halts.  In other words, it 

can decide somehow whether M halts on w and report True if it does and False if it does not. 

 

Now suppose that we write the specification for a second Turing machine, which we’ll call Trouble: 

 

Trouble(x: string) = 

If halts accepts <x, x>, then loop forever; else halt. 

 

If there exists some MH that computes the function halts, then the Turing machine Trouble also exists.  We can easily 

write the code for it as follows:  Assume that C# is a Turing machine (similar to the copy machine that we showed in 

Example 17.11) that writes onto its tape a second copy of its input, separated from the first by a comma.  Also assume 

that MH exploits the variable r, into which it puts 1 if it is about to halt and accept and 0 if it is about to halt and reject.  

Then, using the notation defined in Section 17.1.5, Trouble is shown in Figure 19.1. 
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          >C#LMH                                 R 

                                  r = 1 

                 r = 0 

  

 

             h        Figure 19.1  A Turing machine that implements the function Trouble 

 

 

Trouble takes a single string x as its input.  It makes a copy of that string, moves its read/write head all the way back 

to the left, and then invokes MH on x, x.  MH will treat the first copy as a Turing machine and the second one as the 

input to that Turing machine.  When MH halts (which it must, since we’ve assumed that it is a deciding machine), 

Trouble will either halt immediately or loop forever, depending on whether MH stored a 0 or a 1 in r.   

 

What happens if we now invoke Trouble(<Trouble>)?  In other words, we invoke Trouble on the string that 

corresponds to its own description, as shown above.  Then Trouble will invoke MH(<Trouble, Trouble>).  Since the 

second argument of MH can be any string, this is a valid invocation of the function.  What should MH say? 

 

• If MH reports that Trouble(<Trouble>) halts (by putting a 1 in the variable r), then what Trouble actually does is 

to loop. 

• But if MH reports that Trouble(<Trouble>) does not halt (by putting a 0 in the variable r), then what Trouble 

actually does is to halt. 

 

Thus there is no response that MH can make that accurately predicts the behavior of Trouble(<Trouble>).  So we have 

found at least one input on which any implementation of halts must fail to report the correct answer.  Thus there exists 

no correct implementation of halts.  This means that MH does not exist.  So H is not decidable.   
◼ 

 

There is another way to state this proof that makes it clearer that what we have just done is to use diagonalization.  

Consider Table 19.1.  To form column 0, we lexicographically enumerate all Turing machines, using the procedure 

that was defined in Section 17.6.2.  To form row 0, we lexicographically enumerate all possible input strings over the 

alphabet  that we used to encode inputs to the universal Turing machine.  The cell [i, j] of the table contains the value 

1 if TMi halts on the j th  input string and is blank otherwise.  

 

 

 

 i1 i2 i3 … <Trouble> … 

machine1 1      

machine2  1     

machine3     1  

…    1   

Trouble   1   1 

… 1 1 1    

…    1   

 

Table 19.1  Using diagonalization to construct Trouble 

 

 

 

This table is infinite in both directions, so it will never be explicitly constructed.  But, if we claim that the Turing 

machine MH exists, we are claiming that it can compute the correct value for any cell in this table on demand.  Trouble 

must correspond to some row in the table and so, in particular, MH must be able to compute the values for that row.  

The string <Trouble> must correspond to some column in the table.  What value should occur in the grey cell of the 

picture?  There is no value that correctly describes the behavior of Trouble, since we explicitly constructed it to look 

at the grey cell and then do exactly the opposite of what that cell says. 
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So we have just proven (twice) a very important result that can be stated in any one of three ways: 

 

• The language H is not decidable. 

• The halting problem is unsolvable (i.e., there can exist no implementation of the specification we have given for 

the halts function). 

• The membership problem for the SD languages (i.e., those that can be accepted by some Turing machine) is not 

solvable. 

 

Recall that we have seen many times that any decision problem that we can state formally can be restated as a language 

recognition task.  So it comes as no surprise that this one can.  In the rest of this book, we will use whichever version 

of this result is clearer at each point. 

19.2 Some Implications of the Undecidability of H 
We now have our first example, H, of a language that is semidecidable (i.e., it is in SD) but that is not decidable (i.e., 

it is not in D).  What we will see in the rest of this section is that H is far more than an anomaly.  It is the key to the 

fundamental distinction between the classes D and SD. 

Theorem 19.3  H is the Key to the Difference between D and SD 

Theorem: If H were in D then every SD language would be in D. 

 

Proof: Let L be any SD language.  Since L is in SD, there exists a Turing machine ML that semidecides it.  Suppose 

H were also in D.  Then it would be decided by some Turing machine that we can call O (for oracle).  To decide 

whether some string w is in L, we can appeal to O and ask it whether ML will halt on the input w.  If the answer is yes, 

we can (without risk of getting into an infinite loop) run ML on w and see whether or not it accepts.  So, given ML (the 

machine that semidecides L), we can build a new Turing machine M' that decides L by appeal to O:   

 

M'(w: string) =  

1. Run O on <ML, w>.  

2. If O accepts (which it will iff ML halts on w), then: 

2.1. Run ML on w. 

2.2. If it accepts, accept.  Else reject. 

3. Else reject. 

 

Since O is a deciding machine for H, it always halts.  If it reports that M would halt on w, then M' can run M on w to 

see whether it accepts or rejects.  If, on the other hand, O reports that M would not halt then it certainly cannot accept, 

so M' rejects.  So M' always halts and returns the correct answer.  Thus, if H were in D, all SD languages would be.  
◼ 

 

But H is not in D.  And as we are about to see, it is not alone. 

19.3 Back to Turing, Church, and the Entscheidungsproblem 
At the beginning of Chapter 18, we mentioned that Turing invented the Turing machine because he was attempting to 

answer the question, “Given a set of axioms A and a sentence s, does there exist an algorithm to decide whether s is 

entailed by A?”  To do that, he needed a formal definition of an algorithm, which the Turing machine provided.  As 

an historical aside, we point out here that in Turing’s model, machines (with the exception of a universal machine that 

could simulate other machines) were always started on a blank tape.  So, while in H we ask whether a Turing machine 

M halts on some particular input w, Turing would ask simply whether it halts.  But note that this is not a significant 

change.  In our model, all inputs are of finite length.  So it is possible to encode any particular input in the states of a 

machine that is to operate on it.  That machine can start out with a blank tape, write the desired input on its tape, and 

then continue as though the tape had contained the input.  
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Having defined the Turing machine (which he called simply a “computing machine”), Turing went on to show the 

unsolvability of the halting problem.  He then used that result to show that no solution to the Entscheidungsproblem 

can exist.  An outline of Turing’s proof is the following: 

 

1. If we could solve the problem of determining whether a given Turing machine ever prints the symbol 0, then we 

could solve the problem of determining whether a given Turing machine halts.  Turing presented the technique 

by which this could be done. 

2. But we can’t solve the problem of determining whether a given Turing machine halts, so neither can we solve the 

problem of determining whether it ever prints 0. 

3. Given a Turing machine M, we can construct a logical formula F that is a theorem, given the axioms of Peano 

arithmetic, iff M ever prints the symbol 0.  Turing also presented the technique by which this could be done. 

4. If there were a solution to the Entscheidungsproblem, then we would be able to determine the theoremhood of 

any logical sentence and so, in particular, we could use it to determine whether F is a theorem.  We would thus 

be able to decide whether M ever prints the symbol 0.   

5. But we know that there is no procedure for determining whether M ever prints 0. 

6. So there is no solution to the Entscheidungsproblem. 

 

This proof is an example of the technique that we will use extensively in Chapter 21 to show that problems are not 

decidable.  We reduce a problem that is already known not to be decidable to a new problem whose decidability is in 

question.  In other words, we show that if the new problem were decidable by some Turing machine M, then we could 

use M as the basis for a procedure to decide the old problem.  But, since we already know that no solution to the old 

problem can exist, no solution for the new one can exist either.  The proof we just sketched uses this technique twice: 

once in steps 1 and 2 to show that we cannot solve the problem of determining whether a Turing machine ever prints 

the symbol 0, and a second time, in steps 3-6, to show that we cannot solve the Entscheidungsproblem.   

19.4 Exercises 
1) Consider the language L = {<M> : Turing machine M accepts at least two strings}. 

a) Describe in clear English a Turing machine M that semidecides L. 

b) Now change the definition of L just a bit.  Consider: 

 

  L = {<M> : Turing machine M accepts exactly 2 strings>. 

 

 Can you tweak the Turing machine you described in part a to semidecide L? 

 

2) Consider the language L = {<M> : Turing machine M accepts the binary encodings of the first three prime 

numbers}. 

a) Describe in clear English a Turing machine M that semidecides L. 

b) Suppose (contrary to fact, as established by Theorem 19.2) that there were a Turing machine Oracle that 

decided H.  Using it, describe in clear English a Turing machine M that decides L. 
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20 Decidable and Semidecidable Languages 

Now that we have shown that the halting problem is undecidable, it should be clear why we introduced the notion of 

a semidecision procedure.  For some problems, it is the best we will be able to come up with.  In this chapter we 

explore the relationship between the classes D and SD, given what we now know about the limits of computation. 

20.1 D: The Big Picture 
First, we observe that the class D includes the regular and the context-free languages.  More precisely: 

Theorem 20.1  All Context-Free Languages, Plus Others, are in D 

Theorem: The set of context-free languages is a proper subset of D. 

 

Proof:  By Theorem 14.1, the membership problem for the context-free languages is decidable.  So the context-free 

languages are a subset of D.  And there is at least one language, AnBnCn, that is decidable but not context-free.  So the 

context-free languages are a proper subset of D.   
◼ 

20.2 SD: The Big Picture 
Now what can we say about the relationship between D and the larger class SD?  Almost every language you can 

think of that is in SD is also in D.  Examples include: 

 

• AnBnCn = {anbncn : n ≥ 0}. 

• WcW = {wcw : w  {a, b}*}. 

• WW = {ww : w  {a, b}*}. 

• {w of the form: xy=z, where: x,y,z  {0, 1}* and, when x, y, and z are viewed as binary numbers, xy = z}.  

 

But there are languages that are in SD but not in D.  We already know one: 

 

• H = {<M, w> : Turing machine M halts on input string w}. 

 

What about others?  It isn’t possible to come up with any physical examples since there are only finitely many 

molecules in the causal universe.  So every physical set is finite and thus regular.  But unless we want to model all our 

real world problems using only the power of a finite state machine, we generally ignore the fact that the true language 

is finite and model it as a more complex set that is unbounded and thus, for all practical purposes, infinite.  If we do 

that, then here’s a language that is effectively in SD and has the look and feel of many SD languages: 

 

• L = {w: w is the email address of someone who will respond to a message you just posted to your newsgroup}. 

 

If someone responds, you know that their email address is in L.  But if your best friend hasn’t responded yet, you don’t 

know that she isn’t going to.  All you can do is wait. 

 

In Chapter 21 we will see that any question that asks about the result of running a Turing machine is undecidable (and 

so its corresponding language formulation is not in D).  In a nutshell, if you can’t think of a way to answer the question 

by simulating the Turing machine, it is very likely that there is no other way to do it and the question is undecidable.   

But keep in mind that we said that the question must ask about the result of running the Turing machine.  Questions 

that ask simply about the Turing machine itself (e.g., how many states does it have) or about its behavior partway 

through its computation (e.g., what does it do after exactly 100 steps) are generally decidable. 

 

In Chapter 18 we will see some examples of undecidable problems that do not ask questions about Turing machines.  

If you’d like to be convinced that this theory applies to more than the analysis of Turing machines (or of programs in 

general), skip ahead briefly to Chapter 18. 
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Figure 20.1  The relationships between D and SD 

 

 

In this chapter we will look at properties of four classes of languages and see how they relate to each other.  The 

classes we will consider are shown in Figure 20.1.  They are: 

 

• D, corresponding to the inner circle of the figure, the set of decidable languages. 

• SD, corresponding to the outer circle of the figure, the set of semidecidable languages. 

• SD/D, corresponding to the donut in the figure, the set of languages that are in SD but not D. 

• SD, corresponding to the hatched area in the figure, the set of languages that are not even semidecidable. 

20.3 Subset Relationships between D and SD 
The picture that we just considered implicitly makes three claims about the relationship between the classes D and 

SD.  From the inside out they are: 

 

1. D is a subset of SD.  In other words, every decidable language is also semidecidable. 

2. There exists at least one language that is in SD but not D and so the donut in the picture is not empty. 

3. There exist languages that are not in SD.  In other words, the gray area of the figure is not empty. 

 

We have already proven the second of these claims:  In Chapter 19 we described H = {<M, w> : Turing machine M 

halts on input string w} and showed that H is not in D but is in SD.  We now consider each of the other two claims. 

Theorem 20.2  D is a Subset of SD 

Theorem: Every decidable language is also semidecidable. 

 

Proof: The proof follows directly from the definitions of deciding and semideciding Turing machines.  If L is in D, 

then it is decided by some Turing machine M.  M therefore accepts all and only the strings in L.  So M is also a 

semideciding machine for L.  Since there is a Turing machine that semidecides L, it is in SD.   
◼ 

 

Next we consider whether the class SD includes all languages or whether there are languages that are not even 

semidecidable.  As the picture we drew at the beginning of the chapter suggests (by the existence of the gray region), 

the answer is that there are languages that are not in SD. 

Theorem 20.3  Not all Languages are in SD 

Theorem: There exist languages that are not in SD. 

 

Proof: We will use a counting argument.  Assume any nonempty alphabet .  First we prove the following lemma: 

 

Lemma: There is a countably infinite number of SD languages over . 

 

Proof of Lemma: Every semidecidable language is semidecided by some Turing machine.  We can lexicographically 

enumerate all the syntactically legal Turing machines with input alphabet .  That enumeration is infinite, so, by 

Theorem 32.1, there is a countably infinite number of semideciding Turing machines.  There cannot be more SD 
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languages than there are semideciding Turing machines, so there are at most a countably infinite number of SD 

languages.  There is not a one-to-one correspondence between SD languages and semideciding Turing machines since 

there is an infinite number of machines that semidecide any given language.  But the number of SD languages must 

be infinite because it includes (by Theorem 20.1 and Theorem 20.2) all the context-free languages and, by Theorem 

13.2, there are an infinite number of them.  So there is a countably infinite number of SD languages. 

   

Proof of Theorem: There is an uncountably infinite number of languages over  (by Theorem 2.3).  So there are more 

languages over  than there are in SD.  Thus there must exist at least one language that is in SD.   
◼ 

 

We will see our first example of a language that is in SD in the next section. 

20.4 The Classes D and SD Under Complement 
The regular languages are closed under complement.  The context free languages are not.  What about the decidable 

(D) languages and the semidecidable (SD) languages?  

Theorem 20.4   The Decidable Languages are Closed under Complement 

Theorem: The class D is closed under complement. 

 

Proof: The proof is by a construction that is analogous to the one we used to show that the regular languages are 

closed under complement.  Let L be any decidable language.  Since L is in D, there is some deterministic Turing 

machine M that decides it.  Recall that a deterministic Turing machine must be completely specified (i.e., there must 

be a transition from every nonhalting state on every character in the tape alphabet), so there is no need to worry about 

a dead state.  From M we construct M to decide L.  Initially, let M = M.  Now swap the y and n states.  M halts and 

accepts whenever M would halt and reject; M halts and rejects whenever M would halt and accept.  Since M always 

halts, so does M.  And M accepts exactly those strings that M would reject, i.e., L.  Since there is a deciding machine 

for L, it is in D.   
◼ 

Theorem 20.5  The Semidecidable Languages are not Closed under Complement 

Theorem: The class SD is not closed under complement. 

 

Proof:  The proof is by contradiction.  Suppose the class SD were closed under complement. Then, given any language 

L in SD, L would also be in SD.  So there would be a Turing machine M that semidecides L and another Turing 

machine M that semidecides L.  From those two we could construct a new a Turing machine M# that decides L.  On 

input w, M# will simulate M and M, in parallel, running on w.  Since w must be an element of either L or L, one of 

M or M must eventually accept.  If M accepts, then M# halts and accepts.  If M accepts, then M# halts and rejects.  

So, if the SD languages were closed under complement, then all SD languages would also be in D.  But we know from 

Chapter 19 that H = {<M, w> : Turing machine M halts on input string w}is in SD but not D.   
◼ 

 

These last two theorems give us a new way to prove that a language L is in D (or, in fact, a way to prove that a language 

is not in SD): 

Theorem 20.6  L and L Both in SD is Equivalent to L is in D 

Theorem: A language L is in D iff both it and its complement L are in SD. 

 

Proof: We prove each direction of the implication: 

 

Proof that L in D implies L and L are in SD: Because L is in D, it must also be in SD by Theorem 20.2.  But what 

about L?  By Theorem 20.4, the class D is closed under complement, so L is also in D.  And so, using Theorem 

20.2 again, it is also in SD. 
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Proof that L and L are in SD implies L is in D: The proof is by construction and uses the same construction that we 

used to prove Theorem 20.5:  Since L and L are in SD, they each have a semideciding Turing machine.  Suppose L 

is semidecided by M and L is semidecided by M.  From those two we construct a new a Turing machine M# that 

decides L.  On input w, M# will simulate M and M, in parallel, running on w.  Since w must be an element of either L 

or L, one of M1 or M2 must eventually accept.  If M1 accepts, then M# halts and accepts.  If M2 accepts, then M# halts 

and rejects. Since M# decides L, L is in D.   
◼ 

 

We can use Theorem 20.6 to prove our first example of a language that is not in SD:  

Theorem 20.7  H is not in SD 

Theorem: The language H, (the complement of H) = {<M, w> : Turing machine M does not halt on input string w} 

is not in SD.   

 

Proof:  Recall that we are defining the complement of languages involving Turing machine descriptions with respect 

to the universe of syntactically well-formed strings.  From Theorem 19.1, we know that H is in SD (since we showed 

a semideciding Turing machine for it).  By Theorem 20.6 we know that if H were also in SD then H would be in D.  

But, by Theorem 19.2, we know that H is not in D.  So H is not in SD. 
◼ 

20.5  Enumerating a Language 
In most of our discussion so far, we have defined a language by specifying either a grammar that can generate it or a 

machine that can accept it.  But it is also possible to specify a machine that is a generator.  Its job is to enumerate (in 

some order) the strings of the language. We will now explore how to use a Turing machine to do that. 

20.5.1 Enumerating in Some Undefined Order 
To generate a language L, we need a Turing machine M whose job is to start with a blank tape, compute for a while, 

place some string in L on the tape, signal that we should snapshot the tape to record its contents, and then go back and 

do it all that again.  If L is finite, we can construct M so that it will eventually halt.  If L is infinite, M must continue 

generating forever.  If a Turing machine M behaves in this way and outputs all and only the strings in L, then we say 

that M enumerates L.  Any enumerating Turing machine M must have a special state that we will call p (for print).  

Whenever M enters p, the shortest string that contains all the nonblank characters on M’s tape will be considered to 

have been enumerated by M.  Note that p is not a halting state.  It merely signals that the current contents of the tape 

should be viewed as a member of L.  M may also have a halting state if L is finite.  Formally, we say that a Turing 

machine M enumerates L iff, for some fixed state p of M, 

 

 L = {w : (s, ) |-M* (p, w)} 

 

A language L is Turing-enumerable iff there is a Turing machine that enumerates it.  Note that we are making no 

claim here about the order in which the strings in L are generated. 

 

To make it easy to describe enumerating Turing machines in our macro language, we’ll define the simple subroutine 

P, shown in Figure 20.2.  It simply enters the state p and halts. 

 

 

  

  

  P Figure 20.2  A subroutine that takes a snapshot of the tape 
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Example 20.1 Enumerating in Lexicographic and in Random Order 

Consider the language a*.  Here are two different Turing machines that enumerate it: 

 

 M1:      M2: 

 

  >PaR      >PaPRaRaRaPP 

 

M1 enumerates a* in lexicographic order.  M2 enumerates it in a less straightforward order.  It will produce the 

sequence , a, aaa, aa, aaaaa, aaaa, … 

 

So now we have one mechanism for using a Turing machine to generate a language and a separate mechanism for 

using a Turing machine to accept one.  Is there any relationship between the class of Turing-enumerable languages 

and either the class of decidable languages (D) or the class of semidecidable languages (SD)?  The answer is yes.  The 

class of languages that can be enumerated by a Turing machine is identical to SD.   

Theorem 20.8  Turing Enumerable is Equivalent to Semidecidable 

Theorem: A language is in SD (i.e., it can be semidecided by some Turing machine) iff it is Turing-enumerable. 

 

Proof:  We must do two proofs, one that shows that if a language is Turing enumerable then it is in SD and another 

that shows that if a language is in SD then it is Turing enumerable. 

 

Proof that if a language is Turing enumerable then it is in SD: if a language L is Turing enumerable then there is 

some Turing machine M that enumerates it.  We convert M to a machine M' that semidecides L:   

 

    M' (w: string) =  

1. Save input w on a second tape. 

2. Invoke M, which will enumerate L.  Each time an element of L is enumerated, compare it to w.  If they match, 

halt and accept.  Otherwise, continue with the enumeration. 

 

Because there is a Turing machine that semidecides L, it is in SD.  Figure 20.3 illustrates how M' works. 

 

 

 

             w 

 

       

           =w?  accept 

              … ,w3, w2, w1       

 

             M          M' 

 

 

 

 

Figure 20.3  Using an enumerating machine in a semidecider 

 

 

 

Proof that if a language is in SD then it is Turing enumerable: if L  * (for some ) is in SD, then there is a Turing 

machine M that semidecides it.  We will use M to construct a new machine M' that enumerates L.  The idea behind M' 

is that it will lexicographically enumerate *.  It will consider each of the strings it enumerates as a candidate for 

membership in L.  So it will pass each such string to M.  Whenever M accepts some string w, M' will output it.  The 

problem is that M is not guaranteed to halt.  So what happens if M' invokes M on a string that is not in L and M loops?  

If we are not careful, M' will wait forever and never give other strings a chance.    
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To solve this problem, M' will not just invoke M and sit back and wait to see what happens.  It will carefully control 

the execution of M.  In particular, it will invoke M on string1 and let it compute one step.  Then it will consider string2.  

It will allow M to compute one step on string2 and also one more step on string1.  Then it will consider string3, this 

time trying the new string3 for one step and applying one more step to the computations on string2 and on string1.  

Anytime M accepts some string in this sequence, M' will output that string.  If there is some string s that is not in L, 

then the computation corresponding to s will either halt and reject or fail to halt.  In either case, M' will never output 

s.   

 

This pattern is shown in Figure 20.4.  Each column corresponds to a candidate string and each row corresponds to one 

stage of the process.  At each stage, a new string is added and one more step is executed for each string that is already 

being considered but on which M has not yet halted.  The number of steps that have been executed on each string so 

far is shown in brackets.  If M does halt on some string (as, for example, b, in the chart below), that column will 

simply be skipped at future stages. 

 

 

 

 [1]   

 [2]  a   [1] 

 [3]  a   [2]  b   [1] 

 [4]  a   [3]  b   [2]  aa   [1] 

 [5]  a   [4]  b   [3]  aa   [2]  ab   [1] 

 [6]  a   [5]     aa   [3]  ab   [2]  ba   [1] 

 

Figure 20.4  Using dovetailing to control simulation 

 

 

We will call the technique that we just described dovetailing.  It will turn out to be useful for other similar kinds of 

proofs later. 

 

So a description of M' is: 

 

     M'() = 

1. Enumerate all w  * lexicographically.  As each string wj is enumerated: 

1.1. Start up a copy of M with wj as its input. 

1.2. Execute one step of each Mi initiated so far, excluding only those that have previously halted. 

2. Whenever an Mi accepts, output wi. 
◼ 

20.5.2 Enumerating in Lexicographic Order 
So far, we have said nothing about the order in which the strings in L are enumerated by M.  But now suppose we do.  

We say that M lexicographically enumerates L iff M enumerates the elements of L in lexicographic order.  A language 

L is lexicographically Turing-enumerable  iff there is a Turing machine that lexicographically enumerates it. 

 

Now we can ask whether there is any relationship between the class of lexicographically Turing-enumerable languages 

and any of the other classes we have already defined.  Just as we found in the last section, in the case of unordered 

enumeration, we discover that the answer is yes.  The class of languages that can be lexicographically enumerated by 

a Turing machine is identical to D. 

Theorem 20.9  Lexicographically Turing Enumerable is Equivalent to Decidable 

Theorem: A language is in D iff it is lexicographically Turing-enumerable. 

 

Proof: Again we must do two proofs, one for each direction of the implication. 
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Proof that if a language is in D then it is lexicographically Turing enumerable:  First consider what happens if L is 

finite.  Then it is both in D and lexicographically TE.  It is in D because every finite language is regular (Theorem 

8.2), every  regular language is CF (Theorem 13.1), and every CF language is in D (Theorem 20.1).  And it is 

lexicographically TE by a hardwired TM that writes the elements of L one  at a time, in lexicographic order, and then 

halts. 

 

Now consider the case in which L is infinite: If a language L  * (for some ) is in D, then there is some Turing 

machine M that decides it.  Using M, we can build M', which lexicographically generates the strings in * and tests 

them, one at a time by passing them to M.  Since M is a deciding machine, it halts on all inputs, so dovetailing is not 

required here.  If, on string w, M halts and accepts, then M' outputs w.  If M halts and rejects, then M' just skips w and 

goes on to the next string in the lexicographic enumeration.  Thus M' lexicographically enumerates L.  The relationship 

between M and M' can be seen in Figure 20.5. 

 

 

          

 

                   

     3*, 2*, 1*              L?             yes         k*     

                   no 

 

     M 

 M'  

 

 

 

Figure 20.5  Using a decider in a lexicographic enumerator 

 

 

 

 

Proof that if a language is lexicographically Turing enumerable then it is in D:  If a language L is lexicographically 

Turing enumerable, then there is some Turing machine M that lexicographically enumerates it.  Using M, we can build 

M', which, on input w, starts up M and waits until either M generates w (in which case M' accepts w), M generates a 

string that comes after w in the enumeration (in which case M' rejects because it is clear that M will never go back and 

generate w), or M halts (in which case M' rejects because M failed to generate w).  Thus M' decides L.  The relationship 

between M and M' can be seen in Figure 20.6. 

 

 

              w 

 

 

          

 

        = w?         accept           

            3*, 2*, 1*         

        > w?         reject 

  M                            

         no more s?                        reject 

   

  

     M' 

 

 

Figure 20.6  Using a lexicographic enumerator in a decider 
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◼ 

20.6 Summary 
In this chapter we have considered several ways in which the classes D and SD are related and we have developed 

theorems that give us ways to prove that a specific language L is in D and/or SD.  Figure 20.7 attempts to summarize 

these results.  The column labeled IN lists our techniques for proving that a language is in the corresponding language 

class.  The column labeled OUT lists our techniques for proving that a language is not in the corresponding language 

class.  We have listed reduction here for completeness.  We will present reduction as a proof technique in Chapter 21.  

And we have mentioned unrestricted grammars, which we will discuss in Chapter 23.  You’ll also note, in the figure, 

one example language in each class. 

 

          

IN               OUT 

        H 

 

 

Semideciding TM,            SD                Reduction 

Turing enumerable, or              H 

Unrestricted grammar 

 

 

Deciding TM,               D                Diagonalization, or 

Lexicicographically enumerable, or        AnBnCn = {anbncn : n ≥ 0}              Reduction 

L and complement in SD 

 

 

 

CF grammar,           Context Free               Pumping, or 

PDA, or                AnBn =  {anbn : n ≥ 0}              Closure 

Closure 

 

         Regular 

           {a*b*} 

FSM,                         Pumping, or 

Regular expression,                    Closure 

Regular grammar, or 

Closure 

 

 

 

 

 

 

 

Figure 20.7  Relating four language classes 

 

 

20.7 Exercises 
1) Show that the set D (the decidable languages) is closed under: 

a) Union 

b) Concatenation 

c) Kleene star 
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d) Reverse 

e) Intersection 

 

2) Show that the set SD (the semidecidable languages) is closed under: 

a) Union 

b) Concatenation 

c) Kleene star 

d) Reverse 

e) Intersection 

 

3) Let L1, L2, …, Lk be a collection of languages over some alphabet  such that: 

• For all i  j, Li  Lj = . 

• L1  L2  …  Lk = *. 

• i (Li is in SD). 

Prove that each of the languages L1 through Lk is in D. 

 

4) If L1 and L3 are in D and L1  L2  L3, what can we say about whether L2 is in D? 

 

5) Let L1 and L2 be any two decidable languages.  State and prove your answer to each of the following questions: 

a) Is it necessarily true that L1 - L2 is decidable? 

b) Is it possible that L1  L2 is regular? 

 

6) Let L1 and L2 be any two undecidable languages.  State and prove your answer to each of the following questions: 

a) Is it possible that L1 - L2 is regular? 

b) Is it possible that L1  L2 is in D? 

 

7) Let M be a Turing machine that lexicographically enumerates the language L.  Prove that there exists a Turing 

machine M that decides LR. 

 

8) Construct a standard one-tape Turing machine M to enumerate the language: 

 

{w : w is the binary encoding of a positive integer that is divisible by 3}.   

 

Assume that M starts with its tape equal to .  Also assume the existence of the printing subroutine P, defined in 

Section 20.5.1.  As an example of how to use P, consider the following machine, which enumerates L, where L 

= {w : w is the unary encoding of an even number}: 

 

 

            > P R 1 R 1  

 

You may find it useful to define other subroutines as well.   

 

9) Construct a standard one-tape Turing machine M to enumerate the language AnBn.  Assume that M starts with its 

tape equal to .  Also assume the existence of the printing subroutine P, defined in Section 20.5.1. 

 

10) If w is an element of {0, 1}*, let w be the string that is derived from w by replacing every 0 by 1 and every 1 

by 0.  So, for example, 011 = 100.  Consider an infinite sequence S defined as follows: 

 

S0 = 0. 

Sn+1 = Sn Sn. 

 

The first several elements of S are 0, 01, 0110, 01101001, 0110100110010110.  Describe a Turing 

machine M to output S.  Assume that M starts with its tape equal to .  Also assume the existence of the printing 

subroutine P, defined in Section 20.5.1, but now with one small change: if M is a multitape machine, P will output 

the value of tape 1.  (Hint: use two tapes.) 
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11) Recall the function mix, defined in Example 8.23.  Neither the regular languages nor the context-free languages 

are closed under mix.  Are the decidable languages closed under mix?  Prove your answer. 

 

12) Let  = {a, b}.  Consider the set of all languages over  that contain only even length strings. 

a) How many such languages are there? 

b) How many of them are semidecidable? 

 

13) Show that every infinite semidecidable language has a subset that is not decidable. 
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21 Decidability and Undecidability Proofs 

We now know two languages that are not in D: 

 

• H     = {<M, w> : Turing machine M halts on input w} 

• H  = {<M, w> : Turing machine M does not halt on input w} (which also isn’t in SD) 

 

In this chapter we will see that they are not alone.  Recall that we have two equivalent ways to describe a question: as 

a language (in which case we ask whether it is in D), and as a problem (in which case we ask whether it is decidable 

or whether it can be solved).  Although all of our proofs will be based on the language formulation, it is sometimes 

easier, particularly for programmers, to imagine the question in its problem formulation.  Table 21.1 presents a list, 

stated both ways, of some of the undecidable questions that we will consider in this and succeeding chapters. 

 

 

 

The Problem View The Language View 

Given a Turing machine M and a string w, does M halt on w? H = {<M, w> : TM M halts on input w} 

 

Given a Turing machine M and a string w, does M not halt on 

w? 
H = {<M, w> : TM M does not halt on input w} 

Given a Turing machine M, does M halt on the empty tape? H = {<M> : TM M halts on } 

 

Given a Turing machine M, is there any string on which M 

halts? 

HANY = {<M> : there exists at least one string on 

                         which TM M halts } 

Given a Turing machine M, does M accept all strings? AALL = {<M> : L(M) = *} 

 

Given two Turing machines Ma and Mb, do they accept the 

same languages? 

EqTMs  = {<Ma, Mb> : L(Ma) = L(Mb)} 

Given a Turing machine M, is the language that M accepts 

regular? 

TMREG = {<M> : L(M) is regular} 

 

Table 21.1  The problem and the language view 

 

 

Some of these languages are also not in SD.  We will return to them in Section 21.6, where we will see how to prove 

that languages are not in SD. 

 

The primary technique that we will use here to show that a language L is not in D is reduction.  We will show that if 

L were in D, we could use its deciding machine to decide some other language that we already know is not decidable.  

Thus we can conclude that L is not decidable either. 

21.1 Reduction 
We reduce a problem to one or more other problems when we describe a solution to the first problem in terms of 

solutions to the others.  We generally choose to reduce to simpler problems, although sometimes it makes sense to 

pick problems just because we already have solutions for them.  Reduction is ubiquitous in everyday life, puzzle 

solving, mathematics, and computing. 

21.1.1 Everyday Examples of Reduction 

Example 21.1 Calling Jen 

We want to call our friend Jen but don’t have her number.  But we know that Jim has it.  So we reduce the problem of 

finding Jen’s number to the problem of getting hold of Jim. 
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The most important property of a reduction is clear even in the very simple example of finding Jen’s number: 

 

            The reduction exists  There is a procedure that works for getting hold of Jim → We will have Jen’s number. 

 

But what happens if there is no way to get hold of Jim?  Does that mean that we cannot find Jen’s number?  No.  There 

may be some other way to get it. 

 

If, on the other hand, we knew (via some sort of oracle) that there is no way we could ever end up with Jen’s number, 

and if we still believed in the reduction (i.e., we believed that Jim knows Jen’s number and would be willing to give 

it to us), we would be forced to conclude that there exists no effective procedure for getting hold of Jim. 

Example 21.2 Crisis Detection 

Suppose that we want to know whether there is some sort of crisis brewing in (pick one): the world, our city, the 

company we work for.  We’d like to ask: the Pentagon, the city council, or top management, but they probably won’t 

tell us.  But perhaps we can reduce this question to one we can answer: Has there been a spike this week in orders for 

middle-of-the-night pizza delivery to: the Pentagon, the town hall, corporate headquarters?  This reduction will work 

provided all of the following are true: 

 

• There will be all-nighters at the specified locations if and only if there is a crisis. 

• There will be a spike in middle-of-the-night pizza orders if and only if there are all-nighters there. 

• It is possible to find out about pizza orders. 

 

The crisis-detection example illustrates a common use of reduction: we wish to solve a problem but have no direct 

way of doing so.  So we look for a way to transform the problem we care about into some other problem that we can 

solve.  The transformation must have the property that the answer to this new problem provides the answer to the 

original one. 

Example 21.3 Fixing Dinner 

We can reduce the problem of fixing dinner to a set of simpler problems: fix the entrée, fix the salad, and fix the 

dessert. 

 

Example 21.4 Theorem Proving 

Suppose that we want to establish Q(A) and that we have, as a theorem: 

 

  x (R(x)  S(x)  T(x) → Q(x)).    

 

Then we can reduce the problem of proving Q(A) to three new ones: proving R(A), S(A), and T(A).   

 

Backward chaining solves problems by reducing complex goals to simpler ones until direct 

solutions can be found.  It is used in theorem provers and in a variety of kinds of automatic 

reasoning and intelligent systems.  C 762. 

 

These last two examples illustrate an important kind of reduction, often called divide-and-conquer.  One problem is 

reduced to two or more problems, all of which must be solved in order to produce a solution to the original problem.  

But each of the new problems is assumed to be easier to solve than the original one was.   

Example 21.5 Nim 

Nim11  starts with one or more piles of sticks.  Two players take turns removing sticks from the piles.  At each turn, 

a player chooses a pile and may remove some or all of the sticks from that pile.  The player who is left with no sticks 

                                                           
11 This description is taken from [Misra 2004]. 
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to remove loses.  For example, an initial configuration of a Nim game could be the following, in which the sticks are 

arranged in three piles: 

 

              

              

              

                  

                   

 

Consider the problem of determining whether there is any move that we can make that will guarantee that we can win.  

The obvious way to solve this problem is to search the space of legal moves until we find a move that makes it 

impossible for the other player to win.  If we find such a move, we know that we can force a win.  If we don’t, then 

we know that we cannot.  But the search tree can be very large and keeping track of it is nearly impossible for people.  

So how can we answer the question? 

 

We can reduce the problem of searching a Nim game tree to a simple problem in Boolean arithmetic.  We represent 

the number of sticks in each pile as a binary number, arrange the numbers in a column, lining up their low-order digits, 

and then apply the exclusive-or (XOR) operator to each column.  So, in the example above, we’d have: 

 

 100    (4) 

 010    (2) 

 101    (5) 

 011 

 

If the resulting string is in 0+, then the current board position is a guaranteed loss for the current player.  If the resulting 

string is not in 0+, then there is a move by which the current player can assure that the next position will be a guaranteed 

loss for the opponent.  So, given a Nim configuration, we can decide whether we can guarantee a win by transforming 

it into the XOR problem we just described and then checking to see that the result of the XOR is not in 0+. 

 

In addition, we can easily extend this approach so that it tells us what move we should make.  All that is required is 

to choose one number (i.e., one pile of sticks) and subtract from it some number such that the result of XORing 

together the new counts will yield some string in 0+.  There may be more than one such move, but it suffices just to 

find the first one.  So we try the rows one at a time.  In our example, we quickly discover that if we remove one stick 

from the second pile (the one currently containing two sticks), then we get:  

 

 100    (4) 

 001    (1) 

 101    (5) 

 000 

 

So we remove one stick from the second pile.  No search of follow-on moves is required. 

 

Some combinatorial problems can be solved easily by reducing them to graph problems.  B 

648. 

Example 21.6 Computing a Function 

Suppose that we have access only to a very simple calculator that can perform integer addition but not multiplication.  

We can reduce the problem of computing xy to the problem of computing a + b as follows: 

 

        multiply(x: integer, y: integer) =  

 answer = 0. 

 For i = 1 to |y| do: 

 answer = answer + x. 

 Return answer. 
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21.2 Using Reduction to Show that a Language is Not Decidable 
So far, we have used reduction to show that problem1 is solvable if problem2 is.  Now we will turn the idea around 

and use it to show that problem2 is not solvable given that we already know that problem1 isn’t.  Reduction, as we are 

about to use it, is a proof by contradiction technique.  We will say, “Suppose that problem2 were decidable.  Then we 

could use its decider as a subroutine that would enable us to solve problem1. But we already know that there is no way 

to solve problem1.  So there isn’t any way to solve problem2 either.” 

Example 21.7 Dividing an Angle 

Given an arbitrary angle, divide it into sixths, using only a straightedge and a compass.  We show that there exists no 

general procedure to solve this problem.  Suppose that there were such a procedure, which we’ll call sixth.  Then we 

could define the following procedure to trisect an arbitrary angle: 

 

     trisect(a: angle) = 

   1. Divide a into six equal parts by invoking sixth(a). 

 2. Ignore every other line, thus dividing a into thirds. 

 

So we have reduced the problem of trisecting an angle to the problem of dividing it into sixths.  But we know that 

there exists no procedure for trisecting an arbitrary angle using only a straightedge and compass.  The proof of that 

claim relies on a branch of mathematics known as Galois theory , after the French mathematician Evariste Galois, 

who was working on the problem of discovering solutions for polynomials of arbitrary degree.  An interesting tidbit 

from the history of mathematics:  Galois’s work in this area was done while he was still a teenager, but was not 

published during his lifetime, which ended when he was killed in a duel in 1832 at age 20. 

 

If sixth existed, then trisect would exist.  But we know that trisect cannot exist.  So neither can sixth. 

 

In the rest of this chapter, we are going to construct arguments of exactly this form to show that various languages are 

not in D because H = {<M, w> : Turing machine M halts on input string w} isn’t.  We’ll then extend the technique to 

show that some languages are not in SD either (because H isn’t).  But, before we do that, we should note one very 

important thing about arguments of this sort: solvability (and decidability) results can hinge on the details of the 

specifications of the problems involved.  For example, let’s reconsider the angle trisection problem.  This time, instead 

of the requirement, “using only a straightedge and a compass”, we’ll change the rules to “in origami”.  Now, it turns 

out that it is possible to trisect an angle using the paper folding and marking operations that origami provides .  We 

will have to be very careful to state exactly what we mean in specifying the languages that we are about to consider. 

 

In the rest of this chapter, we are going to use reduction in a very specific way.  The goal of a reduction is to enable 

us to describe a decision procedure for a language L1 by using a decision procedure (which we will call Oracle) that 

we hypothesize exists for some other language L2.  Furthermore, since our goal is to develop a decision procedure 

(i.e., design a Turing machine), we are interested only in reductions that are themselves computable (i.e., can be 

implemented as a Turing machine that is guaranteed to halt).  So the precise meaning of reduction that we will use in 

the rest of this book is the following:  

 

A reduction R from L1 to L2 consists of one or more Turing machines with the following property: if there exists a 

Turing machine Oracle that decides (or semidecides) L2, then the Turing machines in R can be composed with Oracle 

to build a deciding (or a semideciding) Turing machine for L1.  The idea is that the machines in R perform the 

straightforward parts of the task, while we assume that Oracle can do a good deal of the work.12  

 

We will focus on the existence of deciding Turing machines now.  Then, in Section 21.6, we will use this same idea 

when we explore the existence of semideciding machines.  We will use the notation P  P to mean that P is reducible 

to P.  While we require that a reduction be one or more Turing machines, we will allow the use of clear pseudocode 

                                                           
12 It is common to define a reduction as a function, rather than as a Turing machine.  But, when that is done, we require 

that the function be computable.  Since the computable functions are exactly the functions that can be computed by 

some Turing machine, these two definitions are equivalent. 
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as a way to specify the machines.  Because the key property of a reduction, as we have just defined it, is that it be 

computable by Turing machines, reducibility in this sense is sometimes called Turing reducibility. 

 

Since our focus in the rest of Part IV is on answering the question, “Does there exist a Turing machine to decide (or 

semidecide) some language L?” we will accept as a reduction any collection of Turing machines that meets the 

definition that we just gave.  If, in addition, we cared about the efficiency of our (semi)deciding procedure, we would 

also have to care about the efficiency of the reduction.  We will discuss that issue in Part V. 

 

Having defined reduction precisely in terms of Turing machines, we can now return to the main topic of the rest of 

this chapter: How can we use reduction to show that some language L2 is not decidable?  When we reduce L1 to L2 via 

a reduction R, we show that if L2 is in D then so is L1 (because we can decide it with a composition of the machines 

in R with the Oracle that decides L2).  So what if we already know that L1 is not in D?  Then we have just shown that 

L2 isn’t either.   

 

To see why this is so, recall that the definition of reduction tells us that: 

 

 (R is a reduction from L1 to L2)  (L2 is in D) → (L1 is in D). 

 

If (L1 is in D) is false, then at least one of the two antecedents of that implication must be false.  So if we know that 

(R is a reduction from L1 to L2) is true, then (L2 is in D) must be false. 

 

We now have a way to show that some new language L2 is not in D: we find a language that is reducible to L2 and that 

is known not to be in D.  We already have one language, H, that is not in D.  So we can use it to prove that other 

languages aren’t either. 

 

Figure 21.1 shows the form of this argument graphically.  The solid arrow indicates the reduction R from L1 to L2.  

The other two arrows correspond to implication.  So the diagram says that if L1 is reducible to L2 then we know (as 

shown in the upward implication) that if L2 is in D, so is L1.  But L1 is known not to be in D.  So (as shown in the 

downward implication) we know that L2 is not in D either. 

 

 

 

  L1  (known not to be in D)  L1 in D              But L1 not in D 

 

                     R  

 

  L2 (a new language whose  if L2 in D               L2 not in D 

    decidability we are 

    trying to determine) 

 

Figure 21.1  Using reduction for undecidability 

 

 

The important thing about this diagram is the direction of the arrows.  We reduce L1 to L2 to show that the 

undecidability of L1 guarantees that L2 is also undecidable.  As we do our reduction proofs, we must be careful always 

to reduce a known undecidable language to the unknown one.  The most common mistake in doing reduction proofs 

is to do them backwards. 

 

Summarizing what we have said:  To use reduction to show that a language L2 is not in D, we need to do three things: 

 

1. Choose a language L1 to reduce from.  We must choose an L1: 

• that is already known not to be in D, and   

• that can be reduced to L2 (i.e., there would be a deciding machine for it if there existed a deciding machine 

for L2). 
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2. Define the reduction R and describe the composition C of R with Oracle, the machine that we hypothesize decides 

L2.    

 

3. Show that C does correctly decide L1 if Oracle exists.  We do this by showing: 

• that R can be implemented as one or more Turing machines. 

• that C is correct, meaning that it correctly decides whether its input x is an element of L1.  To do this, we must 

show that: 

• If x  L1, then C(x) accepts, and 

• If x  L1, then C(x) rejects.  

21.2.2 Mapping Reducibility 
The most straightforward way to reduce one problem, which we’ll call A, to another, which we’ll call B, is to find a 

way to transform instances of A into instances of B.  Then we simply hand the transformed input to the program that 

solves B and return the result.  In Example 21.5, we illustrated this idea in our solution to the problem of determining 

whether or not we could force a win in the game of Nim.  We transformed a problem involving a pile of sticks into a 

Boolean XOR problem.  And we did it in such a way that a procedure that determined whether the result of the XOR 

was nonzero would also tell us whether we could force a win.  So our reduction consisted of a single procedure 

transform.  Then we argued that, if XORsolve solved the Boolean XOR problem, then XOR-solve(transform(x)) 

correctly decided whether x was a position from which we could guarantee a win. 

 

In the specific context of attempting to solve decision procedures, we can formalize this idea as follows: given an 

alphabet , we will say that L1 is mapping reducible to L2, which we will write as L1 M L2, iff there exists some 

computable function f such that: 

 

x * (x  L1 iff f(x)  L2). 

 

In general, the function f gives us a way to transform any value x into a new value x so that we can answer the question, 

“Is x in L1?” by asking instead the question, “Is x in L2?”  If f can be computed by some Turing machine R, then R is 

a mapping reduction from L1 to L2.  So, if L1 M L2 and there exists a Turing machine Oracle that decides L2, then the 

following Turing machine C, which is simply the composition of Oracle with R, will decide L1: 

 

  C(x) = Oracle(R(x)).   

 

The first several reduction proofs that we will do use mapping reducibility.  In the first few, we show that a new 

language L2 is not in D because H can be reduced to it.  Once we have done several of those proofs, we’ll have a 

collection of languages, all of which have been shown not to be in D.  Then, for a new proof that some language L2 is 

not in D, it will suffice to show that any one of the others can be reduced to it. 

Theorem 21.1  “Does M Halt on ?” is Undecidable 

Theorem: The language H = {<M> : Turing machine M halts on } is in SD/D.   

 

Proof:  We will first show that H is in SD.  Then we will show that it is not in D. 

 

We show that H is in SD by exhibiting a Turing machine T that semidecides it. T operates as follows: 

 

   T(<M>) =  

1. Run M on . 

2. Accept. 

 

T accepts <M> iff M halts on , so T semidecides H. 

 

Next we show that H M H and so H is not in D.  We will define a mapping reduction R whose job will be to map 

instances of H to instances of H in such a way that, if there exists a Turing machine (which we will call Oracle) that 

decides H, then Oracle(R(<M, w>) will decide H.   
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R will transform any input of the form <M, w> into a new string, of the form <M>, suitable as input to Oracle.  

Specifically, what R does is to build a new Turing machine, which we will call M#, that halts on  iff M halts on w.  

One way to do that is to build M# so that it completely ignores its own input.  That means that it will halt on everything 

(including ) or nothing.  And we need for it to halt on everything precisely in case M would halt on w.  That’s easy.  

Let M# simply run M on w.  It will halt on everything iff M halts on w.  Note that M#, like every Turing machine has 

an input, namely whatever is on its tape when it begins to execute.  So we’ll define a machine M#(x), where x is the 

name we’ll give to M#’s input tape.  We must do that even though, in this and some other cases we’ll consider, it 

happens that  the behavior of M# doesn’t depend on what its input tape contains. 

 

So let R be a mapping reduction from H to H defined as follows: 

 

R(<M, w>) =  

1. Construct the description <M#> of a new Turing machine M#(x) that, on input x, operates as follows: 

1.1. Erase the tape. 

1.2. Write w on the tape. 

1.3. Run M on w. 

2. Return <M#>. 

 

We claim that if Oracle exists and decides H, then C = Oracle(R(<M, w>)) decides H.  To complete the proof, we 

need to show that R corresponds to a computable function (i.e., that it can be implemented by a Turing machine) and 

that C does in fact decide H: 

 

• R can be implemented as a Turing machine: R must construct <M#> from <M, w>.  To see what M# looks like, 

suppose that w = aba.  Then M# will sweep along its input tape, blanking it out.  Then it will write the string 

aba, move its read/write head back to the left, and, finally, pass control to M.  So, in our macro language, M# 

will be: 

 

 

   >R                    

   
         
   

                      a R b R a L M 

 

The procedure for constructing M#, given an arbitrary M and w, is: 

 

1. Write the following code, which erases the tape: 

 

  >R                    

   
        
   

2. For each character c in w do: 

2.1. Write c. 

2.2. If c is not the last character in w, write R. 

3. Write L M. 

 

• C is correct: M# ignores its own input.  It halts on everything or nothing.  Think of its step 1.3 as a gate.  The 

computation only makes it through the gate if M halts on w.  If that happens then M# halts, no matter what its 

own input was.  Otherwise, it loops in step 1.3.   So: 

• If < M, w>  H: M halts on w, so M# halts on everything.  In particular, it halts on .  Oracle(<M#>) accepts. 

• If < M, w>  H: M does not halt on w, so M# halts on nothing and thus not on .  Oracle(<M#>) rejects. 
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But no machine to decide H can exist, so neither does Oracle.   
◼ 

 

This result may seem surprising.  It says that if we could decide whether some Turing machine M halts on the specific 

string , then we could solve the more general problem of  deciding whether a machine M halts on an arbitrary input.  

Clearly, the other way around is true: if we could decide H (which we cannot), then we could decide whether M halts 

on any one particular string.  But doing a reduction in that direction would tell us nothing about whether H is 

decidable.  The significant thing that we just saw in this proof is that there also exists a reduction in the direction that 

does tell us that H is not decidable. 

 

To understand the reduction proof that we just did (and all the others that we are about to do), keep in mind that it 

involves two different kinds of languages: 

 

• H and H:  The strings in H are encodings of Turing machines, so they look like 

 

    (q000,a000,q001,a010,), (q000,a000,q001,a010,→), … 

 

The strings in H are similar, except that they also include a particular w, so they look like 

 

    (q000,a000,q001,a010,), (q000,a000,q001,a010,→), …; aabb 

 

• The language on which some particular Turing machine M, whose membership in either H or H we are trying to 

determine, halts: since M can be any Turing machine, the set of strings on which M halts can be anything.  It 

might, for example, be AnBn, in which case it would contain strings like aaabbb.  It could also, of course, be a 

language of Turing machine descriptions, but it will help to keep from getting confused if you think of M’s whose 

job is to recognize languages like AnBn that are very different from H. 

 

The proof also referred to five different Turing machines: 

 

• Oracle (the hypothesized, but provably nonexistent, machine to decide H).   

• R (the machine that builds M#).  This one actually exists. 

• C (the composition of R with Oracle). 

• M# (the machine whose description we will pass as input to Oracle).  Note that M# will never actually be 

executed. 

• M (the machine whose behavior on the input string w we are interested in determining).  Its description is input 

to R. 

 

Figure 21.2 shows a block diagram of C.  It illustrates the relationship among the five machines. 

 

 

  <M, w> 

 

 

              Accept 

     build M# M#  Is M# in H? 

 

              Reject 

  R     Oracle 

 

 C 

 

 

Figure 21.2  The relationships among C, R, and Oracle 
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Theorem 21.2  “Does M Halt on Anything?” is Undecidable 

Theorem: The language HANY = {<M> : there exists at least one string on which Turing machine M halts} is in SD/D.   

 

Proof:  Again, we will first show that HANY is in SD.  Then we will show that it is not in D. 

 

We show that HANY is in SD by exhibiting a Turing machine T that semidecides it.  We could try building T so that it 

simply runs M on all strings in * in lexicographic order.  If it finds one that halts, it halts.  But, of course, the problem 

with this approach is that if M fails to halt on the first string T tries, T will get stuck and never try any others.  So we 

need to try the strings in * in a way that prevents T from getting stuck.  We build T so that it operates as follows: 

 

T(<M>) =  

1. Use the dovetailing technique described in the proof of Theorem 20.8 to try M on all of the elements of * 

until there is one string on which M halts.  Recall that, in dovetailing, we run M on one step of the first 

string, then another step on that string plus one step on the next, and so forth, as shown here (assuming  = 

{a, b}): 

 

   [1] 

   [2] a   [1] 

   [3] a   [2] b   [1] 

   [4] a   [3] b   [2] aa   [1] 

   [5] a   [4] b   [3] aa   [2]   ab   [1] 

   [6] a   [5] b   [4] aa   [3]   ab   [2]     ba   [1] 

 

2. If any instance of M halts, halt. 

 

T will halt iff M halts on at least one string.  So T semidecides HANY. 

 

Next we show that H M HANY and so HANY is not in D.  Let R be a mapping reduction from H to HANY defined as 

follows: 

 

R(<M, w>) =  

1. Construct the description <M#> of a new Turing machine M#(x) that, on input x, operates as follows: 

1.1. Examine x. 

1.2. If x = w, run M on x, else loop. 

2. Return <M#>. 

      

If Oracle exists and decides HANY, then C = Oracle(R(<M, w>)) decides H: 

 

• R can be implemented as a Turing machine: The proof is similar to that for Theorem 21.1.  We will omit it in this 

and future proofs unless it is substantially different from the one we have already done. 

 

• C is correct: M#’s behavior depends on its input.  The only string on which M# has a chance of halting is w.  So: 

• If <M, w>  H: M halts on w, so M# halts on w.  So there exists at least one string on which M# halts.  

Oracle(<M#>) accepts. 

• If <M, w>  H: M does not halt on w, so neither does M#. So there exists no string on which M# halts. 

Oracle(<M#>) rejects. 

 

But no machine to decide H can exist, so neither does Oracle.   
◼ 

 

Sometimes there is more than one straightforward reduction that works.  For example, here is an alternative proof that 

HANY is not in D: 
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Proof:  We show that HANY is not in D by reduction from H.  Let R be a mapping reduction from H to HANY defined 

as follows: 

 

R(<M, w>) =  

1. Construct the description <M#> of a new Turing machine M#(x) that, on input x, operates as follows: 

1.1. Erase the tape. 

1.2. Write w on the tape. 

1.3. Run M on w. 

2. Return <M#>. 

      

If Oracle exists and decides HANY, then C = Oracle(R(<M, w>)) decides H.  R can be implemented as a Turing 

machine.  And C is correct.  M# ignores its own input.  It halts on everything or nothing.  So: 

 

• If <M, w>  H: M halts on w, so M# halts on everything.  So it halts on at least one string.  Oracle(<M#>) accepts. 

• If <M, w>  H: M does not halt on w, so M# halts on nothing. So it does not halt on at least one string. 

Oracle(<M#>) rejects. 

 

But no machine to decide H can exist, so neither does Oracle.   
◼ 

 

Notice that we used the same reduction in this last proof that we used for Theorem 21.1.  This is not uncommon.  The 

fact that a single construction may be the basis for several reduction proofs is important.  It derives from the fact that 

several quite different looking problems may in fact be distinguishing between the same two cases.   

 

Recall the steps in doing a reduction proof of undecidability: 

 

1. Choose an undecidable language L1 to reduce from. 

2. Define the reduction R. 

3. Show that the composition of R with Oracle correctly decides L1. 

 

We make choices at steps 1 and 2.  Our last example showed that there may be more than one reasonable choice for 

step 2.  There may also be more than one reasonable choice for step 1.  So far, we have chosen to reduce from H.  But 

now that we know other languages that are not in D, we could choose to use one of them.  We want to pick one that 

makes step 2, constructing R, as straightforward as possible. 

Theorem 21.3  “Does M Halt on Everything?” is Undecidable 

Theorem: The language HALL = {<M> : Turing machine M halts on *} is not in D.  (Note: HALL is also not in SD, 

which we will show in Section 21.6.) 

 

Proof:  We show that H M HALL and so HALL is not in D.  We have chosen to use H rather than H because H looks 

more like HALL than H does.  Both of them contain strings composed of a single Turing machine description, without 

reference to a particular string w.  It is possible to do this proof by reduction from H instead.  We leave that as an 

exercise. 

 

Let R be a mapping reduction from H to HALL defined as follows: 

 

R(<M>) =  

1. Construct the description <M#> of a new Turing machine M#(x) that, on input x, operates as follows: 

1.1. Erase the tape. 

1.2. Run M. 

2. Return <M#>. 

      

If Oracle exists and decides HALL, then C = Oracle(R(<M>)) decides H.  R can be implemented as a Turing machine.  

And C is correct.  M# runs M on .  It halts on everything or nothing, depending on whether M halts on .  So: 
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• If <M>  H: M halts on , so M# halts on all inputs.  Oracle(<M#>) accepts. 

• If <M>  H: M does not halt on , so M# halts on nothing.  Oracle(<M#>) rejects. 

 

But no machine to decide H can exist, so neither does Oracle.   
◼ 

 

Are safety and security properties of complex systems decidable?  C 718. 

 

We next define a new language that corresponds to the membership question for Turing machines: 

 

• A = {<M, w> : Turing machine M accepts w}. 

 

Note that A is different from H, since it is possible that M halts but does not accept.  Accepting is a stronger condition 

than halting.  An alternative definition of A is then: 

 

• A = {<M, w> : M is a Turing machine and w  L(M)}. 

 

Recall that, for finite state machines and pushdown automata, the membership question was decidable.  In other words, 

there exists an algorithm that, given M (an FSM or a PDA) and a string w, answers the question, “Does M accept w?”  

We’re about to show that the membership question for Turing machines is undecidable. 

Theorem 21.4  “Does M Accept w?” is Undecidable 

Theorem: The language A = {<M, w> : M is a Turing machine and w  L(M)} is not in D.   

 

Proof:  We show that H M A and so A is not in D.  Since H and A are so similar, it may be tempting to define a 

mapping reduction R simply as the identity function: 

 

R(<M, w>) =  

1. Return <M, w>. 

 

But this won’t work, as we see immediately when we try to prove that C = Oracle(R(<M, w>)) decides A:  

 

• If <M, w>  H: M halts on w.  It may either accept or reject.  If M accepts w, then Oracle(<M, w>) accepts.  

But if M rejects w, Oracle(<M, w>) will reject.  

 

So we cannot guarantee that Oracle will accept whenever M halts on w.  We need to construct R so that it passes to 

Oracle a machine M# that is guaranteed both to halt and to accept whenever M would halt on w.   

 

We can make that happen by defining R, a mapping reduction from H to A, as follows: 

 

R(<M, w>) =  

1. Construct the description <M#> of a new Turing machine M#(x) that, on input x, operates as follows: 

1.1. Erase the tape. 

1.2. Write w on the tape. 

1.3. Run M on w. 

1.4. Accept.  /* This step is new.  It is important since the hypothesized Oracle will  

         decide whether M# accepts w, not just whether it halts on w. 

2. Return <M#, w>.  /* Note that R returns not just a description of M#.  It returns a string that 

      encodes both M# and an input string.  This is important since any decider 

      for A will accept only strings of that form.  We chose w somewhat 

      arbitrarily.  We could have chosen any other string, for example . 
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If Oracle exists and decides A, then C = Oracle(R(<M, w>)) decides H.  R can be implemented as a Turing machine.  

And C is correct.  M# ignores its own input.  It accepts everything or nothing, depending on whether it makes it 

through the gate at step 1.3, and thus to step 1.4.  So: 

 

• If <M, w>  H: M halts on w, so M# accepts everything.  In particular, it accepts w.  Oracle(<M#, w>) accepts. 

• If <M, w>  H: M does not halt on w.  M# gets stuck in step 1.3 and so accepts nothing.  In particular, it does not 

accept w.  Oracle(<M#, w>) rejects. 

 

But no machine to decide H can exist, so neither does Oracle.   
◼ 

 

We can also define A, AANY, and AALL, in a similar fashion and show that they too are not in D: 

Theorem 21.5  “Does M Accept ?” is Undecidable 

Theorem: The language A = {<M> : Turing machine M accepts } is not in D.   

 

Proof:  Analogous to that for H.  It is left as an exercise. 
◼ 

Theorem 21.6  “Does M Accept Anything?” is Undecidable 

Theorem: The language AANY = {<M> : there exists at least one string that Turing machine M accepts} is not in D.   

 

Proof:  Analogous to that for HANY.  It is left as an exercise. 
◼ 

 

 

The fact that AANY is not in D means that there exists no decision procedure for the emptiness question for the SD 

languages.  Note that, in this respect, they are different from both the regular and the context-free languages, for which 

such a procedure does exist. 

Theorem 21.7  “Does M Accept Everything?” is Undecidable 

Theorem: The language AALL = {<M> : M is a Turing machine and L(M) = *} is not in D.   

 

Proof:  Analogous to that for HALL.  It is left as an exercise. 
◼ 

 

So far, we have discovered that many straightforward questions that we might like to ask about the behavior of Turing 

machines are undecidable.  It should come as no surprise then to discover that the equivalence question for Turing 

machines is also undecidable.  Consider the language: 

 

• EqTMs = {<Ma, Mb> : Ma and Mb are Turing machines and L(Ma) = L(Mb)}.  

 

We will show that EqTMs is not in D.  How can we use reduction to do that?  So far, all the languages that we know 

are not in D involve the description of a single Turing machine.  So suppose that EqTMs were decidable by some 

Turing machine Oracle.  How could we use Oracle, which compares two Turing machines, to answer questions about 

a single machine, as we must do to solve H or A or any of the other languages we have been considering?  The answer 

is that our reduction R must create a second machine M# whose behavior it knows completely.  Then it can answer 

questions about some other machine by comparing it to M#.  We illustrate this idea in our proof of the next theorem. 

 

Consider the problem of virus detection.  Suppose that a new virus V is discovered and its 

code is determined to be <V>.  Is it sufficient for antivirus software to check solely for 

occurrences of <V>?  C 725. 



  

Chapter 21 340            Decidability and Undecidability Proofs 

Theorem 21.8  “Are Two Turing Machines Equivalent?” is Undecidable 

Theorem: The language EqTMs  = {<Ma, Mb> : Ma and Mb are Turing machines and L(Ma) = L(Mb)} is not in D.   

 

Proof:  We show that AALL M EqTMs and so EqTMs is not in D.  Let R be a mapping reduction from AALL to EqTMs 

defined as shown below. Since R must invoke Oracle on a pair of Turing machines, it will create one new one, M#, 

which can be compared to M.  The idea is that M# will be designed so that it simply halts and accepts, whatever its 

input is.  By comparing M to M#, we can determine M’s behavior: 

 

R(<M>) =  

1. Construct the description <M#> of a new Turing machine M#(x) that, on input x, operates as follows: 

1.1. Accept. 

2. Return <M, M#>. 

      

If Oracle exists and decides EqTMs, then C = Oracle(R(<M>)) decides AALL.  R can be implemented as a Turing 

machine.  And C is correct.  M# accepts everything.  So if L(M) = L(M#), M must also accept everything.  So: 

 

• If <M>  AALL: L(M) = L(M#).  Oracle(<M, M#>) accepts. 

• If <M>  AALL: L(M)  L(M#).  Oracle(<M, M#>) rejects. 

 

But no machine to decide AALL can exist, so neither does Oracle.   
◼ 

 

Consider the problem of grading programs that are written as exercises in programming 

classes.  We would like to compare each student program to a “correct” program written by 

the instructor and accept those programs that behave identically to the one written by the 

instructor.  Theorem 21.8 says that a perfect grading program cannot exist. 

 

We should point out here that EqTMs is not only not in D, it is also not in SD.  We leave the proof of that as an 

exercise. 

21.2.3 Reductions That Are Not Mapping Reductions 
The general definition of reducibility that we provided at the beginning of Section 21.2 is strictly more powerful than 

the more restricted notion of mapping reducibility that we have used in the examples that we have considered so far.  

We’ll next consider a case where no mapping reduction exists, but a more general one does.  Recall that the more 

general definition of a reduction from L1 to L2 may consist of two or more functions that can be composed to decide 

L1 if Oracle exists and decides L2.  We’ll see that one particularly useful thing to do is to exploit a second function 

that applies to the output of Oracle and flips it (i.e., it turns an Accept into a Reject and vice versa).   

Theorem 21.9  “Does M Accept No Even Length Strings?” is Undecidable 

Theorem: The language L2 ={<M> : Turing machine M accepts no even length strings} is not in D.   

 

Proof:  We show that H  L2 and so L2 is not in D.  As in the other examples we have considered so far, we need to 

define a reduction from H to L2.  But this time we are going to run into a glitch.  We can try to implement a 

straightforward mapping reduction R between H and L2, just has we have done for our other examples.  But, when we 

do that and then pass its result to Oracle, we’ll see that Oracle will return the opposite of the answer we need to decide 

H.  But that is an easy problem to solve.  Since Oracle is (claimed to be) a deciding machine, it always halts.  So we 

can add to the reduction a second Turing machine that runs after Oracle and just inverts Oracle’s response.  We’ll call 

that second machine simply .   
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Define: 

 

R(<M, w>) =  

1. Construct the description <M#> of a new Turing machine M#(x) that, on input x, operates as follows: 

1.1. Erase the tape. 

1.2. Write w on the tape. 

1.3. Run M on w. 

1.4. Accept. 

2. Return <M#>.  

 

{R, } is a reduction from H to L2.  If Oracle exists and decides L2, then C = Oracle(R(<M, w>)) decides H.  R and 

 can be implemented as a Turing machines.  And C is correct.  M# ignores its own input.  It accepts everything or 

nothing, depending on whether it makes it to step 1.4.  So: 

 

• If <M, w>  H: M halts on w, so M# accepts everything, including some even length strings.  Oracle(<M#>) 

rejects so C accepts. 

• If <M, w>  H: M does not halt on w.  M# gets stuck in step 1.3 and accepts nothing, and so, in particular, no 

even length strings.  Oracle(<M#>) accepts.  So C rejects. 

 

But no machine to decide H can exist, so neither does Oracle.  So L2 is not in D.  It is also not in SD.  We leave the 

proof of that as an exercise. 
◼ 

 

We have just shown that there exists a reduction from H to L2 = {<M> : Turing machine M accepts no even length 

strings}.  It is possible to prove that this is a case where it was necessary to exploit the greater power offered by the 

more general definition of reducibility.  We leave as an exercise the proof that no mapping reduction from H to L2 

exists.  To see why this might be so, it is important to keep in mind the definition of mapping reducibility: L1 M L2 

iff there exists some computable function f such that:  

 

x (x  L1 iff f(x)  L2). 
 

Note that, if such an f exists, it is also a mapping reduction from L1 to L2. 

21.3 Are All Questions About Turing Machines Undecidable? 
By now it should be clear that many interesting properties of the behavior of Turing machines are undecidable.  Is it 

true that any question that asks about a Turing machine or its behavior is undecidable?  No.   

 

First, we observe that questions that ask just about a Turing machine’s physical structure, rather than about its 

behavior, are likely to be decidable. 

Example 21.8 The Number of States of M is Decidable 

Let LA = {<M> : Turing machine M contains an even number of states}.  LA is decidable by the following procedure: 

 

1. Make a pass through <M>, counting the number of states in M. 

2. If even, accept; else reject. 

 

Next we’ll consider two questions that do ask about a Turing machine’s behavior but are, nevertheless, decidable. 

Example 21.9 Whether M Halts in Some Fixed Time is Decidable 

Let LB = {<M, w> : Turing machine M halts on w within 3 steps}.  LB is decidable by the following procedure: 

 

1. Simulate M for 3 steps. 

2. If it halted, accept; else reject. 
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Example 21.10 Exactly How M Works May be Decidable 

Let LC =  {<M, w> : Turing machine M moves right exactly twice while running on w}. 

 

Notice that M must move either to the right or the left on each move.  We make the usual assumption that M’s 

read/write head is positioned immediately to the left of the leftmost input character when M starts.  If M cannot move 

right more than twice, it can read no more than two characters of its input.  But it may loop forever moving left.  As 

it moves left, it can write on the tape, but it cannot go back more than two squares to read what it has written.  So the 

only part of the tape that can affect M’s future behavior is the current square, two squares to the right and two squares 

to the left (since all other squares to the left still contain ).  Let K be the set of states of M and let  be M’s tape 

alphabet.  Then the number of effectively distinct configurations of M is maxconfigs = |KM||M|5.  If we simulate M 

running for maxconfigs moves, it will have entered, at least once, each configuration that it is ever going to reach.  If 

it has not halted, then it is in an infinite loop.  Each time through the loop it will do the same thing it did the last time.   

 

If, in simulating maxconfigs moves, M moved right more than twice, we can reject.  If it did not move right at all, or 

if it moved right once, we can reject.  If it moved right twice, we need to find out whether either of those moves 

occurred during some loop.  We can do that by running M for up to maxconfigs more moves.  In the extreme case of 

a maximally long loop, it will move right once more.  If there is a shorter loop, M may move right several times more.  

So the following procedure decides LC: 

 

     1. Run M on w for |KM||M|5 moves or until M halts or moves right three times: 

         1.1. If M moved right exactly twice, then: 

                    Run M on w for another |KM||M|5 moves or until it moves right.     

                    If M moved right any additional times, reject; otherwise accept. 

         1.2. If M moved right some other number of times, reject. 

 

What is different about languages such as LA, LB, and LC (in contrast to H, H, HANY, HALL, and the other languages 

we have proven are not in D)?  The key is that, in the case of LA, the question is not about M’s behavior at all.  It 

involves just its structure.  In the case of LB and LC, the question we must answer is not about the language that the 

Turing machine M halts on or accepts.  It is about a detail of M’s behavior as it is computing.  In the case of LB, it has 

to do with the exact number of steps in which M might halt.  In the case of LC, it is about the way that M goes about 

solving the problem (specifically how often it moves right).  It turns out that questions like those can be decided.  

We’ll see, though, in Section 21.5, that we must be careful about this.  Some questions that appear to be about the 

details of how M operates can be recast as questions about M’s output and so are not decidable. 

 

Rice’s Theorem, which we present next, articulates the difference between languages like H and languages like LA, 

LB, and LC. 

21.4 Rice’s Theorem  
Consider the set SD of semidecidable languages.  Suppose that we want to ask any of the following questions about 

some language L in that set: 

 

• Does L contain some particular string w? 

• Does L contain ? 

• Does L contain any strings at all? 

• Does L contain all strings over some alphabet ? 

 

In order to consider building a program to answer any of those questions, we first need a way to specify formally what 

L is.  Since the SD languages are, by definition, exactly the languages that can be semidecided by some Turing 

machine, one way to specify a language L is to give a semideciding Turing machine for it.  If we do that, then we can 

restate each of those questions as: 

 

• Given a semideciding Turing machine M, does M accept some particular string w? 

• Given a semideciding Turing machine M, does M accept ? 

• Given a semideciding Turing machine M, does M accept anything? 
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• Given a semideciding Turing machine M, does M accept all strings in *? 

 

We can encode each of those decision problems as a language to be decided, yielding: 

 

• A      =    {<M, w> : Turing machine M accepts w}. 

• A     =   {<M> : Turing machine M accepts }. 

• AANY =  {<M> : there exists at least one string that Turing machine M accepts}. 

• AALL =  {<M> : Turing machine M accepts all inputs}. 

 

We have already seen that none of these languages is in D, so none of the corresponding questions is decidable.  Rice’s 

Theorem, which we are about to state and prove, tells us that not only these languages, but any language that can be 

described as {<M>: P(L(M)) = True}, for any nontrivial property P, is not in D.  By a nontrivial property we mean a 

property that is not simply True for all languages or False for all languages. 

 

But we can state Rice’s Theorem even more generally than that.  The questions we have just considered are questions 

we can ask of any semidecidable language, independently of how we describe it.  We have used semideciding Turing 

machines as our descriptions. But we could use some other descriptive form.  (For example, in Chapter 23, we will 

consider a grammar formalism that describes exactly the SD languages.)  The key is that the property we are evaluating 

is a property of the language itself and not a property of some particular Turing machine that happens to semidecide 

it.  

 

So an alternative way to state Rice’s Theorem is: 

 

No nontrivial property of the SD languages is decidable. 

 

Just as languages that are defined in terms of the behavior of Turing machines are generally 

not decidable, functions that describe the way that Turing machines behave are likely not to 

be computable.  See, for example, the busy beaver functions described in Section 25.1.4. 

 

To use Rice’s Theorem to show that a language L of the form {<M>: P(L(M)) = True} is not in D we must: 

 

• Specify property P. 

• Show that the domain of P is the set of SD languages. 

• Show that P is nontrivial: 

• P is true of at least one language. 

• P is false of at least one language. 

 

Let M, Ma, and Mb be Turing machines. We’ll consider each of the following languages and see whether Rice’s 

Theorem applies to it: 

 

1. {<M> : M is a Turing machine and L(M) contains only even length strings}.   

2. {<M> : M is a Turing machine and L(M) contains an odd number of strings}. 

3. {<M> : M is a Turing machine and L(M) contains all strings that start with a}. 

4. {<M> : M is a Turing machine and L(M) is infinite}. 

5. {<M> : M is a Turing machine and L(M) is regular}. 

6. {<M> : Turing machine M contains an even number of states}. 

7. {<M> : Turing machine M has an odd number of symbols in its tape alphabet}. 

8. {<M> : Turing machine M accepts  within 100 steps}. 

9. {<M>:  Turing machine M accepts }. 

10. {<Ma, Mb> : Ma and Mb are Turing machines and L(Ma) = L(Mb)}. 

 

In cases 1-5, we can easily state P.  For example, in case 1, P is, “True if L contains only even length strings and False 

otherwise”.  In all five cases, the domain of P is the set of SD languages and P is nontrivial.  For example, in case 1, 

P is True of {aa, bb} and False of {a, aa}. 
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But now consider cases 6-8.  In case 6, P is, “True if M has an even number of states and False otherwise”.  P is no 

longer a property of a language.  It is a property of some specific machine, independent of the language that the 

machine accepts.  The same is true in cases 7 and 8.  So Rice’s Theorem tells us nothing about whether those languages 

are in D.  They may or may not be.  As it turns out, all three of these examples are in D and languages that look like 

them usually are.  But Rice’s Theorem does not tell us that.  It simply tells us nothing. 

 

Next consider case 9.  In form, it looks something like case 8.  But it is in fact like 1-5.  An alternative way to state P 

is, “  L(M)”.  It is not the wording of the description that matters.  It is the property P itself that counts. 

 

Finally consider case 10.  We have already shown that this language, which we have named EqTMs, is not in D.  But 

Rice’s Theorem does not tell us that.  Again, it says nothing since now we are asking about a property whose domain 

is SD  SD, rather than simply SD.  So when Rice’s Theorem doesn’t apply, it is possible that we are dealing with a 

language in D.  It is also possible we are dealing with one not in D.  Without additional investigation, we just don’t 

know. 

 

Rice’s Theorem is not going to give us a way to prove anything we couldn’t have proven with reduction.  Although it 

is an alternative proof strategy, its main value is its insight.  We know immediately, when confronted with a question 

about the SD languages, that it will not be decidable. 

 

The proof of Rice’s Theorem is by reduction from H.  It is a bit more complex than any of the reductions we have 

done so far, but the principle is exactly the same.  What we are going to do is to show that if it were possible to decide 

any property P (without regard to what P is except that it is nontrivial), then it would be possible to decide H. It may 

seem surprising that we can show this without appeal to any information about what P tells us.  But we can. 

Theorem 21.10  Rice’s Theorem 

Theorem: For any nontrivial P, the language L = {<M>: P(L(M)) = True} is not in D. 

 

Proof: We prove Rice’s Theorem by showing that H M L.  Let P be any nontrivial property of the SD languages.  We 

do not know what P is.  But, whatever it is, either P() = True or P() = False.  Assume it is False. We leave the 

proof that the theorem holds if P() = True as an exercise.  Since P is nontrivial, there is some SD language LT such 

that P(LT) is True.  Since LT is in SD, there exists some Turing machine K that semidecides it. 

 

We need to define a mapping reduction R from H to L.  The main idea in this reduction is that R will build a machine 

M# that first runs M on w as a sort of filter.  If it makes it by that step, then it considers its own input and either accepts 

it or not.  If we can design M#’s action at that second step so that we can tell whether it makes it there, we will know 

whether M halted on w.   

 

Let R be a reduction from H to L defined as follows: 

 

   R(<M, w>) = 

1. Construct the description <M#> of a new Turing machine M#(x) that, on input x, operates as follows: 

1.1. Copy its input x to a second tape. 

1.2. Erase the tape. 

1.3. Write w on the tape. 

1.4. Run M on w. 

1.5. Put x back on the first tape and run K (the Turing machine that semidecides LT, a language of which P 

is True) on x. 

2. Return <M#>.  

 

If Oracle exists and decides L, then C = Oracle(R(<M, w>)) decides H.  R can be implemented as a Turing machine.  

And C is correct:  

 

• If <M, w>  H: M halts on w, so M# makes it to step 1.5.  So M# does whatever K would do.  So L(M#) = L(K) and 

P(L(M#)) = P(L(K)).  We chose K precisely to assure that P(L(K)) is True, so P(L(M#)) must also be True.  Oracle 

decides P.  Oracle(<M#>) accepts. 
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• If <M, w>  H: M does not halt on w.  M# gets stuck in step 1.4 and so accepts nothing.  L(M#) = .  By assumption, 

P() = False.  Oracle decides P.  Oracle(<M#>) rejects. 

 

But no machine to decide H can exist, so neither does Oracle.   
◼ 

 

Now that we have proven the theorem, we can use it as an alternative to reduction in proving that a language L is not 

in D.   

Theorem 21.11  “Is L(M) Regular?” is Undecidable 

Theorem: Given a Turing machine M, the question, “Is L(M) regular?” is not decidable.  Alternatively, the language 

TMREG = {<M> : M is a Turing machine and L(M) is regular} is not in D.   

 

Proof: By Rice’s Theorem.  We define P as follows: 

 

• Let P be defined on the set of languages accepted by some Turing machine M.  Let it be True if L(M) is regular 

and False otherwise. 

• The domain of P is the set of SD languages since it is the set of languages accepted by some Turing machine. 

• P is nontrivial: 

▪ P(a*) = True. 

▪ P(AnBn) = False. 

 

Thus we can conclude that {<M>: M is a Turing machine and L(M) is regular} is not in D. 

 

We can also prove this by reduction from H.  The reduction we will use exploits two functions, R and .  R will map 

instances of H to instances of TMREG.  It will use a strategy that is very similar to the one we used in proving Rice’s 

Theorem.  As in the proof of Theorem 21.9,  will simply invert Oracle’s response (turning an Accept into a Reject 

and vice versa).  So define: 

 

      R(<M, w>) = 

1. Construct the description <M#> of a new Turing machine M#(x) that, on input x, operates as follows: 

1.1. Copy its input x to a second tape. 

1.2. Erase the tape. 

1.3. Write w on the tape. 

1.4. Run M on w.   

1.5. Put x back on the first tape. 

1.6. If x  AnBn then accept, else reject. 

2. Return <M#>. 

 

{R, } is a reduction from H to TMREG.  If Oracle exists and decides TMREG, then C = Oracle(R(<M, w>)) decides 

H.  R and  can be implemented as Turing machines.  In particular, it is straightforward to build a Turing machine 

that decides whether a string x is in AnBn.  And C is correct: 

 

• If <M, w>  H: M halts on w, so M# makes it to step 1.5.  Then it accepts x iff x  AnBn.  So M# accepts AnBn, 

which is not regular.  Oracle(<M#>) rejects.  C accepts. 

• If <M, w>  H: M does not halt on w.  M# gets stuck in step 1.4 and so accepts nothing.  L(M#) = , which is 

regular.  Oracle(<M#>) accepts.  C rejects.  

 

But no machine to decide H can exist, so neither does Oracle.   
◼ 

 

It turns out that we can also make a stronger statement about TMREG.  It is not only not in D, it is not in SD.  We leave 

the proof of that as an exercise.             
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21.5 Undecidable Questions About Real Programs 
The real practical impact of the undecidability results that we have just presented is the following:  The programming 

environments that we actually use every day are equal in computational power to the Turing machine.  So questions 

that are undecidable when asked about Turing machines are equally undecidable when asked about Java programs or 

C++ programs, or whatever.  The undecidability of a question about real programs can be proved by reduction from 

the corresponding question about Turing machines.  We’ll show one example of doing this. 

Theorem 21.12  “Are Two Programs Equivalent?” is Undecidable 

Theorem: The language EqPrograms = {<Pa, Pb> : Pa Pb and are programs in any standard programming language 

PL and L(Pa) = L(Pb)} is not in D.   

 

Proof:  Recall that EqTMs = {<Ma, Mb> : Ma and Mb are Turing machines and L(Ma) = L(Mb)}.  We show that EqTMs 

M EqPrograms and so EqPrograms is not in D (since EqTMs isn’t).  It is straightforward to build, in any standard 

programming language, an implementation of the universal Turing machine U.  Call that program SimUM.  Now let 

R be a mapping reduction from EqTMs to EqPrograms defined as follows: 

 

R(<Ma, Mb>) =  

1. Let P1 be a PL program that, on input w, invokes SimUM(Ma, w) and returns its result. 

2. Let P2 be a PL program that, on input w, invokes SimUM(Mb, w) and returns its result. 

3. Return <P1, P2>. 

      

If Oracle exists and decides EqPrograms, then C = Oracle(R(<Ma, Mb>)) decides EqTMs.  R can be implemented as 

a Turing machine.  And C is correct.  L(P1) = L(Ma) and L(P2) = L(Mb).  So:  

 

• If <Ma, Mb>  EqTMs: L(Ma) = L(Mb).  So L(P1) = L(P2).  Oracle(<P1, P2>) accepts. 

• If <Ma, Mb>  EqTMs: L(Ma)  L(Mb).  So L(P1)  L(P2).  Oracle(<P1, P2>) rejects. 

 

But no machine to decide EqTMs can exist, so neither does Oracle.   
◼ 

 

The United States Patent Office issues patents on software.  But, before the Patent Office can 

issue any patent, it must check for prior art.  The theorem we have just proved suggests that 

there can exist no general purpose program that can do that checking automatically. 

 

Because the undecidability of questions about real programs follows from the undecidability of those questions for 

Turing machines, we can show, for example, that all of the following questions are undecidable: 

 

1. Given a program P and input x, does P, when running on x, halt? 

2. Given a program P, might P get into an infinite loop on some input? 

3. Given a program P and input x, does P, when running on x, ever output a 0?  Or anything at all? 

4. Given two programs, P1 and P2, are they equivalent? 

5. Given a program P, input x, and a variable n, does P, when running on x, ever assign a value to n?  We need to 

be able to answer this question if we want to be able to guarantee that every variable is initialized before it is used. 

6. Given a program P and code segment S in P, does P ever reach S on any input (in other words, can we chop S 

out)? 

7. Given a program P and code segment S in P, does P reach S on every input (in other words, can we guarantee 

that S happens)? 

 

We’ve already proved that questions 1, 2, and 4 are undecidable for Turing machines.  Question 3 (about printing 0) 

is one that Turing himself asked and showed to be undecidable.  We leave that proof as an exercise. 

 

Is it possible to build a program verification system that can determine, given an arbitrary 

specification S and program P whether or not P correctly implements S?  C 678. 
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But what about questions 5, 6, and 7?  They appear to be about details of how a program operates, rather than about 

the result of running the program (i.e., the language it accepts or the function it computes).  We know that many 

questions of that sort are decidable, either by inspecting the program or by running it for some bounded number of 

steps.  So why are these questions undecidable?  Because they cannot be answered either by inspection or by bounded 

simulation.  We can prove that each of them is undecidable by showing that some language that we already know is 

not in D can be reduced to it.  To do this, we’ll return to the Turing machine representation for programs.  We’ll show 

that question 6 is undecidable and leave the others as exercises. 

 

Can a compiler check for dead code and eliminate it?  C 669. 

Theorem 21.13  “Does M Ever Reach Some Particular State?” is Undecidable 

Theorem: The language L ={<M, q> : Turing machine M reaches state q on some input} is not in D.   

 

Proof:  We show that HANY M L and so L is not in D.  Let R be a mapping reduction from HANY to L defined as 

follows: 

 

R(<M>) =  

1. From <M>, construct the description <M#> of a new Turing machine M# that will be identical to M except 

that, if M has a transition ((q1, c1), (q2, c2, a)) and q2 is a halting state other than h, replace that transition with 

((q1, c1), (h, c2, a)). 

2. Return <M#, h>. 

 

If Oracle exists and decides L, then C = Oracle(R(<M>)) decides HANY.  R can be implemented as a Turing machine.  

And C is correct:  M# will reach the halting state h iff M would reach some halting state.  So:  

 

• If <M>  HANY: There is some string on which M halts.  So there is some string on which M# reaches state h.  

Oracle(<M#, h>) accepts. 

• If <M>  HANY: There is no string on which M halts.  So there is no string on which M# reaches state h.  

Oracle(<M#, h>) rejects. 

 

But no machine to decide HANY can exist, so neither does Oracle.   
◼ 

21.6 Showing That a Language is Not Semidecidable  
We know, from Theorem 20.3, that there exist languages that are not in SD.  In fact, we know that there are 

uncountably many of them.  And we have seen one specific example, H.  In this section we will see how to show 

that other languages are also not in SD.  Although we will first discuss a couple of other methods of proving that a 

language is not in SD (which we will also write as in SD), we will again make extensive use of reduction.  This time, 

the basis for our reduction proofs will be H.  We will show that if some new language L were in SD, H would also 

be.  But it is not. 

 

Before we try to prove that a language L is not in SD (or that it is), we need an intuition that tells us what to prove.  A 

good way to develop such an intuition is to think about trying to write a program to solve the problem.  Languages 

that are not in SD generally involve either infinite search, or knowing that a Turing machine will infinite loop, or both.  

For example, the following languages are not in SD: 

 

• H = {<M, w> : Turing machine M does not halt on w}.  To solve this one by simulation, we would have to run 

M forever. 

 

• {<M> : L(M) = *}.  To solve this one by simulation, we would have to try all strings in *.  But there are 

infinitely many of them. 
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• {<M> : there does not exist a string on which Turing machine M halts}.  To solve this one by simulation, we 

would have to try an infinite number of strings and show that all of them fail to halt.  Even to show that one fails 

to halt would require an infinite number of steps. 

 

In the rest of this section, we present a collection of techniques that can be used to prove that a language is not in SD. 

21.6.1 Techniques Other Than Reduction  
Sometimes we can show that a language L is not in SD by giving a proof by contradiction that does not exploit 

reduction.  We will show one such example here.  For this example, we need to make use of a theorem that we will 

prove in Section 25.3: the recursion theorem tells us that there exists a subroutine, obtainSelf, available to any Turing 

machine M, that constructs <M>, the description of M. 

 

We have not so far said anything about minimizing Turing machines.  The reason is that no algorithm to do so exists.  

In fact, given a Turing machine M, it is undecidable whether M is minimal.  Alternatively, the language of descriptions 

of minimal Turing machines is not in SD.  More precisely, define a Turing machine M to be minimal iff there exists 

no other Turing machine M such that |<M>| < |<M>| and M is equivalent to M.  

Theorem 21.14  “Is M Minimal?” is Not Semidecidable 

Theorem: The language TMMIN = {<M>: Turing machine M is minimal} is not in SD. 

 

Proof: If TMMIN were in SD, then (by Theorem 20.8) there would exist some Turing machine ENUM that enumerates 

its elements.  Define the following Turing machine: 

 

M#(x) = 

1. Invoke obtainSelf to produce <M#>. 

2. Run ENUM until it generates the description of some Turing machine M whose description is longer than 

|<M#>|. 

3. Invoke the universal Turing machine U on the string <M, x>. 

 

Since TMMIN is infinite, ENUM must eventually generate a string that is longer than |<M#>|.  So M# makes it to step 

3 and so is equivalent to M since it simulates M.  But, since |<M#>| < |<M>|, M cannot be minimal.  Yet it was 

generated by ENUM.  Contradiction.   
◼ 

 

Another way to prove that a language is not in SD is to exploit Theorem 20.6, which tells us that a language L is in D 

iff both it and its complement, L, are in SD.  This is true because, if we could semidecide both L and L, we could 

run the two semideciders in parallel, wait until one of them halts, and then either accept (if the semidecider for L 

accepted) or reject (if the semidecider for L accepted).   

 

So suppose that we are considering some language L.  We want to know whether L is in SD and we already know: 

 

• L is in SD, and 

• At least one of L or L is not in D. 

 

Then we can conclude that L is not in SD, because, if it were, it would force both itself and its complement into D, 

and we know that cannot be true.  This is the technique that we used to prove that H is not in SD.  We can use it for 

some other languages as well, which we will do in our proof of the next theorem. 

Theorem 21.15  “Does There Exist No String on Which M Halts?” is Not Semidecidable 

Theorem: HANY = {<M> : there does not exist any string on which Turing machine M halts} is not in SD. 

 

Proof:  Recall that we said, at the beginning of Chapter 19, that we would define the complement of a language of 

Turing machine descriptions with respect to the universe of syntactically valid Turing machine descriptions.  So the 
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complement of HANY is HANY = {<M> : there exists at least one string on which Turing machine M halts}.  From 

Theorem 21.2, we know: 

 

• HANY (namely, HANY) is in SD. 

• HANY (namely, HANY) is not in D. 

 

So HANY is not in SD because, if it were, then HANY would be in D but it isn’t.   
◼ 

21.6.2 Reduction 
The most general technique that we can use for showing that a language is not in SD is reduction.  Our argument will 

be analogous to the one we used to show that a language is not in D.  It is: 

 

To prove that a language L2 is not in SD, find a reduction R:  

 

• from some language L1 that is already known not to be in SD,  

• to L2. 

 

If L2 were in SD, then there would exist some Turing machine Oracle that semidecides it.  Then the composition of R 

and Oracle would semidecide L1.  But there can exist no Turing machine that semidecides L1.  So Oracle cannot exist.  

So L2 is not in SD. 

 

There are two differences between reductions that show that a language is not in SD and those that show that a 

language not in D: 

 

1. We must choose to reduce from a language that is already known not to be in SD (as opposed to choosing one 

where all we can prove is that it is not in D).  We already have one example of such a language: H. So we have 

a place to start. 

2. We hypothesize the existence of a semideciding machine Oracle, rather than a deciding one. 

 

The second of these will sometimes turn out to be critical.  In particular, the function  (which inverts the output of 

Oracle), can no longer be implemented as a Turing machine.  Since Oracle is claimed only to be a semideciding 

machine, there is no guarantee that it halts.  Since Oracle may loop, there is no way to write a procedure that accepts 

iff Oracle doesn’t.  So we won’t be able to include  in any of our reductions. 

 

We will need to find a way around this problem when it arises.  But let’s first do a very simple example where there 

is no need to do the inversion.  We begin with a reduction proof of Theorem 21.15.  We show that H M HANY.  Let 

R be a mapping reduction from H to HANY defined as follows.  

 

R(<M, w>) =  

1. Construct the description <M#> of a new Turing machine M#(x) that, on input x, operates as follows: 

1.1. Erase the tape. 

1.2. Write w on the tape. 

1.3. Run M on w. 

2. Return <M#>. 

      

If Oracle exists and semidecides HANY, then C = Oracle(R(<M, w>)) semidecides H.  R can be implemented as a 

Turing machine.  And C is correct:  M# ignores its input.  It halts on everything or nothing, depending on whether M 

halts on w.  So: 

 

• If <M, w>  H: M does not halt on w, so M# halts on nothing.  Oracle(<M#>) accepts. 

• If <M, w>  H: M halts on w, so M# halts on everything.  Oracle(<M#>) does not accept. 

 

But no machine to semidecide H can exist, so neither does Oracle.   
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Straightforward reductions of this sort can be used to show that many other languages, particularly those that are 

defined by the failure of a Turing machine to halt, are also not in SD. 

Theorem 21.16  “Does M Fail to Halt on ?” is Not Semidecidable 

Theorem: H = {<M> : Turing machine M does not halt on } is not in SD.   

 

Proof: The proof is by reduction from H.  We leave it as an exercise. 
◼ 

 

Sometimes, however, finding a reduction that works is a bit more difficult.  We next consider the language: 

 

• Aanbn = {<M> : M is a Turing machine and L(M) = AnBn = {anbn : n ≥ 0}}.   

 

Note that Aanbn contains strings that look like: 

 

(q00,a00,q01,a00,→), (q00,a01,q00,a10,→), (q00,a10,q01,a01,), (q00,a11,q01,a10,),  

(q01,a00,q00,a01,→), (q01,a01,q01,a10,→), (q01,a10,q01,a11,), (q01,a11,q11,a01,) 

 

It does not contain strings like aaabbb.  But AnBn does. 

 

We are going to have to try a couple of times to find a correct reduction that can be used to prove that Aanbn is not in 

SD. 

Theorem 21.17  “Is L(M) = AnBn?” is Not Semidecidable 

Theorem: The language Aanbn = {<M> : M is a Turing machine and L(M) = AnBn} is not in SD. 

 

Proof: We show that H M Aanbn and so Aanbn is not in SD.  We will build a mapping reduction R from H to Aanbn.  

R needs to construct the description of a new Turing machine M# so that M# is an acceptor for AnBn if M does not halt 

on w and it is something else if M does halt on w.  We can try the simple M# that first runs M on w as a gate that 

controls access to the rest of the program:  

  

Reduction Attempt 1:  Define: 

 

   R(<M, w>) =  

1. Construct the description <M#> of a new Turing machine M#(x) that, on input x, operates as follows: 

1.1. Copy the input x to a second tape. 

1.2. Erase the tape. 

1.3. Write w on the tape. 

1.4. Run M on w. 

1.5. Put x back on the first tape. 

1.6. If x  AnBn then accept; else loop.  

2. Return <M#>. 

      

Now we must show that, if some Turing machine Oracle semidecides Aanbn, then C = Oracle(R(<M, w>)) semidecides 

H.  But we encounter a problem when we try to show that C is correct.  If M halts on w, then M# makes it to step 

1.5 and becomes an AnBn acceptor, so Oracle(<M#>) accepts.  If M does not halt on w, then M# accepts nothing.  It 

is therefore not an AnBn acceptor, so Oracle(<M#>) does not accept.  The reduction R has succeeded in capturing the 

correct distinction:  Oracle returns one answer when <M, w>  H and another answer when <M, w>  H.  But the 

answer is backwards.  And this time we can’t simply add the function  to the reduction and define C to return 

Oracle(R(<M, w>)).  Oracle is only hypothesized to be a semideciding machine so there is no way for  to accept 

if Oracle fails to accept (since it may loop).   
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There is an easy way to fix this.  We build M# so that it either accepts just AnBn (if M does not halt on w) or everything 

(if M does halt on w).  We make that happen by putting the gate after the code that accepts AnBn instead of before.   

 

Reduction Attempt 2: Define: 

 

   R(<M, w>) = 

1. Construct the description <M#> of a new Turing machine M#(x) that, on input x, operates as follows: 

1.1. If x  AnBn then accept.  Else: 

1.2. Erase the tape. 

1.3. Write w on the tape. 

1.4. Run M on w. 

1.5. Accept. 

2. Return <M#>. 

 

If Oracle exists and semidecides Aanbn, then C = Oracle(R(<M, w>)) semidecides H.  R can be implemented as a 

Turing machine. And C is correct:  M# immediately accepts all strings in AnBn.  If M does not halt on w, those are the 

only strings that M# accepts.  If M does halt on w, M# accepts everything.  So: 

 

• If <M, w>  H: M does not halt on w, so M# accepts AnBn in step 1.1.  Then it gets stuck in step 1.4, so it accepts 

nothing else.  It is an AnBn acceptor.  Oracle(<M#>) accepts. 

• If <M, w>  H: M halts on w, so M# accepts everything. L(M#)  AnBn.  Oracle(<M#>) does not accept. 

 

But no machine to semidecide H can exist, so neither does Oracle.   
◼ 

 

Sometimes, however, the simple gate technique doesn’t work, as we will see in the next example. 

Theorem 21.18  “Does M Halt on Everything?” is Not Semidecidable 

Theorem: HALL = {<M> : Turing machine M halts on *} is not in SD.   

 

Proof: We show that HALL is not in SD by reduction from H. 

 

Reduction Attempt 1:  Define: 

 

    R(<M, w>) =  

1. Construct the description <M#> of a new Turing machine M#(x) that, on input x, operates as follows: 

1.1. Erase the tape. 

1.2. Write w on the tape. 

1.3. Run M on w. 

2. Return <M#>. 

 

We can attempt to show that, if Oracle exists and semidecides HALL, then C = Oracle(R(<M, w>)) correctly 

semidecides H.  The problem is that it doesn’t: 

 

• If <M, w>  H: M does not halt on w, so M# gets stuck in step 1.3 and halts on nothing.  Oracle(<M#>) does 

not accept. 

• If <M, w>  H: M halts on w, so M# halts on everything.  Oracle(<M#>) accepts. 

 

This is backwards.  We could try halting on something before running M on w, the way we did on the previous 

example.  But the only way to make M# into a machine that halts on everything would be to have it halt immediately, 

before running M.  But then its behavior would not depend on whether M halts on w.  We need a new technique. 
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Reduction Attempt 2:  Define: 

 

   R(<M, w>) =  

1. Construct the description <M#> of a new Turing machine M#(x) that, on input x, operates as follows: 

1.1. Copy the input x to a second tape. 

1.2. Erase the tape. 

1.3. Write w on the tape. 

1.4. Run M on w for |x| steps or until it halts. 

1.5. If M would have halted, then loop. 

1.6. Else halt.  

2. Return <M#>. 

 

We build M# so that it runs the simulation of M on w for some finite number of steps and observes whether M would 

have halted in that time.  If M would have halted, M# loops.  If M would not have halted, M# promptly halts.  This is 

where we flip from halting to looping and vice versa..  It works because the simulation always halts, so M# never gets 

stuck running it.  But for how many steps should we run the simulation?  If M is going to halt, we don’t know how 

long it will take for it to do so.  We need to guarantee that we don’t quit too soon and think that M isn’t going to halt 

when it actually will.  Here’s the insight:  The language * is infinite.  So if M# is going to halt on every string in *, 

it will have to halt on an infinite number of strings.  It’s okay if M# gets fooled into thinking that M will halt some of 

the time as long as it does not do so for all possible inputs.  So M# will run the simulation of M on w for a number of 

steps equal to the length of its (M#’s) own input.  It may be fooled into thinking M is going to halt on w when it is 

invoked on short strings.  But, if M does eventually halt, it does so in some number of steps n.  When started on any 

strings of length n or more, M# will try long enough and will discover that M on w would have halted.  Then it will 

loop.  So it will not halt on all strings in *.  

 

If Oracle exists and semidecides HALL, then C  = Oracle(R(<M, w>)) semidecides H.  R can be implemented as a 

Turing machine.  And C is correct:   

 

• If <M, w>  H: M does not halt on w.  So, no matter how long x is, M will not halt in |x| steps.  So, for all inputs 

x, M# makes it to step 1.6.   So it halts on everything.  Oracle(<M#>) accepts. 

• If <M, w>  H: M halts on w.  It does so in some number of steps n.  On inputs of length less than n, M# will 

make it to step 1.6 and halt.  But on all inputs of length n or greater, M# will loop in step 1.5.  So it fails to halt 

on everything.  Oracle(<M#>) does not accept. 

 

But no machine to semidecide H can exist, so neither does Oracle.   
◼ 

21.6.3 Is L in D, SD/D, or SD? 

Throughout this chapter, we have seen examples of languages that are decidable (i.e., they are in D), are semidecidable 

but not decidable (i.e., they are in SD/D), and, most recently, are not even semidecidable (i.e., they are in SD).  We 

have seen some heuristics that are useful for analyzing a language and determining what class it is in.  In applying 

those heuristics, it is critical that we look closely at the language definition.  Small changes can make a big difference 

to the decidability of the language.  For example, consider the following four languages (where, in each case, M is a 

Turing machine): 

 

1. {<M> : M has an even number of states}. 

2. {<M> : |<M>| is even}. 

3. {<M> : |L(M)| is even} (i.e., L(M) contains an even number of strings). 

4. {<M> : M accepts all even length strings}. 

 

Language 1 is in D.  A simple examination of <M> will tell us how many states M has.  Language 2 is also in D.  To 

decide it, all we need to do is to examine <M>, the string description of M, and determine whether that string is of 

even length.  Rice’s Theorem does not apply in either of those cases since the property we care about involves the 

physical Turing machine M, not the language it accepts.  But languages 3 and 4 are different.  To decide either of them 

requires evaluating a property of the language that a Turing machine M accepts.  Rice’s Theorem tells us, therefore, 
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that neither of them is in D.  In fact, neither of them is in SD either.  The intuition here is that to semidecide them by 

simulation would require trying an infinite number of strings.  We leave the proof of this claim as an exercise. 

 

Now consider another set: 

 

1. {<M, w> : Turing machine M does not halt on input string w}. (This is just H.) 

2. {<M, w> : Turing machine M rejects w}. 

3. {<M, w> : Turing machine M is a deciding Turing machine and M rejects w}. 

 

We know that H is in SD.  What about language 2?  It seems similar.  But it is different in a crucial way and is 

therefore in SD/D.  The following Turing machine semidecides it: run M on w; if it halts and rejects, accept.  The key 

difference is that now, instead of needing to detect that M loops, we need to detect that M halts and rejects.  We can 

detect halting (but not looping) by simulation.  Now consider language 3.  If it were somehow possible to know that 

M were a deciding machine, then there would be a decision procedure to determine whether or not it rejects w: run M 

on w.  It must halt (since it’s a deciding machine).  If it rejects, accept, else reject.  That would mean language 3 would 

be in D.  But language 3 is, in fact, in SD.  It is harder than language 2.  The problem is that there is not even a 

semideciding procedure for the question, “Is M a deciding machine?”  That question is equivalent to asking whether 

M halts on all inputs, which we have shown is not semidecidable.   

21.7 Summary of D, SD/D and SD Languages that Include Turing 
Machine Descriptions 

At the beginning of this chapter, we presented a table with a set of questions that we might like to ask about Turing 

machines and we showed the language formulation of each question.  We have now proven where most of those 

languages fall in the D, SD/D, SD hierarchy that we have defined.  (The rest are given as exercises.)  So we know 

whether there exists a decision procedure, a semidecision procedure, or neither, to answer the corresponding question.  

Because many of these questions are very important as we try to understand the power of the Turing machine 

formalism, we summarize in Table 21.2 the status of those initial questions, along with some of the others that we 

have considered in this chapter. 
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The Problem View The Language View Status 

Does TM M have an even number of states? {<M> : TM M has an even number of states} D 

Does TM M halt on w? H = {<M, w> : TM M halts on w} SD/D 

Does TM M halt on the empty tape? H = {<M> : TM M halts on } 

 

SD/D 

Is there any string on which TM M halts? HANY = {<M> : there exists at least one string 

on which TM M halts } 

SD/D 

Does TM M halt on all strings? HALL = {<M> : TM M halts on *} SD  

Does TM M accept w? A = {<M, w> : TM M accepts w} SD/D 

Does TM M accept ? A = {<M> : TM M accepts } SD/D 

Is there any string that TM M accepts? AANY {<M> : there exists at least one string 

that TM M accepts } 

SD/D 

Does TM M fail to halt on w? H = {<M, w> : TM M does not halt on w} SD 

Does TM M accept all strings? AALL = {<M> : L(M) = *} 

 

SD  

Do TMs Ma and Mb accept the same languages? EqTMs  = {<Ma, Mb> : L(Ma) = L(Mb)} SD  

Is it the case that TM M does not halt on any string? HANY = {<M> : there does not exist any 

string on which TM M halts}  

SD  

Does TM M fail to halt on its own description? {<M> : TM M does not halt on input <M>} SD 

Is TM M minimal? TMMIN = {<M>: TM M is minimal} SD 

Is the language that TM M accepts regular? TMREG = {<M> : L(M) is regular} SD 

Is L(M) = AnBn? Aanbn = {<M> : L(M) = AnBn} SD 

 

 

Table 21.2 The problem and the language views 

 

 

21.8 Exercises 
1) For each of the following languages L, state whether L is in D, SD/D, or SD.  Prove your claim.  Assume that 

any input of the form <M> is a description of a Turing machine. 

a) {a}. 

b) {<M> : a  L(M)}. 

c) {<M> : L(M) = {a}}. 

d) {<Ma, Mb> : Ma and Mb are Turing machines and   L(Ma) - L(Mb)}. 

e) {<Ma, Mb> : Ma and Mb are Turing machines and L(Ma) = L(Mb) – {}}. 

f) {<Ma, Mb> : Ma and Mb are Turing machines and L(Ma)  L(Mb)}. 

g) {<M, w> : M, when operating on input w, never moves to the right on two consecutive moves}. 

h) {<M> : M is the only Turing machine that accepts L(M)}. 

i) {<M> : L(M) contains at least two strings}. 

j) {<M> : M rejects at least two even length strings}. 

k) {<M> : M halts on all palindromes}. 

l) {<M> : L(M) is context-free}. 

m) {<M> : L(M) is not context-free}. 

n) {<M> : A#(L(M)) > 0}, where A#(L) = |L  a*|. 

o) {<M> : |L(M)| > 0 and is prime}. 

p) {<M> : there exists a string w such that |w| < |<M>| and that M accepts w}. 

q) {<M> : M does not accept any string that ends with 0}. 

r) {<M> : there are at least two strings w and x such that M halts on both w and x within some number of steps 

s, and s < 1000 and s is prime}. 

s) {<M> : there exists an input on which M halts in fewer than |<M>| steps}. 

t) {<M> : L(M) is infinite}. 

u) {<M> : L(M) is uncountably infinite}. 
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v) {<M> : M accepts the string <M, M> and does not accept the string <M>}. 

w) {<M> : M accepts at least two strings of different lengths}. 

x) {<M> : M accepts exactly two strings and they are of different lengths}. 

y) {<M, w> : M accepts w and rejects wR}. 

z) {<M, x, y> : M accepts xy}. 

aa) {<D> : <D> is the string encoding of a deterministic FSM D and L(D) = }. 

 

2) In B 648, we describe a straightforward use of reduction that solves a grid 

coloring problem by reducing it to a graph problem.  Given the grid G shown 

here: 

 

a) Show the graph that corresponds to G. 

b) Use the graph algorithm we describe to find a coloring of G.  

 

 

 

 

3) In this problem, we consider the relationship between H and a very simple 

language {a}. 

a) Show that {a} is mapping reducible to H.  

b) Is it possible to reduce H to {a}?  Prove your answer. 

 

4) Show that HALL = {<M> : Turing machine M halts on *} is not in D by reduction from H. 

 

5) Show that each of the following languages is not in D: 

a) A. 

b) AANY. 

c) AALL. 

d) {<M, w> : Turing machine M rejects w}. 

e) {<M, w> : Turing machine M is a deciding Turing machine and M rejects w}. 

 

6) Show that L = {<M> : Turing machine M, on input , ever writes 0 on its tape} is in D iff H is in D.  In other 

words, show that L  H and H  L.   

 

7) Show that each of the following questions is undecidable by recasting it as a language recognition problem and 

showing that the corresponding language is not in D: 

a) Given a program P, input x, and a variable n, does P, when running on x, ever assign a value to n? 

 

Can a compiler check to make sure every variable is initialized before it is used?  C 669. 

 

b) Given a program P and code segment S in P, does P reach S on every input (in other words, can we guarantee 

that S happens)? 

c) Given a program P and a variable x, is x always initialized before it is used? 

d) Given a program P and a file f, does P always close f before it exits? 

e) Given a program P with an array reference of the form a[i], will i, at the time of the reference, always be 

within the bounds declared for the array? 

f) Given a program P and a database of objects d, does P perform the function f on all elements of d? 

 

8) In C 718, we proved Theorem 41.1, which tells us that the safety of even a very simple security model is 

undecidable, by reduction from H.  Show an alternative proof that reduces A = {<M, w> : M is a Turing machine 

and w  L(M)} to the language Safety. 

 

9) Show that each of the following languages is not in SD: 

a) H. 

b) EqTMs. 

A         B       C        D
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c) TMREG. 

d) {<M> : |L(M)| is even}. 

e) {<M> : Turing machine M accepts all even length strings}. 

f) {<M> : Turing machine M accepts no even length strings}. 

g) {<M> : Turing machine M does not halt on input <M>}. 

h) {<M, w> : M is a deciding Turing machine and M rejects w}. 

 

10) Do the other half of the proof of Rice’s Theorem.  In other words, show that the theorem holds if P() = True. 

 

11) For each of the following languages L, do two things: 

i) State whether or not Rice’s Theorem has anything to tell us about the decidability of L. 

ii) State whether L is in D, SD/D, or not in SD. 

a) {<M> : Turing machine M accepts all strings that start with a}. 

b) {<M> : Turing machine M halts on  in no more than 1000 steps}. 

c) L1, where L1 = {<M> : Turing machine M halts on all strings in no more than 1000 steps}. 

d) {<M, w> : Turing machine M rejects w}. 

 

12) Use Rice’s Theorem to prove that each of the following languages L is not in D: 

a) {<M> : Turing machine M accepts at least two odd length strings}. 

b) {<M> : M is a Turing machine and |L(M)| = 12}. 

 

13) Prove that there exists no mapping reduction from H to the language L2 that we defined in Theorem 21.9. 

 

14) Let  = {1}.  Show that there exists at least one undecidable language with alphabet . 

 

15) Give an example of a language L such that neither L nor L is decidable. 

 

16) Let repl be a function that maps from one language to another.  It is defined as follows: 

 

 repl(L) = {w : x  L and w = xx}. 

 

a) Are the context free languages closed under repl?  Prove your answer. 

b) Are the decidable languages closed under repl?  Prove your answer. 

 

17) For any nonempty alphabet , let L be any decidable language other than  or *.  Prove that L M L.  

 

18) We will say that L1 is doubly reducible to L2, which we will write as L1 D L2, iff there exist two computable 

functions f1 and f2 such that: 

 

x  * ((x  L1) iff (f1(x)  L2) and (f2(x)  L2)). 

 

Prove or disprove each of the following claims: 

a) If L1  L2 and L2  *, then L1 D L2. 

b) If L1 D L2 and L2  D, then L1  D. 

c) For every language L2, there exists a language L1 such that (L1 D L2). 

 

19) Let L1 and L2 be any two SD/D languages such that L1  L2.  Is it possible that L1 is reducible to L2?  Prove your 

answer.   

 

20) If L1 and L2 are decidable languages and L1  L  L2, must L be decidable?  Prove your answer. 
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21) Goldbach’s conjecture states that every even integer greater than 2 can be written as the sum of two primes.  

(Consider 1 to be prime.)  Suppose that A = {<M, w> : M is a Turing machine and w  L(M)} were decidable by 

some Turing machine Oracle.  Define the following function: 

 

   G() =  True if Goldbach’s conjecture is true, 

 False otherwise. 

 

Use Oracle to describe a Turing machine that computes G.  You may assume the existence of a Turing machine 

P that decides whether a number is prime. 

 

22) A language L is D-complete iff (1) L is in D, and (2) for every language L in D, L M L.  Consider the following 

claim: If L  D and L  * and L  , then L is D-complete.  Prove or disprove this claim.  
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22 Decidability of Languages That Do Not (Obviously) 
Ask Questions about Turing Machines  

If the only problems that were undecidable were questions involving the behavior of Turing Machines (and thus 

programs written in any reasonable formalism), we would still care.  After all, being able to prove properties of the 

programs that we write is of critical importance when bugs could mean the loss of millions of dollars or hundreds of 

lives.  But Turing Machines do not own the market in undecidable problems. In this chapter, we will look at some 

examples of undecidable problems that do not (at least directly) ask questions about Turing Machines. 

 

Although the problems we will consider here do not appear to involve Turing Machines, each of the undecidability 

proofs that we will describe is based, either directly or indirectly, on a reduction from a language (such as H, A, or 

H) whose definition does refer to the behavior of Turing machines.  Many of these proofs are based on variants of 

a single idea, namely the fact that it is possible to encode a Turing machine configuration as a string.  For example, 

the string abq100cd can encode the configuration of a Turing machine that is in state 4, with abcd on the tape and 

the read/write head positioned on the c.  Then we can encode a computation of a Turing machine as a sequence of 

configurations, separated by delimiters.  For example, we might have: 

 
#q0abcd#q1abcd#aq1bcd#   

 

Or we can encode a computation as a table, where each row corresponds to a configuration.  So, for example, we 

might have: 

 
#q0abcd# 
#q1abcd# 
#aq1bcd# 

 

To show that a new language is not decidable, we will then define a reduction that maps from one of these 

representations of a Turing machine’s computations to some essential structure of the new problem.  We will design 

the reduction so that the new problem’s structure possesses some key property iff the Turing machine’s computation 

enters a halting state (or an accepting state) or fails to enter a halting state, or whatever it is we need to check.  So, if 

there is a procedure to decide whether an instance of the new problem possesses the key property, then there is also a 

way to check whether a Turing machine halts (or accepts or whatever).  So, for example, suppose that we are using 

the table representation and that M, the Turing machine whose computation we have described, does not halt.  Then 

the table will have an infinite number of rows.  In the proof we’ll sketch in Section 22.3, the cells of the table will 

correspond to tiles that must be arranged according to a small set of rules.  So, if we could tell whether an infinite 

arrangement of tiles exists, we could tell whether the table is infinite (and thus whether M fails to halt).   

22.1  Diophantine Equations and Hilbert’s 10th Problem  
In 1900, the German mathematician David Hilbert presented a list of 23 problems that he argued should be the focus 

of mathematical research as the new century began.  The 10th of his problems  concerned systems of Diophantine 

equations (polynomials in any number of variables, all with integer coefficients), such as:  

 

 4x3 + 7xy + 2z2 – 23x4z = 0. 

 

A Diophantine problem is, “Given a system of Diophantine equations, does it have an integer solution?”  Hilbert asked 

whether there exists a decision procedure for Diophantine problems.  Diophantine problems are important in 

applications in which the variables correspond to quantities of indivisible objects in the world.  For example, suppose 

x is the number of shares of stock A to be bought, y is the number of shares of stock B, and z is the number of shares 

of stock C.  Since it is not generally possible to buy fractions of shares of stock, any useful solution to an equation 

involving x, y, and z would necessarily assign integer values to each variable. 

 

We can recast the Diophantine problem as the language TENTH = {<w> : w is a system of Diophantine equations that 

has an integer solution}. In 1970, Yuri Matiyasevich proved a general result from which it follows that the answer to 

Hilbert’s question is no: TENTH is not in D.  Using the Fibonacci sequence (defined in Example 24.4), Matiyasevich 
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proved that every semidecidable set S is Diophantine, by which we mean that there is a reduction from S to the problem 

of deciding whether some system of Diophantine equations has an integer solution.  So, if the Diophantine problem 

were decidable, every semidecidable set would be decidable.  But we know that there are semidecidable sets (e.g., the 

language H) that are not decidable.  So the Diophantine problem is not decidable either.   

 

As an aside, however, we should point out that when all of the terms are of degree 1, Diophantine problems are 

decidable, which is good news for the writers of puzzle problems of the sort: 

 

A farmer buys 100 animals for $100.00. The animals include at least one cow, one pig, and one chicken, 

but no other kind.  If a cow costs $10.00, a pig costs $3.00, and a chicken costs $0.50, how many of each 

did he buy?  

 

It is also true that Diophantine problems that involve just a single variable are decidable.  And quadratic Diophantine 

problems of two variables are decidable.  These are problems of the form ax2 + by = c, where a, b, and c are positive 

integers and we ask whether there exist integer values of x and y that satisfy the equation. 

 

We will return the question of the solvability of Diophantine problems in Part V.  There we will see that: 

 

• Diophantine problems of degree 1 (like the cows, pigs, and chickens problem) and Diophantine problems of a 

single variable of the form axk = c are not only solvable, they are efficiently solvable (i.e., there exists a 

polynomial-time algorithm to solve them). 

 

• Quadratic Diophantine problems are solvable, but there appears to exist no polynomial-time algorithm for doing 

so.  The quadratic Diophantine problem belongs to the complexity class NP-complete. 

 

• The general Diophantine problem is undecidable, so not even an inefficient algorithm for it exists. 

22.2 Post Correspondence Problem 
Consider two lists of strings over some alphabet .  The lists must be finite and of equal length.  We can call the two 

lists X and Y.  So we have: 

 

X = x1, x2, x3, …, xn. 

Y = y1, y2, y3, …, yn. 

 

Now we ask a question about the lists: Does there exist some finite sequence of integers that can be viewed as indices 

of X and Y such that, when elements of X are selected as specified and concatenated together, we get the same string 

that we get when elements of Y are also concatenated together as specified?  For example, if we assert that 1, 3, 4 is 

such a sequence, we’re asserting that x1x3x4 = y1y3y4.  Any problem of this form is an instance of the Post 

Correspondence Problem , first formulated in the 1940’s by Emil Post.   

Example 22.1 A PCP Instance with a Simple Solution 

Let PCP1 be: 

 X Y 

1 b bab 

2 abb b 

3 aba a 

4 bbaaa babaaa 

 

PCP1 has a very simple solution: 1, 2, 3, 1, which is a solution because (ignoring spaces, which are shown here just to 

make it clear what is happening): 

 

  b abb aba b = bab b a bab 

 

It also has an infinite number of other solutions, including 1, 2, 3, 1, 1, 2, 3, 1 and 1, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 1. 
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Example 22.2 A PCP Instance with No Solution 

Let PCP2 be: 

 X Y 

1 11 011 

2 01 0 

3 001 110 

 

PCP2 has no solution.  It is straightforward to show this by trying candidate solutions.  Mismatched symbols that cause 

the current path to die are marked with an .   

 

     start 

 

 

first index = 1    first index = 2    first index = 3 

   X = 1 1       X = 0 1       X = 0 0 1 

   Y = 0 1 1       Y = 0        Y = 1 1 0 
                               

 

 

 second index = 1   second index = 2   second index = 3  

    X = 0 1 1 1      X = 0 1 0 1      X = 0 1 0 0 1 

     Y = 0 0 1 1      Y = 0 0      Y = 0 1 1 0 
                                               

 

All paths have failed to find a solution. 

 

Example 22.3 A PCP Instance with No Simple Solutions 

Let PCP3 be: 

 X Y 

1 1101 1 

2 0110 11 

3 1 110 

 

PCP3 has solutions (in fact, an infinite number of them), but the shortest one has length 252 . 

 

We can formulate the Post Correspondence Problem as a language decision problem.  To do that, we need to define a 

way to encode each instance of the Post Correspondence Problem as a string.  Let  be any nonempty alphabet.  Then 

an instance of the Post Correspondence Problem is a string <P> of the form: 

 

<P> = (x1, x2, x3, …, xn)( y1, y2, y3, …, yn), where j (xj  + and yj  +). 

 

For example, <PCP1> = (b, abb, aba, bbaaa)(bab, b, a, babaaa).  

 

We’ll say that a PCP instance has size n whenever the number of strings in its X list is n.  (In this case, the number of 

strings in its Y list is also n.)  A solution to a PCP instance of size n is a finite sequence i1, i2, …ik of integers such that: 

 

1jk (1  ij  n and xi1xi2…xik = yi1yxi2…yik).  

 

To define a concrete PCP language, we need to fix an alphabet.  We’ll let  be {0, 1} and simply encode any other 

alphabet in binary.  Now the problem of determining whether a particular instance P of the Post Correspondence 

Problem has a solution can be recast as the problem of deciding the language: 
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• PCP = {<P> : P is an instance of the Post correspondence problem and P has a solution}. 

Theorem 22.1  The Undecidability of PCP 

Theorem: The language PCP = {<P> : P is an instance of the Post correspondence problem and P has a solution} is 

in SD/D. 

 

Proof: We will first show that PCP is in SD by building a Turing machine MPCP(<P>) that semidecides it.  The idea 

is that MPCP will simply try all possible solutions of length 1, then all possible solutions of length 2, and so forth.  If 

there is any finite sequence of indices that is a solution, MPCP will find it.  To describe more clearly how MPCP works, 

we first observe that any solution to a PCP problem P = (x1, x2, x3, …, xn)( y1, y2, y3, …, yn) is a finite sequence of 

integers between 1 and n.  We can build a Turing machine M# that lexicographically enumerates all such sequences.  

Now we define: 

 

MPCP(<P>) = 

1. Invoke M#.   

2. As each string is enumerated, see if it is a solution to P.  If so, halt and accept.  

 

Next we must prove that PCP is not in D.  There are two approaches we could take to doing this proof.  One is to use 

reduction from H.  The idea is that, to decide whether <M, w> is in H, we create a PCP instance that simulates the 

computation history of M running on w.  We do the construction in such a way that there exists a finite sequence that 

solves the PCP problem iff the computation halts.  So, if we could decide PCP, we could decide H.  An alternative is 

to make use of the grammar formalism that we will define in the next chapter.  We’ll show there that unrestricted 

grammars generate all and only the SD languages.  So the problem of deciding whether a grammar G generates a 

string w is equivalent to deciding whether a Turing machine M accepts w and is thus undecidable.  Given that result, 

we can prove that PCP is not in D by a construction that maps a grammar to a PCP instance in such a way that there 

exists a finite sequence that solves the PCP problem iff there is a finite derivation of w using the rules of G.  This 

second approach is somewhat easier to explain, so it is the one we’ll use.  We give the proof in B 649.  
◼ 

 

It turns out that some special cases of PCP are decidable.  For example, if we restrict our attention to problems of size 

two, then PCP is decidable.  A bounded version of PCP is also decidable.  Define the language: 

 

• BOUNDED-PCP = {<P, k> : P is an instance of the Post Correspondence problem that has a solution of length 

less than or equal to k}. 

 

While BOUNDED-PCP is decidable (by a straightforward algorithm that simply tries all candidate solutions of length 

up to k), it appears not to be efficiently decidable.  It is a member of the complexity class NP-complete, which we will 

define in Section 28.2. 

 

The fact that PCP is not decidable in general is significant.  As we will see in Section 22.5.3, reduction from PCP is a 

convenient way to show the undecidability of other kinds of problems, including some that involve context-free 

languages. 

22.3 Tiling Problems 
Consider a class of tiles called Wang tiles or Wang dominos .  A Wang tile is a square that has been divided into 

four regions by drawing two diagonal lines, as shown in Figure 22.1.  Each region is colored with one of a fixed set 

of colors.  

 

 

 

 

       Figure 22.1  A tiling problem 
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Now suppose that you are given a finite set of such tile designs, all of the same size, for example the set of three 

designs shown here.  Further suppose that you have an infinite supply of each type of tile.  Then we may ask whether 

or not it possible to tile an arbitrary surface in the plane with the available designs while adhering to the following 

rules: 

 

1. Each tile must be placed so that it is touching its neighbors on all four sides (if such neighbors exist).  In 

other words, no gaps or overlaps are allowed. 

2. When two tiles are placed so that they adjoin each other, the adjoining regions of the two tiles must be the 

same color.  

3. No rotations or flips are allowed. 

Example 22.4 A Set of Tiles that Can Tile the Plane 

The set of tiles shown above can be used to tile any surface in the plane.  Here is a small piece of the pattern that can 

be built and then repeated as necessary since its right and left sides match, as do its top and bottom: 

 

 

 

 

 

 

 

 

Example 22.5 A Set of Tiles that Cannot Tile the Plane 

Now consider a new set of tiles: 

 

 

 

 

Only a small number of small regions can be tiled with this set.  To see this, start with tile 1, add a tile below it and 

then try to extend the pattern sideways.  Then start with tile 2 and show the same thing.  Then observe that tile 3, the 

only one remaining, cannot be placed next to itself. 

 

We can formulate the tiling problem, as we have just described it, as a language to be decided.  To do that, we need 

to define a way to encode each instance of the tiling problem (i.e., a set of tile designs) as a string.  We will represent 

each design as an ordered 4-tuple of values drawn from the set {G, W, B}.  To describe a design, start in the top region 

and then go around the tile clockwise.  So, for example, the first tile set we considered could be represented as: 

 

(G W W W) (W W B G) (B G G W). 

 

Now we can define: TILES =  

 

• TILES = {<T> : every finite surface on the plane can be tiled, according to the rules, with the tile set T}. 

 

The string (G W W W) (W W B G) (B G G W), which corresponds to the tile set of Example 22.4, is in TILES.  The 

string (G W W W) (W W G G) (B G B W), which corresponds to the tile set of Example 22.5, is not in TILES. 

 

Is TILES in D?  In other words, does there exist a decision procedure that determines, for a given set of tiles, whether 

or not it can be used to tile an arbitrary surface in the plane?  Consider the following conjecture, called Wang’s 

conjecture:  If a given set of tiles can be used to tile an arbitrary surface, then it can always do so periodically.  In 

other words, there must exist a finite area that can be tiled and then repeated infinitely often to cover any desired 

surface.  For example, the tile set of Example 22.4 covers the plane periodically using the 3  3 grid shown above.  If 

Wang’s conjecture were true, then the tiling question would be decidable by considering successively larger square 
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grids in search of one that can serve as the basis for a periodic tiling.  If such a grid exists, it will be found.  If no such 

grid exists, then it is possible to prove (using a result known as the König infinity lemma) that there must exist a finite 

square grid that cannot be tiled at all.  So this procedure must eventually halt, either by finding a grid that can be used 

for a periodic tiling or by finding a grid that cannot be tiled at all (and thus discovering that no periodic tiling exists). 

 

It is possible to make many kinds of changes to the kinds of tiles that are allowed 

without altering the undecidability properties of the tiling problem as we have 

presented it for Wang tiles.  Tiling problems, in this broader sense, have 

widespread applications in the physical world .  For example, the growth of 

crystals can often be described as a tiling.   

 

As it turns out, Wang’s conjecture is false.  There exist tile sets  that can tile an arbitrary area aperiodically (i.e., 

without any repeating pattern) but for which no periodic tiling exists.  Of course, that does not mean that TILES must 

not be in D.  There might exist some other way to decide it.  But there does not.  TILES is not in D.  In fact, it is not 

even in SD, although TILES is. 

Theorem 22.2  The Undecidability of TILES 

Theorem: The language TILES = {<T> : every finite surface on the plane can be tiled, according to the rules, with the 

tile set T} is not in D.  It is also not in SD.  But TILES is in SD.   

 

Proof:  We first prove that TILES is in SD.  Consider a search space defined as follows:  The start state contains no 

tiles.  From any state s, construct the set of successor states, each of which is built by adding one tile, according to the 

rules, to the configuration in s.  We can build a Turing machine M that semidecides TILES by systematically 

exploring this space.  If and only if it ever happens that all the branches reach a dead end in which there is no legal 

move, then there is no tiling and M accepts.   

 

If TILES were also in SD, then, by Theorem 20.6, it would be in D.  But it is not.  The proof that it is not is by 

reduction from H.  The idea behind the reduction is to describe a way to map an arbitrary Turing machine M into a 

set of tiles T in such a way that T is in TILES iff M does not halt on .  The reduction uses a row of tiles to correspond 

to a configuration of M.  It begins by creating a row that corresponds to M’s initial configuration when started on a 

blank tape.  Then the next row will correspond to M’s next configuration, and so forth.  There is always a next 

configuration of M and thus a next row in the tiling iff M does not halt.  T is in TILES iff there is always a next row 

(i.e., T can tile an arbitrarily large area).  So if it were possible to semidecide whether T is in TILES it would be 

possible to semidecide whether M fails to halt on .  But we know (from Theorem 21.16) that H is not in SD.  So 

neither is TILES.  
◼ 

 

The language TILES corresponds to an unbounded tiling problem.  We can also formulate a bounded version: “Given 

a particular stack of n2 tiles (for some value of n), is it possible to tile an n  n surface in the plane?”  This problem is 

clearly decidable by the straightforward algorithm that simply tries all ways of placing the n2 tiles on the n2 cells of 

an n  n grid.  But there is still bad news.  The theory of time complexity that we will describe in Chapter 28 provides 

the basis for formalizing the following claim:  The bounded tiling problem is apparently intractable.  The time required 

to solve it by the best known algorithm grows exponentially with n.  We will return to this discussion in Exercise 

28.20). 

22.4 Logical Theories 
Even before anyone had seen a computer, mathematicians were interested in the question: “Does there exist an 

algorithm to determine, given a statement in a logical language, whether or not it is a theorem?”  In other words, can 

it be proved from the available axioms plus the rules of inference.  In the case of formulas in first order logic, this 

problem even had a specific name, the Entscheidungsproblem.  With the advent of the computer, the 

Entscheidungsproblem acquired more than mathematical interest.  If such an algorithm existed, it could play a key 

role in programs that: 
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• Decide whether other programs are correct. 

• Determine that a plan for controlling a manufacturing robot is correct. 

• Accept or reject interpretations for English sentences, based on whether or not they make sense. 

 

22.4.1 Boolean Theories 

If we consider only Boolean logic formulas, such as (P  (Q  R) → S), then there exist procedures to decide all of 

the following questions: 

 

• Given a well-formed formula (wff) w, is w valid (i.e., is it true for all assignments of truth values to its variables)? 

• Given a wff w, is w satisfiable (i.e., is there some assignment of truth values to its variables such that w is true)? 

• Given a wff w and a set of axioms A, is w a theorem (i.e., can it be proved from A)? 

 

Alternatively, all of the following languages are in D:   

 

• VALID = {<w> : w is a wff in Boolean logic and w is valid}. 

• SAT = {<w> : w is a wff in Boolean logic and w is satisfiable}. 

• PROVABLE = {<A, w> : w is a wff in Boolean logic, A is a set of axioms in Boolean logic and w is provable from 

A} 

 

Suppose that the specification for a hardware device or a software system can be 

described in terms of a finite number of states.  Then it can be written as a Boolean 

formula.  Then one way to verify the correctness of a particular implementation is to see 

whether it satisfies the specification.  The fact that SAT is decidable makes this approach, 

called model checking, possible.  B 679. 

 

There is a straightforward procedure for answering all of these questions since each wff contains only a finite number 

of variables and each variable can take on one of two possible values (True or False).  So it suffices to try all the 

possibilities.  A wff is valid iff it is true in all assignments of truth values to its variables.  It is satisfiable iff it is true 

in at least one such assignment.  A wff w is provable from A iff (A → w) is valid. 

 

Unfortunately, if w contains n variables, then there are 2n ways of trying all ways of assigning values to those variables.  

So any algorithm that does that takes time that grows exponentially in the size of w.  The best known algorithms for 

answering any of these questions about an arbitrary wff do take exponential time in the worst case.  We’ll return to 

this issue when we consider complexity in Part V.  However, we should note that there are techniques that can perform 

better than exponentially in many cases.  One approach represents formulas as ordered binary decision diagramss 

(OBDDs).  B 612. 

22.4.2 First-Order Logical Theories 

If we consider first-order logic (FOL) sentences, such as x (y (P(x, y)  Q (y, x) → T(x))), then none of the questions 

we asked about Boolean logic (validity, satisfiability, and theoremhood) is decidable. 

  

We’ll focus here on the question of deciding, given a sentence w and a decidable set of axioms A, whether w can be 

proved from A.  To do this, we’ll define the language:  

 

• FOLtheorem = {<A, w> : A is a decidable set of axioms in first-order logic, w is a sentence in first-order logic, and w 

is entailed by A}. 

 

Note that we do not require that the set of axioms be finite, but we do require that it be decidable.  For example Peano 

arithmetic is a first-order logical theory that describes the natural numbers, along with the functions plus and times 

applied to them.  Peano arithmetic exploits an infinite but decidable set of axioms.   
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Theorem 22.3  First-Order Logic is Semidecidable 

Theorem: FOLtheorem = {<A, w> : A is a decidable set of axioms in first-order logic, w is a sentence in first-order logic, 

and w is entailed by A} is in SD. 

 

Proof:  The algorithm proveFOL semidecides FOLtheorem: 

 

     proveFOL(A: decidable set of axioms, w: sentence) =  

1. Using some complete set of inference rules for first-order logic, begin with the sentences in A and 

lexicographically enumerate the sound proofs.  If A is infinite, then it will be necessary to embed in that 

process a subroutine that lexicographically enumerates the sentences in the language of the theory of A and 

checks each to determine whether or not it is an axiom.   

2. Check each proof as it is created.  If it succeeds in proving w, halt and accept. 

 

By Gödel’s Completeness Theorem we know that there does exist a set of inference rules for first order logic that is 

complete in the sense that they are able to derive, from a set of axioms A, all sentences that are entailed by A.  So step 

1 of proveFOL can be correctly implemented. 
◼ 

 

There exist techniques for implementing proveFOL in a way that is computationally 

efficient enough for many practical applications.  We describe one of them, resolution, 

in B 620.  

 

Unfortunately, proveFOL is not a decision procedure since it may not halt.  Also, unfortunately, it is not possible to 

do better, as we now show. 

 

Logical reasoning provides a basis for many artificial intelligence systems.  Does the fact 

that first-order logic is undecidable mean that artificial intelligence is impossible?  C 769. 

Theorem 22.4  First-Order Logic is not Decidable 

Theorem: FOLtheorem = {<A, w> : A is a decidable set of axioms in first-order logic, w is a sentence in first-order logic, 

and w is entailed by A} is not in D. 

 

Proof:  Let T be any first-order theory with A (a decidable set of axioms) and M (an interpretation, i.e., a domain and 

an assignment of meanings to the constant, predicate, and function symbols of A).  If T is not consistent, then all 

sentences are theorems in T.  So the simple procedure that always returns True decides whether any sentence is a 

theorem in T.  We now consider the case in which T is consistent.  

 

If T is complete then, for any sentence w, either w or w is a theorem.  So the set of theorems is decidable because it 

can be decided by the following algorithm:  

 

    decidecompletetheory(A: set of axioms, w: sentence) =  

1. In parallel, use proveFOL, as defined above, to attempt to prove w and w.    

2. One of the proof attempts will eventually succeed.  If the attempt to prove w succeeded, then return True.  If 

the attempt to prove w succeeded, then return False.  

 

A slightly different way to say this is that if the set of theorems is in SD and the set of nontheorems is also in SD, then 

by Theorem 20.6, both sets are also in D.   

 

But we must also consider the case in which T is not complete.  Now it is possible that neither w nor w is a theorem.  

Does there exist a decision procedure to determine whether w is a theorem?  The answer is no, which we will show 

by exhibiting one particular theory for which no decision procedure exists.  We use the theory of Peano arithmetic.  

Gödel proved (in a result that has come to be known as Gödel’s Incompleteness Theorem) that the theory of Peano 

arithmetic cannot be both consistent and complete.   
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Following Turing’s argument, we show that H M FOLtheorem and so FOLtheorem is not in D.  Let R be a mapping 

reduction from H = {<M> : Turing machine M halts on } to FOLtheorem defined as follows: 

 

R(<M>) =  

1. From (<M>), construct a sentence F in the language of Peano arithmetic, such that F is a theorem, 

provable given the axioms of Peano arithmetic, iff M halts on .   

2. Let P be the axioms of Peano arithmetic.  Return <P, F>. 

      

If Oracle exists and decides FOLtheorem, then C = Oracle(R(<M, w>)) decides H: 

• There exists an algorithm to implement R.  It is based on the techniques described by Turing (although he actually 

proved first that, because H is undecidable, it is also undecidable whether a Turing machine ever prints 0.  He 

then showed how to create a logical expression that is a theorem of Peano arithmetic iff a Turing machine ever 

prints 0).  We omit the details . 

• C is correct:   

• If <M, w>  H: M halts on .  F is a theorem of Peano arithmetic.  Oracle(<P, F>) accepts. 

• If <M, w>  H: M does not halt on .  F is not a theorem of Peano arithmetic.  Oracle(<P, F>) rejects. 

 

But no machine to decide H can exist, so neither does Oracle.   
◼ 

 

Is it decidable, given a system of laws, whether some consequence follows from those 

laws?  C 770. 

 

Keep in mind that the fact that FOLtheorem is undecidable means only that there is no algorithm to decide whether an 

arbitrary sentence is a theorem in an arbitrary theory.  FOLtheorem is semidecidable and the algorithm, proveFOL, that 

we described in the proof of Theorem 22.3, provides a way to discover a proof if one exists. Although efficiency issues 

arise, we shouldn’t write off first-order systems as practical tools, despite the negative results that we have just shown. 

 

Also note that, just as the unsolvability of the halting problem doesn’t say that there are not some cases in which we 

can show that a program halts or other cases in which we can show that it doesn’t, the fact that FOLtheorem is undecidable 

doesn’t prove that there are not some theories for which it is possible to decide theoremhood.   

 

For example, consider Presburger arithmetic, a theory of the natural numbers and the single function plus .  The 

following is a theorem of Presburger arithmetic (where “number” means natural number): 

 

• The sum of two odd numbers is even: x (y ((u (x = u + u + 1)  v (y = v + v + 1)) → z (x + y = z + z))). 

 

Presburger arithmetic is decidable (although unfortunately, as we will see in Section 28.9.3, no efficient procedure for 

deciding it exists).   

 

Because Presburger arithmetic is decidable, it has been used as a basis for verification 

systems that prove the correctness of programs.  We’ll say more about program 

verification in C 678. 

22.5 Undecidable Problems about Context-Free Languages 
Recall from Chapter 9 that we were able to find a decision procedure for all of the questions that we asked about 

regular languages.  We have just seen, at the other extreme, that almost all the questions we ask about Turing machines 

and the languages they define are undecidable.  What about context-free languages?  In Chapter 14, we described two 

decision procedures for them: 

 

1. Given a CFL L and a string s, is s  L? 

2. Given a CFL L, is L = ? 

 

What about other questions we might like to ask, including: 
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3. Given a CFL L, is L = *? 

4. Given two CFLs L1 and L2, is L1 = L2? 

5. Given two CFLs L1 and L2, is L1  L2 ? 

6. Given a CFL L, is L context-free? 

7. Given a CFL  L, is L regular? 

8. Given two CFLs L1 and L2, is L1  L2 =  ? 

9. Given a CFL L, is L inherently ambiguous?   

 

Since we have proven that there exists a grammar that generates L iff there exists a PDA that accepts it, these questions 

will have the same answers whether we ask them about grammars or about PDAs.  In addition, there are questions 

that we might like to ask specifically about PDAs, including: 

 

10. Given two PDAs M1 and M2, is M2 a minimization of M1?  Define M2 to be a minimization of M1 iff L(M1) 

= L(M2) and there exists no other PDA M such that L(M2) = L(M) and M has fewer states than M2 has. 

 

And there are other questions specifically about grammars, including: 

 

11. Given a CFG G, is G ambiguous? 

 

Questions 3-11 are all undecidable.  Alternatively, if these problems are stated as languages, the languages are not in 

D.  Keep in mind however that just as there are programs that can be shown to halt (or not to halt), there are context-

free languages about which various properties can be proven.  For example, although question 11 is undecidable (for 

an arbitrary CFG), some grammars can easily be shown to be ambiguous by finding a single string for which two 

parses exist.  And other grammars can be shown to be unambiguous, for example by showing that they are LL(1), as 

described in Section 15.2.3. 

 

There are two strategies that we can use to show that these problems are in general undecidable.  The first is to exploit 

the idea of a computation history to enable us to reduce H to one of these problems.  The second is to show that a 

problem is not in D by reduction from the Post Correspondence Problem.  We will use both, starting with the 

computation history approach. 

22.5.1 Reduction via Computation History 
We will first show that question 3 is undecidable by reducing H to the language CFGALL = {<G> : G is a CFG and 

L(G) = *}.  To do this reduction, we will have to introduce a new technique in which we create strings that correspond 

to the computation history of some Turing machine M.  But, once we have shown that CFGALL is not in D, the proofs 

of claims 4, 5, and 10 are quite straightforward.  They use reduction from CFGALL. 

 

Recall from Section 17.1 that a configuration of a Turing machine M is a 4 tuple: 

 

             ( M’s current state,  

the nonblank portion of the tape before the read/write head,  

the character under the read/write head,  

the nonblank portion of the tape after the read/write head) 

 

A computation of M is a sequence of configurations C0, C1, …, Cn for some n  0 such that C0 is the initial 

configuration of M, Cn is a halting configuration of M, and  

 

 C0 |-M  C1 |-M  C2 |-M … |-M  Cn. 

 

Notice that, under this definition, a computation is a finite sequence of configurations, the last of which must be a 

halting configuration.  So, if M does not halt when started in configuration C0, there exists no computation that starts 

in C0.  That doesn’t mean that M can’t compute from C0.  It just means that there is no finite sequence that records 

what it does and it is that sequence that we are calling a computation. 
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A computation history of M is a string that encodes a computation.  We will write each configuration in the history 

as a 4-tuple, as described above.  Then we will encode the entire history by concatenating the configurations together.  

So, assuming that s is M’s start state and h is a halting state, here’s an example of a string that could represent a 

computation history of M: 

 

(s, , , abba)(q1, , a, bba)(q2, a, b, ba)(q2, ab, b, a)(q2, abb, a, )(h, abba, , ). 

Theorem 22.5  CFGALL is Undecidable 

Theorem: The language CFGALL = {<G> : G is a CFG and L(G) = *} is not in D. 

 

Proof: We show that CFGALL is not in D by reduction from H = {<M, w> : Turing machine M halts on input string 

w}.  The reduction we will use exploits two functions, R and .  R will map instances of H to instances of CFGALL.  

As in the proof of Theorem 21.9,  will simply invert Oracle’s response (turning an accept into a reject and vice 

versa).  

 

The idea behind R is that it will build a grammar G that generates the language L# composed of all strings in * except 

any that represent a computation history of M on w.  If M does not halt on w, there are no computation histories of M 

on w (since a computation history must be of finite length and end in a halting state) so G generates * and Oracle 

will accept.  If, on the other hand, there exists a computation history of M on w, then there will be a string that G will 

not generate and Oracle will reject.  So Oracle makes the correct distinction but accepts when we need it to reject and 

vice versa.  But since Oracle is a deciding machine,  can invert its response.   

 

It turns out to be easier for R to build a PDA to accept L# than it is to build a grammar to generate it.  But we have an 

algorithm to build, from any PDA, the corresponding grammar.  So R will first build a PDA P, then convert P to a 

grammar. 

 

In order for a string s to be a computation history of M on w, it must possess four properties: 

 

1. It must be a syntactically valid computation history. 

2. C0 must correspond to M being in its start state, with w on the tape, and with the read/write head positioned just 

to the left of w. 

3. The last configuration must be a halting configuration. 

4. Each configuration after C0 must be derivable from the previous one according to the rules in M’s transition 

relation M. 

 

We want P to accept any string that is not a computation history of M on w.  So if P finds even one of these conditions 

violated it will accept.  P will nondeterministically choose which of the four conditions to check.  It can then check 

the one it picked as follows: 

 

1. We can write a regular expression to define the syntax of the language of computation histories.  So P can easily 

check for property 1 and accept if the string is ill-formed. 

2. R builds P from a particular <M, w> pair, so it can hardwire into P what the initial configuration would have to 

be if s is to be a computation history of M on w. 

3. Again, R can hardwire into P what a halting configuration of M is, namely one in which M is in some state in HM. 

4. This is the only hard one.  To show that a string s is not composed of configurations that are derivable from each 

other, it suffices to find even one adjacent pair where the second configuration cannot be derived from the first.  

So P can nondeterministically pick one configuration and then check to see whether the one that comes after it is 

not correct, according to the rules of M. 

 

But how exactly, can we implement the test for property 4?  Suppose that we have an adjacent pair of configurations.  

If they are part of a computation history of M, then they must be identical except: 

 

• The state of the second must have changed as specified in M. 

• Right around the read/write head, the change specified by M must have occurred on the tape. 
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So, for example, it is possible, given an appropriate M, that the following string could be part of a computation history: 

(q1, aaaa, b, aaaa)(q2, aaa, a, baaaa).   

 

Here M moved the read/write head one square to the left.  But it is not possible for the following string to be part of 

any computation history: 

 

(q1, aaaa, b, aaaa)(q2, bbbb, a, bbbb).   

 

M cannot change any squares other than the one directly under its read/write head. 

 

So P must read the first configuration, remember it, and then compare it to the second.  Since a configuration can be 

of arbitrary length and P is a PDA, the only way P can remember a configuration is on the stack.  But then it has a 

problem.  When it tries to pop off the symbols from the first configuration to compare it to the second, they will be 

backwards.   

 

To solve this problem, we will change slightly our statement of the language that P will accept.  Now it will be B#, 

the boustrophedon version of L#.  In B# every odd numbered configuration will be written backwards.  The word 

“boustrophedon” aptly describes B#.  It is derived from a Greek word that means turning as oxen do in plowing .  It 

is used to describe a writing scheme in which alternate lines are written left to right and then right to left (so that the 

scribe wastes no effort moving his hand across the page without writing). With this change, P can compare two 

adjacent configurations and determine whether one could have been derived from the other via . 

 

Boustrophedon writing  has been used in ancient Greek texts and for inscriptions on 

statues on Easter Island.  Much more recently, dot matrix printers used back and forth 

writing, but they adjusted their fonts so that it was not the case that every other line 

appeared backwards. 

 

We are now ready to state: 

 

        R(<M, w>) = 

1. Construct the description of a PDA P  that accepts all strings in B#. 

2. From P, construct a grammar G that generates L(P). 

3. Return <G>. 

 

{R, } is a reduction from H to CFGALL.  If Oracle exists and decides CFGALL, then C = Oracle(R(<M, w>)) decides 

H.  R can be implemented as a Turing machine.  And C is correct:   

 

• If <M, w>  H: M halts on w so there exists a computation history of M on w.  So there is a string that G does not 

generate.  Oracle(<G>) rejects.  C accepts. 

• If <M, w>  H: M does not halt on w, so there exists no computation history of M on w.  G generates *.  

Oracle(<G>) accepts.  C rejects. 

 

But no machine to decide H can exist, so neither does Oracle. 
◼ 

22.5.2 Using the Undecidability of CFGALL 
Now that we have proven our first result about the undecidability of a question about context-free grammars, others 

can be proven by reduction from it.  For example: 

Theorem 22.6  “Are Two CFGs Equivalent?” is Undecidable 

Theorem: The language GG= = {<G1, G2> : G1 and G2 are CFGs and L(G1) = L(G2)} is not in D. 

 

Proof:  We show that CFGALL ≤M GG= and so GG= is not in D.  Let R be a mapping reduction from CFGALL to GG= 

defined as follows: 
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R(<G>) =  

1. Construct the description <G#> of a new grammar G# such that G# generates *. 

2. Return <G#, G>. 

 

If Oracle exists and decides GG=, then C = Oracle(R(<G>)) decides CFGALL: 

• R can be implemented as a Turing machine. 

• C is correct: 

• If <G >  CFGALL: G is equivalent to G#, which generates everything.  Oracle(<G#, G>) accepts. 

• If <G >  CFGALL: G is not equivalent to G#, which generates everything.  Oracle(<G#, G>) rejects.   

 

But no machine to decide CFGALL can exist, so neither does Oracle. 
◼ 

Theorem 22.7  “Is One CFL a Subset of Another?” is Undecidable 

Theorem: The language {<G1, G2> : G1 and G2 are context-free grammars and L(G1)  L(G2)} is not in D. 

 

Proof: The proof is by reduction from GG= and is left as an exercise.  
◼ 

 

The undecidability of so many questions about context-free languages makes optimizing programs to work with them 

more difficult than optimizing FSMs.  For example, in Chapter 5 we described an algorithm for minimizing DFSMs.  

But now, in discussing context-free languages and PDAs, we must accept that the problem of determining whether 

one PDA is a minimization of another, is undecidable.  This result can be proved quite easily by reduction from GALL. 

Theorem 22.8  “Is One PDA a Minimization of Another?” is Undecidable 

Theorem: The language PDAMIN = {<M1, M2>: PDA M2 is a minimization of PDA M1} is undecidable. 

 

Proof: We show that CFGALL ≤M PDAMIN and so PDAMIN is not in D.  Before we start the reduction, recall that M2 is 

a minimization of M1 iff: 

 

(L(M1) = L(M2))    M2 is minimal. 

 

Let R be a mapping reduction from CFGALL to PDAMIN defined as follows: 

 

R(<G>) = 

1. Invoke cfgtoPDAtopdown(G) to construct the description <P> of a PDA that accepts the language 

that G generates. 

2. Write <P#> such that P# is a PDA with a single state s that is both the start state and an accepting 

state.   Make a transition from s back to itself on each input symbol.  Never push anything onto the 

stack.  Note that L(P#) = * and P# is minimal.   

3. Return <P, P#>. 

 

If Oracle exists and decides PDAMIN, then C = Oracle(R(<G>)) decides CFGALL. R can be implemented as a Turing 

machine.  And C is correct: 

 

• If <G>  CFGALL: L(G) = *.  So L(P) = *.  Since L(P#) = *, L(P) = L(P#).  And P# is minimal.  Thus P# is 

a minimization of P.  Oracle(<P, P#>) accepts. 

• If <G>  CFGALL: L(G)  *.  So L(P)  *.  But L(P#) = *.  So L(P)  L(P#).  So Oracle(<P, P#>) rejects.   

 

But no machine to decide CFGALL can exist, so neither does Oracle.  
◼ 
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22.5.3 Reductions from PCP 
Several of the context-free language problems that we listed at the beginning of this section can be shown not to be 

decidable  by showing that the Post Correspondence Problem is reducible to them.  The key observation that forms 

the basis for those reductions is the following:  Consider P, a particular instance of PCP.  If P has a solution, then 

there is a sequence of indexes that makes it possible to generate the same string from the X list and from the Y list.  If 

there isn’t a solution, then there is no such sequence.    

 

We start by defining a mapping between instances of PCP and context-free grammars.  Recall that, given some 

nonempty alphabet , an instance of PCP is a string of the form: 

 

<P> = (x1, x2, x3, …, xn)( y1, y2, y3, …, yn), where j (xj  + and yj  +). 

  

To encode solutions to P, we’ll need a way to represent the integers that correspond to the indexes.  Since all the 

integers must be in the range 1:n, we can do this with n symbols.  So let n be a set of n symbols such that   n = .  

We’ll use the jth element of n to encode the integer j. 

 

Given any PCP instance P, we’ll define a grammar Gx that generates one string for every candidate solution to P.  The 

string will have a second half that is the sequence of indices that is the solution, except that that sequence will be 

reversed.  The first half of the string will be the concatenation of the elements from the X list that were selected by the 

indices.  So suppose that x1 = aaa, x2 = bbc, and x3 = dd.  Then the index sequence 1, 2, 3 would produce the string 

aaabbcdd.  So Gx will generate the string aaabbcdd321.  (Note that the index sequence appears reversed.)  We’ll 

also build the grammar Gy, which does the same thing for the sequences that can be formed from the Y list.  Note that 

there is no commitment at this point that any of the strings generated by either Gx or Gy corresponds to a solution of 

P.  What we’ll see in a moment is that a string s corresponds to such a solution iff it is generated by both Gx and Gy. 

 

More formally, for any PCP instance P, define the following two grammars Gx and Gy: 

 

• Gx = ({Sx}    n,   n, Rx, Sx), where Rx contains these two rules for each value of i between 1 and n: 

Sx → xiSxi 

Sx → xii  

 

In both rules, i is represented by the ith element of n. 

 

• Gy = ({Sy}    n},   n, Ry, Sy), where Ry contains these two rules for each value of i between 1 and n: 

Sy → yiSyi 

Sy → yii 

 

In both rules, i is represented by the ith element of n. 

 

Every string that Gx generates will be of the form xi1xi2…xik  (i1, i2, …ik)R.  Every string that Gy generates will be of 

the form yi1yi2…yik  (i1, i2, …ik)R. 

 

Any solution to P is a finite sequence i1, i2, …ik of integers such that: 

 

j (1  ij  n and xi1xi2…xik = yi1yxi2…yik).  

 

If any such solution i1, i2, …ik exists, let w = xi1xi2…xik = yi1yxi2…yik.  Then both Gx and Gy will generate the string: 

 

 w(i1, i2, …ik)R.  
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Example 22.6 Defining Grammars for a PCP Instance 

Consider again PCP1, as defined in Example 22.1: 

 

i X Y 

1 b bab 

2 abb b 

3 aba a 

4 bbaaa babaaa 

 

PCP1 is represented as the string (b, abb, aba, bbaaa)(bab, b, a, babaaa). 

 

The rules in Gx are:        The rules in Gy are:   

Sx → bSx1, Sx → b1,    Sy → babSy1, Sy → bab1, 

 Sx → abbSx2, Sx → abb2,    Sy → bSy2, Sy → b2, 

 Sx → abaSx3, Sx → aba3    Sy → aSy3, Sy → a3 

 Sx → bbaaaSx4, Sx → bbaaa4   Sy → babaaaSy4, Sy → babaaa4 

 

Gx generates strings of the form w vR, where w is a sequence of strings from column X and v is the sequence of indices 

that were used to form w.  Gy does the same for strings from column Y.  So, for example, since 1, 2, 3, 1 is a solution 

to PCP1, Gx can generate the following string (with blanks inserted to show the structure and with the index sequence 

reversed): 

 
  b abb aba b 1321 

 

Gy can also generate that string, although it derives it differently: 

 
  bab b a bab 1321 

 

Using the ideas that we have just described, we are ready to show that some significant questions about the context-

free languages are undecidable.  We’ll do so by converting each question to a language and then exhibiting a reduction 

from PCP = {<P> : P has a solution} to that language. 

Theorem 22.9  “Is the Intersection of Two CFLs Empty?” is Undecidable 

Theorem: The language IntEmpty = {<G1, G2> : G1 and G2 are context-free grammars and L(G1)  L(G2) = } is not 

in D. 

 

Proof: We show that IntEmpty is not in D by reduction from PCP = {<P> : P has a solution}.  The reduction we will 

use exploits two functions, R and .  R will map instances of PCP to instances of IntEmpty.  As before,  will simply 

invert Oracle’s response (turning an Accept into a Reject and vice versa).  

 

Define R as follows: 

 

R(<P>) =  

1. From P construct Gx and Gy as described above. 

2. Return <Gx, Gy>. 

 

{R, } is a reduction from PCP to IntEmpty.  If Oracle exists and decides IntEmpty, then C = Oracle(R(<P>)) 

decides PCP.  R and  can be implemented as Turing machines.  And C is correct: 

 

• If <P>  PCP: P has at least one solution.  So both Gx and Gy will generate some string: 

 

  w(i1, i2, …ik)R, where w = xi1xi2…xik = yi1yxi2…yik.   

 

 So L(G1)  L(G2)  .  Oracle(<Gx, Gy>) rejects, so C accepts. 
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• If <P>  PCP: P has no solution.  So there is no string that can be generated by both Gx and Gy. So L(G1)  L(G2) 

= .  Oracle(<Gx, Gy>) accepts, so C rejects. 

 

But no machine to decide PCP can exist, so neither does Oracle. 
◼ 

 

In Chapter 11 we spent a good deal of time worrying about whether the context-free grammars that we built were 

unambiguous.  Yet we never gave an algorithm to determine whether or not a context-free grammar was ambiguous.  

Now we can understand why.  No such algorithm exists. 

Theorem 22.10  “Is a CFG Ambiguous?” is Undecidable 

Theorem: The language CFGUNAMBIG = {<G> : G is a context-free grammar and G is ambiguous} is not in D. 

 

Proof: We show that PCP ≤M CFGUNAMBIG and so CFGUNAMBIG is not in D.  Let R be a mapping reduction from PCP 

to CFGUNAMBIG defined as follows: 

 

R(<P>) =  

1. From P construct Gx and Gy as described above. 

2. Construct G as follows: 

2.1. Add to G all the symbols and rules of both Gx and Gy. 

2.2. Add a new start symbol S and the two rules S → Sx and S → Sy. 

3. Return <G>. 

 

G generates L(G1)  L(G2).  Further, it does so by generating all the derivations that G1 can produce as well as all the 

ones that G2 can produce, except that each has a prepended S  Sx or S  Sy. 

 

If Oracle exists and decides CFGUNAMBIG, then C = Oracle(R(<P>)) decides PCP.  R can be implemented as a Turing 

machine.  And C is correct: 

 

• If <P>  PCP: P has at least one solution.  So both Gx and Gy will generate some string: 

 

  w(i1, i2, …ik)R, where w = xi1xi2…xik = yi1yi2…yik.   

 

So G can generate that string in two different ways.  G is ambiguous.  Oracle(<G>) accepts. 

 

• If <P>  PCP: P has no solution.  So there is no string that can be generated by both Gx and Gy.  Since both Gx 

and Gy are unambiguous, so is G.  Oracle(<G>) rejects. 

 

But no machine to decide PCP can exist, so neither does Oracle. 
◼ 

22.6 Exercises 
 

1) Solve the linear Diophantine farmer problem presented in Section 22.1 . 

 

2) Consider the following instance of the Post Correspondence Problem.  Does it have a solution?  If so, show one. 

 

i X Y 

1 a bab 

2 bbb bb 

3 aab ab 

4 b a 
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3) Prove that, if we consider only PCP instances with a single character alphabet, PCP is decidable.  

 

4) Prove that, if an instance of the Post Correspondence Problem has a solution, it has an infinite number of solutions. 

 

5) Recall that the size of an instance P of the Post Correspondence Problem is the number of strings in its X list.  

Consider the following claim about the Post Correspondence problem: for any n, if P is a PCP instance of size n 

and if no string in either its X or its Y list is longer than n, then, if P has any solutions, it has one of length less 

than or equal to 2n.  Is this claim true or false?  Prove your answer. 

 

6) Let TILES = {<T> : any finite surface on the plane can be tiled, according to the rules described in the book, with 

the tile set T}.  Let s be the string that encodes the following tile set: 

 

 

 

 

 

Is s  TILES?  Prove your answer. 

 

7) For each of the following languages L, state whether or not it is in D and prove your answer.  

a) {<G> : G is a context-free grammar and   L(G)}. 

b) {<G> : G is a context-free grammar and {} = L(G)}. 

c) {<G1, G2> : G1 and G2 are context-free grammars and L(G1)  L(G2)}. 

d) {<G> : G is a context-free grammar and L(G) is context free}. 

e) {<G> : G is a context-free grammar and L(G) is regular}. 
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23   Unrestricted Grammars  

Consider a language like AnBnCn = {anbncn : n  0}.  We know that we cannot write a context-free grammar for it.  

But could we create a new grammar formalism that is powerful enough to describe it and other languages like it?  The 

answer to this question is yes.  Recall that we moved from the power to define the regular languages to the power to 

define the context-free languages by removing constraints on the form of the rules that are allowed.  We will do that 

again now.  This time we will remove all constraints.  We will prove that the class of languages that can be generated 

by one of these new, unrestricted grammars is exactly SD. 

23.1 Definition and Examples 
An unrestricted grammar G is a quadruple (V, , R, S), where: 

 

• V is an alphabet that may contain terminal and nonterminal symbols, 

•  (the set of terminals) is a subset of V, 

• R (the set of rules) is a finite subset of V+  V*, 

• S (the start symbol) is an element of V - . 

 

Note that now the right-hand side of a rule may contain multiple symbols.  So we might, have, for example: 

 

 a X a → a a a 

 b X b → a b a 

 

In this case, the derivation of X depends on its context.  It is thus common to call rules like this “context-sensitive”.  

We will avoid using this terminology, however, because in the next chapter we will describe another formalism that 

we will call a context-sensitive grammar.  While it, too, allows rules such as these, it does impose one important 

constraint that is lacking in the definition of an unrestricted grammar.  It is thus less powerful, in a formal sense, than 

the system that we are describing here. 

 

An unrestricted grammar G (just like a context-free grammar) derives strings by applying rules, beginning with its 

start symbol.  So, to describe its behavior, we define the derives-in-one-step relation () analogously to the way we 

defined it for context-free grammars: 

 

Given a grammar G = (V, , R, S), define x G y to be a binary relation such that: 

 

      x, y  V* (x G y iff x = ,  

y = ,  

, , and   V*,  

  V+, and 

there is a rule  →  in R).  

 

Any sequence of the form w0 G w1 G w2 G . . . G wn is called a derivation in G.  As before, G* is the reflexive, 

transitive closure of G.   

 

The language generated by G is {w  * : S G* w}.  So, just as before, L(G) is the set of all strings of terminal 

symbols derivable from S via the rules of G. 

 

Unrestricted grammars are sometimes called phrase structure grammars or type 0 grammars, the latter because of 

their place in the Chomsky hierarchy (which we will describe in Section Error! Reference source not found.).  Some 

books also use the term semi-Thue system synonymously with unrestricted grammar.  While the two formalisms are 

very similar, they model different computational processes and so must be considered separately.  We will describe 

semi-Thue systems in Section 23.5. 
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Example 23.1 AnBnCn  

Consider AnBnCn = {anbncn : n  0}.  We build a grammar G = (V, {a, b, c}, R, S), where V and R are as described 

below and L(G) = AnBnCn.  We first observe that any grammar for AnBnCn must generate all and only those strings 

with two properties: 

 

• Equal numbers of a’s, b’s, and c’s, and 

• Letters in the correct order. 

 

Just as with context-free grammars, the only way to guarantee that there are equal numbers of a’s, b’s, and c’s is to 

generate them in parallel.  The problem, though, is that there is no way to generate them in the correct order.  For 

example, we could try a rule like: 

 

  S → abSc 

 

But if we apply that rule twice, we will generate the string ababScc.  So what we will have to do is to generate each 

string in two phases: 

 

1. Generate the correct number of each symbol. 

2. Move the symbols around until they are in the correct order.  This is the step that is possible in an unrestricted 

grammar but was not possible in a context-free one. 

 

But we must be careful.  As soon as G has generated a string that contains only terminal symbols, it is done, and that 

string is in L(G).  So we must make sure that, until the string is ready, it still contains at least one nonterminal.  We 

can do that by creating one or more nonterminals that will stand in for their corresponding terminals and will be 

replaced once they have been moved into position.  We’ll use one such symbol, B. 

 

We begin building the rules of G by inserting into R two rules that will generate strings with equal numbers of a’s, 

b’s, and c’s: 

 

  (1)  S → aBSc 

  (2)  S →  

 

To generate the string aibici, we will apply rule (1) i times.  Then we will apply rule 2 once.  Suppose we want to 

generate a3b3c3.  Then we will apply rule (1) three times, then rule (2) once, and we will generate aBaBaBccc.  

Because of the nonterminal symbol B, this string is not an element of L(G).  We still have the opportunity to rearrange 

the symbols, which we can do by adding one swapping rule: 

 

  (3) Ba → aB 

 

Rule 3 can be applied as many times as necessary to push all the a’s to the front of the string.  But what forces it to be 

applied?  The answer is the B’s.  Until all the B’s are gone, the string that has been generated is not in L(G).  So we 

need rules to transform each B into b.  We will design those rules so that they cannot be applied to any B until it is 

where it belongs.  We can assure that with the following two rules: 

 

  (4) Bc → bc 

  (5) Bb → bb 

 

Rule (4) transforms the rightmost B into b.  Rule (5) transforms a B if it has an already transformed b directly to its 

right.  

 

Having written a grammar such as the one we just built for AnBnCn, can we prove that it is correct (i.e., that it generates 

exactly the strings in the target language?)  Yes.  Just as with a context-free grammar, we can prove that a grammar 

G is correct by: 
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1. Showing that G generates only strings in L, and 

2. Showing that G generates all the strings in L. 

 

We show 1 by defining an invariant I that is true of S and is maintained each time a rule in G is fired.  Call the string 

that is being derived st.  Then to prove the correctness of the grammar we just showed for AnBnCn, we let I be: 

 

#a(st) = #b(st) + #B(st) = #c(st)  all c’s occur to the right of all a’s, b’s, and B’s  all b’s occur together 

and immediately to the left of the c region. 

 

We show 2 by induction on n.  Both of these steps are straightforward in this simple case.  The same general strategy 

works for other unrestricted grammars, but it may be substantially more difficult to implement. 

 

Next we consider another two examples of unrestricted grammars so that we can get a better idea of how they work. 

Example 23.2 Equal Numbers of a’, b’s and c’s 

Let L = {w  {a, b, c}* : #a(w) = #b(w) = #c(w)}.  We build a grammar G = (V, {a, b, c}, R, S), where V and R are 

as described below and L(G) = L.  L is similar to AnBnCn except  that the letters may occur in any order.  So, again, 

we will begin by generating matched sets of a’s, b’s, and c’s.  But, this time, we need to allow the second phase of 

the grammar to perform arbitrary permutations of the characters.  So we will start with the rules: 

 

  (1)  S → ABSC 

  (2)  S →  

 

Next we need to allow arbitrary permutations, so we add the rules: 

 

  (3) AB → BA 

  (4) BA → AB 

  (5) AC → CA 

(6) CA → AC 

(7) BC → CB 

(8) CB → BC 

 

Finally, we need to generate terminal symbols.  Remember that every rule in G must have at least one nonterminal on 

its left-hand side.  In contrast to AnBnCn, here the job of the nonterminals is not to force reordering but to enable it.  

This means that a nonterminal symbol can be replaced by its corresponding terminal symbol at any time.  So we add 

the rules: 

 

  (9)   A → a 

  (10) B → b 

  (11) C → c 

 

Example 23.3 WW 

Consider WW = {ww : w  {a, b}*}.  We build a grammar G = (V, {a, b}, R, S), where V and R are as described 

below and L(G) = WW.  The strategy we will use is the following: 

 

1. Generate w C wR #, where  C will serve as a temporary middle marker and # will serve as a temporary right 

boundary.  This is easy to do with a context-free grammar. 

2. Reverse wR.  We will do that by viewing # as a wall and jumping the characters in wR, leftmost first, over the wall.   

3. Finally, clean up by removing C and #. 

 

Suppose that, after step 1, we have aabCbaa#.  We let C spawn a pusher P, yielding: 

 

  aabCPbaa#.  
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The job of P is to push the character just to its right rightward to the wall so that it can hop over.  To do this, we will 

write rules that swap Pb with each character between it and the wall.  Those rules will generate the following sequence 

of strings: 

 

  aabCaPba#  

  aabCaaPb#  

 

The last step in getting the pushed character (in this case, b) where it belongs is to jump it over the wall and then erase 

P, yielding: 

 

 aabCaa#b 

 

Next, C will spawn another pusher P and use it to push the first a up to the wall.  At that point, we will have: 

 

 aabCaPa#b 

 

Then a jumps the wall, landing immediately after it, yielding: 

 

 aabCa#ab 

 

Notice that the substring ba has now become ab, as required.  Now the remaining a can be pushed and jumped, 

yielding: 

 

 aabC#aab 

 

The final step is to erase C# as soon as they become adjacent to each other. 

 

The following set of rules R implements this plan: 

 

 S → T#   /* Generate the wall exactly once. 

 T → aTa  /* Generate wCwR. 

 T → bTb    

 T → C     

 C → CP   /* Generate a pusher P. 

 Paa→ aPa  /* Push one character to the right to get ready to jump. 

 Pab → bPa    

 Pba → aPb    

 Pbb → bPb    

 Pa# → #a  /* Hop a character over the wall. 

 Pb# → #b    

 C# →  

 

We have described the way that we want G to work.  It clearly can do exactly what we have said it will do.  But can 

we be sure that it does nothing else?  Remember that, at any point, any rule whose left-hand side matches can be 

applied.  So, for example, what prevents C from spawning a new pusher P before the first character has jumped the 

wall?  Nothing.  But the correctness of G is not affected by this.  Pushers (and the characters they are pushing) cannot 

jump over each other.  If C spawns more pushers than are necessary, the resulting string cannot be transformed into a 

string containing just terminal symbols.  So any path that does that dies without generating any strings in L(G). 

 

If we want to decrease the number of dead-end paths that a grammar G can generate, we can write rules that have 

more restrictive left-hand sides.  So, for example, we could replace the rule: 

 

 C → CP   /* Generate a pusher P. 
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with the rules: 

 

 Ca → CPa  /* Generate a pusher P. 

 Cb → CPb    

 

Now C can only generate one pusher for each character in wR. 

 

Unrestricted grammars often have a strong procedural feel that is typically absent from restricted grammars.  

Derivations usually proceed in phases.  When we design a grammar G, we make sure that the phases work properly 

by using nonterminals as flags that tell G what phase it is in.  It is very common to have three phases: 

 

• Generate the right number of the various symbols. 

• Move them around to get them in the right order. 

• Clean up. 

 

In implementing these phases, there are some quite common idioms: 

 

• Begin by creating a left wall, a right wall, or both. 

• Reverse a substring by pushing the characters, one at a time, across the wall at the opposite end from where the 

first character originated. 

• Use nonterminals to represent terminals that need additional processing (such as shifting from one place to 

another) before the final string should be generated. 

 

Now that we have seen the extent to which unrestricted grammars can feel like programs, it may come as no surprise 

that they are general purpose computing devices.  In Section 23.3 we will show how they can be used not just to define 

languages but also to compute functions.  But first we will show that the class of languages that can be generated by 

an unrestricted grammar is exactly SD.  So, sadly, although these grammars can be used to define decidable languages 

like AnBnCn, unfortunately there is no parsing algorithm for them.  Given an unrestricted grammar G and a string w, 

it is undecidable whether G generates w.  We will prove that in Section 23.2. 

23.2 Equivalence of Unrestricted Grammars and Turing Machines 
Recall that, in our discussion of the Church-Turing thesis, we mentioned several formalisms that can be shown to be 

equivalent to Turing machines.  We can now add unrestricted grammars to our list.   

 

Since rewrite systems can have the same computational power as the Turing machine, 

they have been  used to define programming languages such as Prolog. C 762.   

 

Theorem 23.1  Turing Machines and Unrestricted Grammars Describe the Same Class of 
Languages 

Theorem: A language L is generated by an unrestricted grammar iff it is semidecided by some Turing machine M. 

 

Proof: We will prove each direction of this claim separately: 

 

a) We show that the existence of an unrestricted grammar G for L implies the existence of a semideciding Turing 

machine for L.  We do this by construction of a nondeterministic Turing machine that, on input x, simulates 

applying the rules of G, checking at each step to see whether G has generated x. 

b) We show that the existence of a semideciding Turing machine M for L implies the existence of an unrestricted 

grammar for L.  We do this by construction of a grammar that mimics the execution of M. 

 

Proof of claim a: Given an unrestricted grammar G = (V, , R, S), we construct a nondeterministic Turing machine 

M that semidecides L(G).  The idea is that M, on input x, will start with S, apply rules in R, and see whether it can 

generate x.  If it ever does, it will halt and accept.  M will be nondeterministic so that it can try all possible derivations 

in G.  Each nondeterministic branch will use two tapes: 
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• Tape 1 holds M’s input string x. 

• Tape 2 holds the string that has so far been derived using G. 

 

At each step, M nondeterministically chooses a rule to try to apply and a position on tape 2 to start looking for the left-

hand side of the rule.  If the rule’s left-hand side matches, M applies the rule.  Then it checks whether tape 2 equals 

tape 1.  If any such branch succeeds in generating x, M accepts.  Otherwise, it keeps looking.  If a branch generates a 

string to which no rules in R can apply, it rejects.  So some branch of M accepts iff there is a derivation of x in G.  

Thus M semidecides L(G). 

 

Proof of claim b: Given a semideciding Turing machine M = (K, , , , s, H), we construct an unrestricted grammar 

G = ({#, q, 0, 1, A}  , , R, S) such that L(G) = L(M).  The idea is that G will exploit a generate-and-test strategy 

in which it first creates candidate strings in * and then simulates running M on them.  If there is some string s that M 

would accept, then G will cleanup its working symbols and generate s.  G operates in three phases: 

 

• Phase 1 can generate all strings of the following form, where qs is the binary encoding in <M> of M’s start 

state, n is any positive integer, and each of the characters a1 through an is in *: 

 

   # qs a1 a1 a2 a2 a3 a3  …anan  #
 

The #’s will enable G to exploit rules that need to locate the beginning and the end of the string that it has 

derived so that they can scan the string.  The rest of the string directly encodes M’s state and the contents of 

its tape (with each tape symbol duplicated).  It also encodes the position of M’s read/write head by placing 

the encoding of the state immediately to the left of the character under the read/write head.  So the strings 

that are generated in Phase 1 can be used in Phase 2 to begin simulating M, starting in state qs, with the string 

a1 a2 a3  …an on its tape and the read/write head positioned immediately to the left of a1. Each character on the 

tape is duplicated so that G can use the second instance as though it were on the tape, writing on top of it as 

necessary.  Then, if M accepts, G will use the first instance to reconstruct the input string that was accepted.   

 

• Phase 2 simulates the execution of M on a particular string w.  So, for example, suppose that Phase 1 generated 

the following string: 

 

   # q000a a b b c c b b a a  # 

 

Then Phase 2 begins simulating M on the string abcba.  The rules of G are constructed from M.  At some 

point, G might generate 

 

  # a 1 b 2 c c b 4 q011 a 3  # 

 

if M, when invoked on abcba could be in state 3, with its tape equal to 12c43, and its read/write head 

positioned on top of the final 3. 

 

 To implement Phase 2, G contains one or more rules for each element of M.  The rules look like these: 

 

      q100 b b  → b 2 q101    /* if M, in state 4 looking at b, would rewrite it as 2,  

          go to state 5,and move right. 

 

        a a q011 b 4  → q011 a a b 4    /* if M, in state 3 looking at 4, would rewrite it as 4, 

                  go to state 3, and move left.  Notice that to encode  

             moving  left we must create a separate rule for each  

             pair of characters that could be to the left of the 

    read/write head. 
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In Phase 2, all of M’s states are encoded in their standard binary form except its accepting state(s), all of 

which will be encoded as A. 

 

• Phase 3 cleans up by erasing all the working symbols if M ever reaches an accepting state.  It will leave in 

its derived string only those symbols corresponding to the original string that M accepted.  Once the derived 

string contains only terminal symbols, G halts and outputs the string. 

 

To implement Phase 3, G contains one rule of the following form for each character other than A and # in its 

alphabet: 

    x A  → A x     /* If M ever reaches an accepting state, sweep A all  

     the way to the left of the string until it is next to #. 

 

It also has one rule of the following form for each pair x, y of characters other than A and #: 

 

 #A x y → x #A   /* Sweep #A rightward, deleting the working copy of each  

          symbol and keeping the original version. 

 

And then it has the final rule: 

 

 #A# →     /* At the end of the sweep, wipe out the last working symbols. 

◼ 

23.3 Grammars Compute Functions 
We have now shown that grammars and Turing machines are equivalent in their power to define languages.  But we 

also know that Turing machines can do something else: they can compute functions by leaving a meaningful result on 

their tape when they halt.  Can unrestricted grammars do that as well?  The answer is yes.  Suppose that, instead of 

starting with just the start symbol S, we allow a grammar G to be invoked with some input string w.  G would apply 

its rules as usual.  If it then halted, having derived some new string w that is the result of applying function f to w, we 

could say that G computed f.  The only details we need to work out are how to format the input so G will be able to 

work effectively and how to tell when G should halt.   

 

We say that a grammar G computes f iff, w, v  * (SwS * v  v = f(w)).  We use G’s start symbol S to solve 

both of the problems we just mentioned:  S serves as a delimiter for the input string so that G will be able to perform 

actions like, “Start at the left-hand end of the string and move rightward doing something”.  And, as usual, G continues 

to apply rules until either there are no more rules that can be applied or the derived string is composed entirely of 

terminal symbols.  So, to halt and report a result, G must continue until both delimiting S’s are removed.  A function 

f is called grammatically computable iff there is a grammar G that computes it.   

 

Recall the family of functions, valuek(n).  For any positive integer k, valuek(n) returns the nonnegative integer that is 

encoded, base k, by the string n.  For example value2(101) = 5.   

Example 23.4 Computing the Successor Function in Unary 

Let f be the successor function succ(n) on the unary representations of natural numbers.  Specifically, define f(n) = m, 

where value1(m) = value1(n) + 1.  If G is to compute f, it will need to produce derivations such as: 

 

 S1S  * 11    

 S1111S * 11111 

 

We need to design G so that it adds exactly one more 1 to the input string and gets rid of both S’s.  The following two-

rule grammar G =  ({S, 1}, {1}, R, S) does that with R = 

 

S11 → 1S1  /* Move the first S rightward past all but the last 1. 

S1S → 11  /* When it reaches the last 1, add a 1 and remove the S’s. 
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Example 23.5 Multiplying by 2 in Unary 

Let f(n) = m, where value1(n) is a natural number and value1(m) = 2value1(n).  G should produce derivations such as: 

 

 S11S  * 1111 

 S1111S * 11111111 

 

G needs to go through its input string, turning every 1 into 11.  Again, a simple two-rule grammar G = ({S, 1}, {1}, 

R, S) is sufficient, with R = 

 

 S1 → 11S  /* Starting from the left, duplicate a 1.  Shift the initial S so that only the 1’s that 

         still need to be duplicated are on its right. 

 SS →    /* When all 1’s have been duplicated, stop. 

 

Example 23.6 Squeezing Out Extra Blanks 

Let f(x: x  {a, b, }*) = x except that extra blanks will be squeezed out.  More specifically, blanks will be removed 

so that there is never more than one  between “words”, i.e., sequences of a’s and b’s, and there are no leading or 

trailing ‘s}.  G should produce derivations such as: 

 

 SaabaabS * aabaab 

 SaabaabS * aabaab 

 

This time, G is more complex.  It must reduce every  string to .  And it must get rid of all ’s that occur adjacent 

to either S. 

 

G = ({S, T, a, b, }, {a, b, }, R, S), where R = 

 S  → S   /* Get rid of leading ’s.  All blanks get squeezed, not just repeated ones. 

Sa → aT  /* T replaces S to indicate that we are no longer in a leading ’s region.  For the  

          rest of G’s operation, all characters to the left of T will be correct.   

          Those to the right still need to be processed. 

Sb → bT              

 Ta → aT  /* Sweep T across a’s and b’s. 

 Tb → bT              

 T →T  /* Squeeze repeated  ’s. 

 Ta→ aT  /* Once there is a single , sweep T past it and the first letter after it. 

 Tb→ bT              

 TS→    /* The T rule will get rid of all but possibly one  at the end of the string. 

 TS→    /* If there were no trailing ’s, this rule finishes up. 

 

From this last example, it is easy to see how we can construct a grammar G to compute some function f.  G can work 

in very much the way a Turing machine would, sweeping back and forth through its string.  In fact, it is often easier 

to build a grammar to compute a function than it is to build a Turing machine because, with grammars, we do not have 

to worry about shifting the string if we want to add or delete characters from somewhere in the middle. 

 

Recall that in Section 17.2.2, we defined a computable function to be a function that can be computed by a Turing 

machine that always halts and, on input x, leaves f(x) on its tape.  We now have an alternative definition: 

Theorem 23.2  Turing Machines and Unrestricted Grammars Compute the Same Class of Functions 

Theorem: A function f is computable iff it is grammatically computable.  In other words a function f can be computed 

by a Turing machine iff there is an unrestricted grammar that computes it. 
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Proof: The proof requires two constructions.  The first shows that, for any grammar G, there is a Turing machine M 

that simulates G, halts whenever G produces a terminal string s, and leaves s on its tape when it halts.  The second 

shows the other direction: for any Turing machine M, there is a grammar G that simulates M and produces a terminal 

string s whenever M halts with s on its tape.  These constructions are similar to the ones we used to prove Theorem 

23.1.  We omit the details.  
◼ 

23.4 Undecidable Problems About Unrestricted Grammars 
Consider the following questions that we might want to ask about unrestricted grammars: 

 

• Given an unrestricted grammar G and a string w, is w  L(G)? 

• Given an unrestricted grammar G, is   L(G)? 

• Given two unrestricted grammars G1 and G2, is L(G1) = L(G2)? 

• Given an unrestricted grammar G, is L(G) = ? 

 

Does there exist a decision procedure to answer any of these questions?  Or, formulating these problems as language 

recognition tasks, are any of these languages decidable: 

 

• La = {<G, w> : G is an unrestricted grammar and w  L(G)}. 

• Lb = {<G> : G is an unrestricted grammar and   L(G)}. 

• Lc = {<G1, G2> : G1 and G2 are unrestricted grammars and L(G1) = L(G2)}. 

• Ld = {<G> : G is an unrestricted grammar and L(G) = }. 

 

The answer to all these questions is, “no”.  If any of these problems involving grammars were solvable, then the 

corresponding problem involving Turing machines would also be solvable.  But it isn’t.  We can prove each of these 

cases by reduction.  We will do one here and leave the Gthers as exercises.  They are very similar. 

Theorem 23.3  Undecidability of Unrestricted Grammars 

Theorem: The language La = {<G, w> : G is an unrestricted grammar and w  L(G)} is not in D. 

 

Proof: We show that A ≤M La and so La is not decidable.  Let R be a mapping reduction from A = {<M, w> : Turing 

machine M accepts w}to La, defined as follows: 

 

R(<M, w>) =  

1. From M, construct the description <G#> of a grammar G# such that L(G#) = L(M). 

2. Return <G#, w>. 

 

If Oracle exists and decides La, then C = Oracle(R(<M, w>)) decides A.  R can be implemented as a Turing machine 

using the algorithm presented in Section 23.2.  And C is correct: 

 

• If <M, w>  A : M(w) halts and accepts.  w  L(M).  So w  L(G#).  Oracle(<G#, w>) accepts. 

• If <M, w>  A : M(w) does not halt.  w  L(M).  So w  L(G#).  Oracle(<G#, w>) rejects.   

 

But no machine to decide A can exist, so neither does Oracle.  
◼ 

 

So, unrestricted grammars, although powerful, are very much less useful than context-free ones, since even the most 

basic question, “Given a string w, does G generate w?” is undecidable. 
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23.5 The Word Problem for Semi-Thue Systems 
Unrestricted grammars can generate languages and they can compute functions.  A third way of characterizing their 

computational power has played an important historical role in the development of formal language theory.  Define a 

word problem to be the following: 

 

Given two strings, w and v, and a rewrite system T, determine whether v can be derived from w using T.   

 

An important application of the word problem is in logical reasoning.  If we can encode logical statements as strings 

(in the obvious way) and if we can also define a rewrite system T that corresponds to a set of inference rules, then 

determining whether v can be rewritten as w using T is equivalent to deciding whether the sentence that corresponds 

to v is entailed by the sentence that corresponds to w.   

 

Any rewrite system whose job is to transform one string into another must to be able to start with an arbitrary string 

(not just some unique start symbol).  Further, since both the starting string and the ending one may contain any symbols 

in the alphabet of the system, the distinction between terminal symbols and working symbols goes away.  Making 

those two changes to the unrestricted grammar model we get: 

 

A semi-Thue system T is a pair (, R), where: 

 

•  is an alphabet, 

• R (the set of rules) is a subset of +  *. 

 

Semi-Thue systems were named after their inventor, the Norwegian mathematician Axel Thue.  Just as an aside: A 

Thue system is a semi-Thue system with the additional property that if R contains the rule x → y then it also contains 

the rule y → x. 

 

We define for semi-Thue systems the derives-in-one-step relation (T) and its transitive closure derives (T*) exactly 

as we did for unrestricted grammars.  Since there is no distinguished start symbol, it doesn’t make sense to talk about 

the language that can be derived from a semi-Thue system.  It does, however, make sense to talk about the word 

problem: Given a semi-Thue system T and two strings w and v, determine whether w T* v.  We have already seen 

that it is undecidable, for an unrestricted grammar with a distinguished start symbol S, whether S derives some arbitrary 

string w.  So too it is undecidable, for a semi-Thue system, whether one arbitrary string can derive another.   

Theorem 23.4  Undecidability of the Word Problem for Semi-Thue Systems 

Theorem: The word problem for semi-Thue systems is undecidable.  In other words, given a semi-Thue system T and 

two strings w and v, it is undecidable whether w T* v. 

 

Proof: The proof is by reduction from the halting problem language H = {<M, w> : Turing machine M halts on input 

string w}.  Given a Turing machine M and an input string w, we will build a semi-Thue system T with the property 

that M halts on w iff w T* S.  The construction that is used in the reduction mirrors the construction that we used to 

prove (Theorem 23.1) that Turing machines and unrestricted grammars define the same class of languages.  Given a 

Turing machine M, we first build a semi-Thue system T whose rules simulate the operation of M.  Assume that the 

symbol S is has not been used in the construction so far.  We now add rules to T as follows: 

 

• For every halting state q in M, add the rule q → S.  These rules guarantee that, if M eventually enters some halting 

state, the symbol S will appear in a string derived by T.  Since S is an otherwise unused symbol, that is the only 

case in which it will appear in a string that T derives. 

• For every other symbol c in T’s alphabet, add the rules cS → S and Sc → S.  These rules enable T to transform 

any string containing the symbol S into a string that is just S.   

 

So if, on input w, M would ever enter a halting state, the rules of T will enable w to derive some string that contains 

the symbol S.  That string will then derive the string consisting of only S.  And M entering a halting state is the only 



  

Chapter 23                                                385     Unrestricted Grammars 

way to generate an S.  So M halts on input w iff w T* S.  Thus, if the word problem were decidable, H would also 

be.  But it isn’t.  
◼ 

23.6 Exercises 
1) Show an unrestricted grammar that generates each of the following languages: 

a) {
n

a 2 n

b2
, n ≥ 0}. 

b) {anbmcn+m : n, m > 0}. 

c) {anbmcnm : n, m > 0}.  

d) {anb2nc3n : n  1}. 

e) {wwRw : w  {a, b}*}. 

f) {anbnanbn : n  0}. 

g) {xy#xR : x, y  {a, b}* and |x| = |y|}. 

h) {wcmdn : w  {a, b}* and m = #a(w) and n = #b(w)}. 

 

2) Show a grammar that computes each of the following functions (given the input convention described in Section 

23.3): 

a) f: {a, b}+ → {a, b}+, where f(s = a1a2a3…a|s|) = a2a3…a|s|a1.  For example f(aabbaa) = abbaaa. 

b) f: {a, b}+ → {a, b, 1}+, where f(s) = s1n, where n = #a(s).  For example f(aabbaa) = aabbaa1111. 

c) f: {a, b}*#{a, b}* → {a, b}*, where f(x#y) = xyR. 

d) f: {a, b}+ → {a, b}+, where f(s) = if #a(s) is even then s, else sR. 

e) f: {a, b}* → {a, b}*, where f(w) = ww. 

f) f: {a, b}+ → {a, b}*, where f(s) = if |s| is even then s, else s with the middle character chopped out.  (Hint: 

the answer to this one is fairly long, but it is not very complex.  Think about how you would use a Turing 

machine to solve this problem.)  

g) f(n) = m, where value1(n) is a natural number and value1(m) = value1(n/2).  Recall that x (read as “floor 

of x”) is the largest integer that is less than or equal to x.   

h) f(n) = m, where value2(n) is a natural number and value2(m) = value2(n) + 5. 

 

3) Show that, if G is an unrestricted grammar, then each of the following languages, defined in Section 23.4, is not 

in D: 

a) Lb = {<G> :   L(G)}. 

b) Lc = {<G1, G2> : L(G1) = L(G2)}. 

c) Ld = {<G> : L(G) = }. 

 

4) Show that, if G is an unrestricted grammar, then each of the following languages is not in D: 

a) {<G> : G is an unrestricted grammar and a*  L(G)}. 

b) {<G> : G is an unrestricted grammar and G is ambiguous}.  Hint: Prove this by reduction from PCP. 

 

5) Let G be the unrestricted grammar for the language AnBnCn = {anbncn : n  0}, shown in Example 23.1.  Consider 

the proof, given in B 649, of the undecidability of the Post Correspondence Problem.  The proof is by reduction 

from the membership problem for unrestricted grammars.    

a) Define the MPCP instance MP that will be produced, given the input <G, abc>, by the reduction that is 

defined in the proof of Theorem 36.1. 

b) Find a solution for MP. 

c) Define the PCP instance P that will be built from MP by the reduction that is defined in the proof of Theorem 

36.2. 

d) Find a solution for P. 
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24   The Chomsky Hierarchy and Beyond  

So far, we have described a hierarchy of language classes, including the regular languages, the context-free languages, 

the decidable languages (D), and the semidecidable languages (SD).  The smaller classes have useful properties, 

including efficiency and decidability, that the larger classes lack.  But they are more limited in what they can do.  In 

particular, PDAs are not powerful enough for most applications.  But, to do better, we have jumped to Turing machines 

and, in so doing, have given up the ability to decide even the most straightforward questions.   

 

So the question naturally arises, “Are there other formalisms that can effectively describe useful languages?”  The 

answer to that question is yes and we will consider a few of them in this chapter. 

24.1 The Context-Sensitive Languages 
We would like a computational formalism that accepts exactly the set D.  We have one: the set of Turing machines 

that always halt.  But that set is itself undecidable.  What we would like is a computational model that comes close to 

describing exactly the class D but that is itself decidable in the sense that we can look at a program and tell whether 

or not it is an instance of our model.   

 

In this section we’ll describe the context-sensitive languages, which fit into our existing language hierarchy as shown 

in Figure 24.1.  The context-sensitive languages can be decided by a class of automata called linear bounded automata.  

They can also be described by grammars we will call context-sensitive (because they allow multiple symbols on the 

left-hand sides of rules).  The good news about the context-sensitive languages is that many interesting languages that 

are not context-free are context-sensitive.  But the bad news is that, while a parsing algorithm for them does exist, no 

efficient one is known nor is one likely to be discovered.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24.1: A hierarchy of language classes 
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24.1.1 Linear Bounded Automata 
There are two common definitions of a linear bounded automaton (or LBA).  The crucial aspect of both is that an LBA 

is a Turing machine whose tape is limited by the length of its input.  The two definitions can be stated informally as: 

 

1. An LBA is a Turing machine that cannot move past the blank square on either side of its input. 

2. An LBA is a Turing machine that cannot use more than k|w| tape squares, where w is its input and k is some fixed 

positive integer. 

 

The second definition seems, at first glance, to be less restrictive, since it allows for additional working space on the 

tape.  But, in fact, the two definitions are equivalent, since we can implement a definition2 LBA as a definition1 LBA 

whose tape is divided into tracks to simulate k tapes.  So it is just a tradeoff between more tape squares and a larger 

tape alphabet.  Because the first definition is slightly simpler, we will use it. 

 

A linear bounded automaton (or LBA) B = (K, , , , s, H) is a nondeterministic Turing machine that cannot move 

off the tape region that starts at the blank to the left of the input and ends at the blank immediately after the input.  If 

an LBA attempts to move off that region, the read/write head simply stays where it is.  This definition is slightly 

nonstandard.  The usual one restricts the head to the input string proper, but the version we give here lets us maintain 

the programming style that we have been using, in which the read/write head starts on the blank just to the left of the 

input and we detect the end of the input when we find the blank immediately to its right. 

 

A language L is context-sensitive iff there exists an LBA that accepts it.   

 

Almost all of the deterministic deciding Turing machines that we have described so far have been LBAs.  For example, 

the machines we built in Chapter 17 for AnBnCn and WcW are both LBAs.  So AnBnCn and WcW are context-sensitive 

languages. 

 

And now to the reason that it made sense to define the LBA: the halting problem for LBAs is decidable and thus the 

membership question for context-sensitive languages is decidable. 

Theorem 24.1  Decidability of LBAs 

Theorem: The language L = {<B, w> : LBA B accepts w} is in D.   

 

Proof:  Although L looks very much like A, the acceptance language for Turing machines, its one difference, namely 

that it asks about an LBA rather than an arbitrary Turing machine, is critical.  We observe the following property of 

an LBA B operating on some input w:  B can be in any one of its |K| states.  The tape that B can look at has exactly |w| 

+ 2 squares.  Each of those squares can contain any value in  and the read/write head can be on any one of them.  So 

the number of distinct configurations of B is: 

  

MaxConfigs = |K|||(|w|+2)(|w| + 2). 

 

If B ever reaches a configuration that it has been in before, it will do the same thing the second time that it did the first 

time.  So, if it runs for more than MaxConfigs steps, it is in a loop and it is not going to halt.   

 

We are now ready to define a nondeterministic Turing machine that decides L:   

 

M(<B, w>) = 

1. Simulate all paths of B on w, running each for MaxConfigs steps or until B halts, whichever comes first. 

2. If any path accepted, accept; else reject. 

 

Since, from each configuration of B, there is a finite number of branches and each branch is of finite length, M will be 

able to try all branches of B in a finite number of steps.  M will accept the string <B, w> if any path of B, running on 

w, accepts (i.e., B itself would accept) and it will reject the string <B, w> if every path of B on w either rejects or loops.  
◼ 
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We defined an LBA to be a nondeterministic Turing machine with bounded tape.  Does nondeterminism matter for 

LBAs?  Put another way, for any nondeterministic LBA B does there exist an equivalent deterministic LBA?  No one 

knows. 

24.1.2 Context-Sensitive Grammars 
Why have we chosen to call the class of languages that can be accepted by an LBA “context-sensitive”?  Because 

there exists a grammar formalism that exactly describes these languages and this formalism, like the unrestricted 

grammar formalism on which it is based, allows rules whose left-hand sides describe the context in which the rules 

may be applied.  

 

A context-sensitive grammar G = (V, , R, S) is an unrestricted grammar in which R satisfies the following constraints: 

 

• The left-hand side of every rule contains at least one nonterminal symbol. 

• If R contains the rule S →  then S does not occur on the right-hand side of any rule. 

• With the exception of the rule S → , if it exists, every rule  →  in R has the property that ||  ||.  In other 

words, with the exception of the rule S → , there are no length-reducing rules in R. 

 

We should point out here that this definition is a bit nonstandard.  The more common definition allows no length-

reducing rules at all.  But without the exception for S → , it is not possible to generate any language that contains .  

So the class of languages that could be generated would not include any of the classes that we have so far considered. 

 

We define  (derives-in-one-step), * (derives), and L(G) analogously to the way they were defined for context-

free and unrestricted grammars. 

 

Some of the grammars (both context-free and unrestricted) that we have written so far are context-sensitive.  But many 

are not. 

Example 24.1  

For the language AnBn, we wrote the grammar: 

 

 S → aSb 

 S →  

 

That grammar is not context-sensitive.  But the following equivalent grammar is: 

 

 S →  

 S → S1 

 S1 → aS1b 

 S1 → ab 

 

Because of the prohibition against length-reducing rules, the problem of determining whether a context-sensitive 

grammar G generates some string w is decidable.  Recall that it was not decidable for unrestricted grammars, so this 

is a significant change. 

Theorem 24.2  Decidability of Context-Sensitive Grammars 

Theorem: The language L = {<G, w> : context sensitive grammar G generates string w} is in D. 

 

Proof:  We construct a nondeterministic Turing machine M to decide L.  M will explore all derivations that G can 

produce starting from its start symbol.  Eventually one of the following things must happen on every derivation path: 

 

• G will generate w.   

• G will generate a string to which no rules can be applied.  The path will end. 
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• G will keep generating strings of the same length.  Since there is a finite number of strings of a given length, G 

must eventually generate the same one twice.  Whenever that happens, the path can be terminated since it is not 

getting any closer to generating w.   

• G will generate a string s that is longer than w.  The path can be terminated.  Since there are no length-reducing 

rules, there is no way that w could ever be derived from s.  It is this case that distinguishes context-sensitive 

grammars from unrestricted ones. 

 

Since G has only a finite number of choices at each derivation step and since each path that is generated must 

eventually end, the Turing machine M that explores all derivation paths will eventually halt.  If at least one path 

generates w, M will accept.  If no path generates w, M will reject.   
◼ 

24.1.3 Equivalence of Linear Bounded Automata and Context-Sensitive 
Grammars 

We now have a new computational model, the LBA, and we have shown that it is decidable whether some LBA B 

accepts a string w.  We also have a new grammatical framework, context-sensitive grammars, and we have shown that 

it is decidable whether or not a context-sensitive grammar G generates some string w.  That similarity, along with the 

terminology that we have been using, should cause the following theorem to come as no surprise: 

Theorem 24.3  Equivalence of LBAs and Context-Sensitive Grammars  

Theorem: The class of languages that can be described with a context-sensitive grammar is exactly the same as the 

class of languages that can be accepted by some LBA.  Alternatively, a language is context-sensitive iff it can be 

generated by some context-sensitive grammar. 

 

Proof: The proof is very similar to the one that we did of Theorem 23.1, which asserted the equivalence of unrestricted 

grammars and Turing machines.  We must do two proofs: 

 

• We show that, given a context-sensitive grammar G, there exists an LBA B such that L(G) = L(B).  We do this by 

construction of B from G.  B uses a two-track tape (simulated on one tape).  On input w, B keeps w on the first 

tape.  On the second tape, it nondeterministically constructs a derivation using G, but with one exception.  Any 

path that is about to generate a string that is longer than w will halt immediately.  So B never needs a tape longer 

than |w| and is thus an LBA.   

 

• We show that, given an LBA B, there exists a context-sensitive grammar G such that L(B) = L(G).  As in the proof 

of Theorem 23.1, G will simulate the operation of B.  The design of G is a bit more complex now because it 

cannot use working symbols that get erased at the end.  However, that problem can be solved with an appropriate 

encoding of the nonterminal symbols. 
◼ 

24.1.4 Where Do Context-Sensitive Languages Fit in the Language 
Hierarchy? 

Our motivation in designing the LBA was to get the best of both worlds: 

 

• something closer to the power of a Turing machine, but with 

• the decidability properties of a PDA. 

 

Have we succeeded?  Both of the languages {<B, w> : LBA B accepts w} and {<G, w> : context sensitive grammar 

G generates string w} are decidable.  And we have seen at least one example, AnBnCn, of a language that is not context-

free but is context-sensitive.  In this section, we state and prove two theorems that show that the picture at the beginning 

of this chapter is correctly drawn. 

Theorem 24.4  The Context-Sensitive Languages are a Proper Subset of D 

Theorem: The context-sensitive languages are a proper subset of D. 
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Proof: We divide the proof into two parts.  We first show that every context-sensitive language is in D.  Then we 

show that there exists at least one language that is in D but that is not context-sensitive. 

 

The first part is easy.  Every context-sensitive language L is accepted by some LBA B.  So the Turing machine that 

simulates B as described in the proof of Theorem 24.1 decides L. 

 

Second, we must prove that there exists at least one language that is in D but that is not context-sensitive.  It is not 

easy to do this by actually exhibiting such a language.  But we can use diagonalization to show that one exists.   

 

We consider only languages with  = {a, b}.  First we must define an enumeration of all the context-sensitive 

grammars with  = {a, b}.  To do that, we need an encoding of them.  We can use a technique very much like the one 

we used to encode Turing machines.  Specifically, we will encode a grammar G = (V, , R, S) as follows:   

 

• Encode the nonterminal alphabet: Let k = |V - | be the number of nonterminal symbols in G.  Let n be the number 

of binary digits required to represent the integers 0 to k - 1.  Encode the set of nonterminal symbols (V - ) as 

xd1d2…dn, where each di  {0, 1}.  Let x00…0n correspond to S. 

• Encode the terminal alphabet, {a, b}, as a and b. 

• Encode each rule  →  in R as: →, where A is the concatenation of the encodings of all of the symbols of  

and B is the concatenation of the encodings of all of the symbols of .   So the encoding of a rule might look like: 

ax01b→bx01a 

• Finally, encode G by concatenating together its rules, separated by ;’s.  So a complete grammar G might be encoded 

as: 

 x00→ax00a;x00→x01;x01→bx01b;x01→b  

 

Let EnumG be the lexicographic enumeration of all encodings, as just described, of context-sensitive grammars with 

 = {a, b}.  Let Enuma,b be the lexicographic enumeration of {a, b}*.  We can now imagine the infinite table shown 

in Table 24.1.  Column 0 contains the elements of EnumG.  Row 0 contains the elements of Enuma,b.  Each other cell, 

with index (i, j) is 1 if grammari generates stringj and 0 otherwise.  Because {<G, w> : context sensitive grammar G 

generates string w} is in D, there exists a Turing machine that can compute the values in this table as they are needed. 

 

 

 

 String1 String2 String3 String4 String5 String6     … 

Grammar1 1           0 0 0 0 0     … 

Grammar2 0 1            0 0 0 0     … 

Grammar3 1 1 0           0 0 0     … 

Grammar4 0 0 1 0          0 0     … 

Grammar5 1 0 1 0 0           0     … 

    …     …     …     …     …     …     …     … 

 

Table 24.1  Using diagonalization to show that there exist decidable languages that are not context-sensitive 

 

 

Now define the language LD = {stringi : stringi  L(Gi)}.  LD is: 

 

• In D because it is decided by the following Turing machine M: 

 

M(x) =  

1. Find x in the list Enuma,b.  Let its index be i.  (In other words, column i corresponds to x.) 

2. Lookup cell (i, i) in the table.   

3. If the value is 0, then x is not in L(Gi) so x is in LD, so accept.   

4. If the value is 1, then x is in L(Gi) so x is not in LD, so reject. 
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• Not context-sensitive because it differs, in the case of at least one string, from every language in the table and so is 

not generated by any context-sensitive grammar.   
◼ 

Theorem 24.5  The Context-Free Languages are a Proper Subset of the Context-Sensitive 
Languages 

Theorem: The context-free languages are a proper subset of the context-sensitive languages.    

 

Proof: We know one language, AnBnCn, that is context-sensitive but not context-free.  So it remains only to show that 

every context-free language is context-sensitive.   

 

If L is a context-free language then there exists some context-free grammar G = (V, , R, S) that generates it.  Convert 

G to Chomsky normal form, producing G.  G generates L – {}.  G is a context-sensitive grammar because it has no 

length-reducing rules.  If   L, then create in G a new start symbol S (distinct from any other symbols already in 

G), and add the rules S →  and S → S.  G is still a context-sensitive grammar and it generates L.  So L is a context-

sensitive language.  
◼ 

24.1.5 Closure Properties of the Context-Sensitive Languages 
The context-sensitive languages exhibit strong closure properties.  In order to prove that, it is useful first to prove a 

normal form theorem for context-sensitive grammars.  We will do that here, and then go on to prove a set of closure 

theorems.  

 

A context-sensitive grammar G = (V, , R, S) is in nonterminal normal form iff all rules in R are of one of the 

following two forms: 

 

•  → c, where  is an element of (V - ) and c  , or 

•  → , where both  and  are elements of (V - )+. 

 

In other words, the set of nonterminals includes one for each terminal symbol and it is the job of that nonterminal 

simply to generate its associated terminal symbol.  G does almost all of its work manipulating only nonterminals.  At 

the end, the terminal symbols are generated.  Once terminal symbols have been generated, no further rules can apply 

to them since no rules have any terminals in their left-hand sides. 

Theorem 24.6  Nonterminal Normal Form for Context-Sensitive Grammars 

Theorem: Given a context-sensitive grammar G, there exists an equivalent nonterminal normal form grammar G such 

that L(G) = L(G).  

 

Proof: The proof is by construction.  From G we create G using the algorithm converttononterminal defined as 

follows: 

 

     converttononterminal(G: context-sensitive grammar) =  

1. Initially, let G = G. 

2. For each terminal symbol c in , create a new nonterminal symbol Tc and add to RG  the rule Tc → c. 

3. Modify each of the original rules (not including the ones that were just created) so that every occurrence of a 

terminal symbol c is replaced by the nonterminal symbol Tc.  

4. Return G. 
 

Note that no length-reducing rules have been introduced, so if G is a context-sensitive grammar, so is G. 
◼ 

 

We can now state a set of closure theorems.  The proofs of two of these theorems will exploit nonterminal normal 

form as just defined. 
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Theorem 24.7  Closure under Union 

Theorem: The context-sensitive languages are closed under union. 

 

Proof: The proof is by construction of a context-sensitive grammar.  The construction is identical to the one we gave 

in the proof of Theorem 13.5 that the context-free languages are closed under union:  If L1 and L2 are context-sensitive 

languages, then there exist context-sensitive grammars G1 = (V1, 1, R1, S1) and G2 = (V2, 2, R2, S2) such that L1 = 

L(G1) and L2 = L(G2).  If necessary, rename the nonterminals of G1 and G2 so that the two sets are disjoint and so that 

neither includes the symbol S.  We will build a new grammar G such that L(G) = L(G1)  L(G2).  G will contain all 

the rules of both G1 and G2.  We add to G a new start symbol, S, and two new rules, S → S1 and S → S2. The two new 

rules allow G to generate a string if at least one of G1 or G2 generates it.  So G = (V1  V2  {S}, 1  2, R1  R2  

{S → S1, S → S2}, S).   Note that no length-reducing rules are introduced, so the grammar that results is a context-

sensitive grammar. 
◼ 

Theorem 24.8  Closure under Concatenation 

Theorem: The context-sensitive languages are closed under concatenation. 

 

Proof: The proof is by construction of a context-sensitive grammar.  Again we use the construction of Theorem 13.5: 

if L1 and L2 are context-sensitive languages, then there exist context-sensitive grammars G1 = (V1, 1, R1, S1) and G2 

= (V2, 2, R2, S2) such that L1 = L(G1) and L2 = L(G2).  If necessary, rename the nonterminals of G1 and G2 so that the 

two sets are disjoint and so that neither includes the symbol S.  We will build a new grammar G such that L(G) = L(G1) 

L(G2).  G will contain all the rules of both G1 and G2.  We add to G a new start symbol, S, and one new rule, S → 

S1 S2.  So G = (V1  V2  {S}, 1  2, R1  R2  {S → S1 S2}, S).   

 

 

 

 

 

  Figure 24.2  Two subtrees may interact 

 

 

However, now there is one problem that we need to solve: Suppose that one of the original grammars contained a rule 

with Aa as its left hand side.  Figure 24.2 shows a partial parse tree that might be generated by the new grammar.  The 

problem is that Aa can match at the boundary between the substring that was generated from S1 and the one that was 

generated from S2.  That could result in a string that is not the concatenation of a string in L1 with a string in L2.  If 

only nonterminal symbols could occur on the left-hand side of a rule, this problem would be solved by the renaming 

step that guarantees that the two sets of nonterminals (in the two original grammars) are disjoint.  If G were in 

nonterminal normal form, then that condition would be met.   

 

So, to build a grammar G such that L(G) = L(G1) L(G2), we do the following: 

 

1. Convert both G1 and G2 to nonterminal normal form. 

2. If necessary, rename the nonterminals of G1 and G2 so that the two sets are disjoint and so that neither 

includes the symbol S.  

3. G = (V1  V2  {S}, 1  2, R1  R2  {S → S1 S2}, S).    
◼ 

Theorem 24.9  Closure under Kleene Star 

Theorem: The context-sensitive languages are closed under Kleene star. 

 

Proof: The proof is by construction of a context-sensitive grammar.  If L1 is a context-sensitive language, then there 

exists a context-sensitive grammar G1 = (V1, 1, R1, S1) such that L1 = L(G1).  To build a grammar G such that L(G) = 

L(G1)*, we can use a construction similar to that of Theorem 13.5, in which we create a new start symbol and let it 

generate zero or more copies of the original start symbol.  But now we have two problems.  The first is dealing with 
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.  To solve it, we’ll introduce two new symbols, S and T, instead of one.  We’ll add to the original grammar G1 a new 

start symbol S, which will be able to be rewritten as either  or T.  T will then be recursive and will be able to generate 

L(G1)+.  If necessary, rename the nonterminals of G1 so that V1 does not include the symbol S or T.  G will contain all 

the rules of G1.  Then we add to G a new start symbol, S, another new nonterminal T, and four new rules, S → , S → 

T, T → T S1, and T → S1.   

 

But we also run into a problem like the one we just solved above for concatenation.  Suppose that the partial tree 

shown in Figure 24.3 (a) can be created and that there is a rule whose left-hand side is AA.  Then that rule could be 

applied not just to a string that was generated by S1 but to a string at the boundary between two instances of S1.  To 

solve this problem we can again convert the original grammar to nonterminal normal form before we start.  But now 

the two symbols, AA, that are spuriously adjacent to each other were both derived from instances of the same 

nonterminal (S1), so creating disjoint sets of nonterminals won’t solve the problem.  What we have to do this time is 

to create a copy of the rules that can be used to derive an S1.  Let those rules derive some new nonterminal S2.  The 

two sets of rules will do exactly the same thing but they will exploit disjoint sets of nonterminals as they do so.  Then 

we’ll alternate them.  So, for example, to generate a string that is the concatenation of four strings from L1, we’ll create 

the parse tree shown in Figure 24.3 (b).  Now, since neither S1 nor S2 can generate , it can never happen that 

nonterminals from two separate subtrees rooted by S1 can be adjacent to each other, nor can it happen from two 

separate subtrees rooted by S2. 

 
 

Figure 24.3  Preventing two subtrees from interacting 

 

 

We can now state the complete construction of a grammar G such that L(G) = L(G1)*:  

1. Convert G1 to nonterminal normal form. 

2. If necessary, rename the nonterminals so that they do not include S, T, T, or S2. 

3. Create a new nonterminal S2 and create copies (with different names) of all the nonterminals and the rules 

in G1 so that L(S2) = L(S1). 
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4. G = ( V1  {S, T, T}  {S2 and the other nonterminals generated in step 3},  

  1,  

  R1  {S → , S → T, T → T S1, T → S1, T → T S2, T → S2}  

        {the rules that derive S2, as generated in step 3},  

  S).  
◼ 

Theorem 24.10  Closure under Intersection 

Theorem: The context-sensitive languages are closed under intersection. 

 

Proof: This time we cannot pattern a proof after one we did for the context-free languages since the context-free 

languages are not closed under intersection.  But we can do a proof by construction of an LBA.  If L1 and L2 are 

context-sensitive languages, then there exist LBAs B1 = (K1, 1, 1, 1, s1, H1) and B2 = (K2, 2, 2, 2, s1, H1) such 

that L1 = L(B1) and L2 = L(B2).  We construct a new LBA B such that L(B) = L(B1)  L(B2).  B will treat its tape as 

though it were divided into two tracks.  It will first copy its input from track 1 to track 2.  Then it will simulate B1 on 

track 1.  If that simulation accepts, then B will simulate B2 on track 2.  If that simulation also accepts, then B will 

accept.  So B will accept iff both B1 and B2 do. 
◼ 

Theorem 24.11 Closure under Complement 

Theorem: The context-sensitive languages are closed under complement. 

 

Proof: The proof of this claim is based on a complexity argument, so we will delay it until Chapter 29, but see .  
◼ 

24.1.6 Decision Procedures for the Context-Sensitive Languages 
We have already shown that the membership question for context-sensitive languages is decidable.  Unfortunately, it 

does not appear to be efficiently decidable.  Comparing the situation of context-free languages and context-sensitive 

languages, we have, where w is a string and G a grammar: 

 

• If G is a context-free grammar, then there exists a O(n3) algorithm (as we saw in Chapter 15) to decide whether 

w  L(G). 

 

• If G is a context-sensitive grammar, then the problem of deciding whether w  L(G) can be solved by the algorithm 

that we presented in the proof of Theorem 24.2.  It is not certain that no more efficient algorithm exists, but it is 

known that the decision problem for context-sensitive languages is PSPACE-complete.  (We’ll define PSPACE-

completeness in Chapter 29.)  The fact that the problem is PSPACE-complete means that no polynomial-algorithm 

exists for it unless there also exist polynomial-time algorithms for large classes of other problems for which no 

efficient algorithm has yet been found.  More precisely, no polynomial-time algorithm for deciding membership 

in a context-sensitive language exists unless P = NP = PSPACE, which is generally thought to be very unlikely. 

 

Because no efficient parsing techniques for the context-sensitive languages are known, 

practical parsers for programming languages C 669 and natural languages C 751 

typically use a context-free grammar core augmented with specific other mechanisms.  

They do not rely on context-sensitive grammars.  

 

What about other questions we might wish to ask about context-sensitive languages?  We list some questions in Table 

24.2, and we show their decidability for the context-sensitive languages and also, for comparison, for the context-free 

languages. 
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 Decidable for context-free languages? Decidable for context-sensitive 

languages? 

Is L = *? No No 

Is L1 = L2? No (but Yes for deterministic CFLs) No 

Is L1  L2? No No 

Is L regular? No No 

Is L also context-

free? 

No  

Is L also context-

sensitive? 

 Yes, trivially since the context-sensitive 

languages are closed under complement. 

Is L = ? Yes No 

Is L1  L2 = ? No No 

 

Table 24.2  Decidability of questions about context-free and context-sensitive languages 

 

 

We prove two of these claims about the context-sensitive languages here and leave the others as exercises.  Since we 

have shown that context-sensitive grammars and LBAs describe the same class of languages, any question that is 

undecidable for one will also be undecidable for the other.  So we can prove the decidability of a question by using 

either grammars or machines, whichever is more straightforward.  We’ll do one example of each.   

Theorem 24.12    “Is a Context-Sensitive Language Empty?” is Undecidable 

Theorem: The language L2 = {<B> : B is a LBA and L(B) = } is not in D. 

 

Proof: The proof is by reduction from HANY = {<M> : there does not exist any string on which Turing machine M 

halts}, which we showed, in Theorem 21.15, is not even in SD. We will define R, a mapping reduction from HANY to 

L2.  The idea is that R will use the reduction via computation history technique described in Section 22.5.1.  Given a 

particular Turing machine M, it is straightforward to build a new Turing machine M# that can determine whether a 

string x is a valid computation history of M.  M# just needs to check four things: 

 

• The string x must be a syntactically legal computation history. 

• The first configuration of x must correspond to M being in its start state, with its read/write heard positioned just 

to the left of the input. 

• The last configuration of x must be a halting configuration. 

• Each configuration after the first must be derivable from the previous one according to the rules in M’s transition 

relation . 

 

In order to check these things, M# need never move off the part of its tape that contains its input, so M# is in fact an 

LBA.  Since a computation history must end in a halting state, there will be no valid computation histories for M iff 

M halts on nothing.  So R is defined as follows: 

 

R(<M>) =  

1. Construct the description <M#> of an LBA M#(x), which operates as follows: 

1.1. If x is a valid computation history of M, accept, else reject.  

2. Return <M#>. 

 

If Oracle exists and decides L2, then C = Oracle(R(<M>)) decides HANY.   

• R can be implemented as a Turing machine.  

• C is correct:  

• If <M>  HANY: There are no valid computation histories of the Turing machine M, so the LBA M# accepts 

nothing.  Oracle(<M#>) accepts. 

• If <M>  HANY: There is at least one valid computation history of M, so M# accepts at least one string.  

Oracle<M#> rejects. 
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But no machine to decide HANY can exist, so neither does Oracle.   
◼ 

Theorem 24.13  “Is the Intersection of Two Context-Sensitive Languages Empty?” is Undecidable 

Theorem: The language L2 = {<G1, G2> : G1 and G2 are context-sensitive grammars and L(G1)  L(G2) = } is not 

in D. 

 

Proof: The proof is by reduction from L1 = {<G1, G2> : G1 and G2 are context-free grammars and L(G1)  L(G2) = 

}, which we showed, in Theorem 22.9, is not in D.  Let R be a mapping reduction from L1 to L2 defined as follows: 

 

R(<G1, G2>) =  

1. Using the procedure that was described in the proof of Theorem 24.5, construct from the two context-

free grammars G1 and G2, two context-sensitive grammars G3 and G4 such that L(G3) = L(G1) and L(G4) 

= L(G2). 

2. Return <G3, G4>. 

 

If Oracle exists and decides L2, then C = Oracle(R(<G1, G2>)) decides L1.  But no machine to decide L1 can exist, so 

neither does Oracle.   
◼ 

 

24.2   The Chomsky Hierarchy 
 

 
 

Figure 24.4  The Chomsky hierarchy 

 

In 1956, Noam Chomsky described a slightly different version of the onion diagram that we have been using.  

Chomsky’s version, commonly called the Chomsky hierarchy, is shown In Figure 24.4.  This version is appealing 

because, for each level, there exists both a grammar formalism and a computational structure.  Chomsky used the 

terms type 0,  type 1, type 2, and type 3 to describe the four levels in his model and those terms are still used in some 

treatments of this topic. 

 

The basis for the Chomsky hierarchy is the amount and organization of the memory required to process the languages 

at each level: 
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• Type 0 (semidecidable): no memory constraint.  

• Type 1 (context-sensitive): memory limited by the length of the input string. 

• Type 2 (context-free): unlimited memory but accessible only in a stack (so only a finite amount is accessible at 

any point). 

• Type 3 (regular): finite memory. 

 

The Chomsky hierarchy makes an obvious suggestion: Different grammar formalisms offer different descriptive 

power and may be appropriate for different tasks.  In the years since Chomsky published the hierarchy, that idea, 

coupled with the need to solve real problems, has led to the development of many other formalisms.  We will sketch 

two of them in the rest of this chapter. 

24.3 Attribute, Feature, and Unification Grammars 
For many applications, context-free grammars are almost, but not quite, good enough.  While they may do a good job 

of describing the primary structure of the strings in a language, they make it difficult, and in some cases impossible, 

to describe constraints on the way in which sibling constituents may be derived.  For example, we saw that no context-

free grammar exists for the simple artificial language AnBnCn = {anbncn : n  0}.  The context-free grammar formalism 

provides no way to express the constraint that the numbers of a’s, b’s, and c’s must be equal.  We’ve seen (in Example 

23.1) an unrestricted grammar for AnBnCn.  But we’ve also seen that unrestricted grammars are impractical. 

 

What we need is a new technique for describing constraints on sets of constituents.  The approach that we describe 

next treats both terminals and nonterminals not as atomic symbols but rather as clusters of features (or attributes) and 

associated values.  Then it allows rules to: 

 

• Define ways in which features are passed up and down in parse trees. 

• Describe constraints on feature values that must be satisfied before the rules can be applied.   

Example 24.2 An Attribute Grammar for AnBnCn 

We’ll show an attribute grammar G for the language AnBnCn.  G will be a context-free grammar that has been 

augmented with one feature, size.  The rules in G will define how size is used.  Some rules will compute size and pass 

it up, from the terminal nodes, to the root.  The single S rule will contain the description of a size constraint that must 

be satisfied before the rule can be applied. 

 

  G = ({S, A, B, C, a, b, c},{a, b, c}, R, S), where: 

 

      R = {  S → A B C  (size(A) = size(B) = size(C)) 

    A → a    (size(A)  1) 

   A → A2 a   (size(A)  size(A2) + 1) 

    B → a    (size(B)  1) 

   B → B2 a   (size(B)  size(B2) + 1) 

    C → a    (size(C)  1) 

   C → C2 a   (size(C)  size(C2) + 1)  }. 

 

In this example, each rule has been annotated with an attribute expression.  Read the notation A2 as the name for the 

daughter constituent, rooted at A, created by the rule that refers to it.  This grammar could easily be used by a bottom-

up parser that builds the maximal A, B, and C constituents, assigns a size to each, and then attempts to combine the 

three of them into a single S.  The combination will succeed only if all the sizes match. 

 

The fact that it could be useful to augment context-free grammars with various kinds of features and constraints has 

been observed both by the writers of grammars for programming languages and the writers of grammars of natural 

languages, such as English.  In the programming languages and compilers world, these grammars tend to be called 

attribute grammars.  In the linguistics world, they tend to be called feature grammars or unification grammars (the 



  

Chapter 24                                                398       The Chomsky Hierarchy and Beyond   

latter because of their reliance on a matching process, called unification, that decides when there is a match between 

features and constraints).  

Example 24.3 A Unification Grammar Gets Subject/Verb Agreement Right 

In Example 11.6, we presented a simple fragment of an English grammar.  That fragment is clearly incomplete; it fails 

to generate most of the sentences of English.  But it also overgenerates.  For example, it can generate the following 

sentence (marked with an * to show that it is ungrammatical): 

 

 * The bear like chocolate. 

 

The problem is that this sentence was generated using the rule S → NP VP.  Because the grammar is context-free, the 

NP and VP constituents must be realized independently.  So there is no way to implement the English constraint that 

present tense verbs must agree with their subjects in number and gender.  

 

We can solve this problem by replacing the simple nonterminals NP (Noun Phrase) and VP (Verb Phrase) by 

compound ones that include features corresponding to person and number.  One common way to do that is to represent 

everything, including the primary category, as a feature.  So, instead of NP and VP, we might have: 

 

           [ CATEGORY NP               [ CATEGORY VP 
 PERSON   THIRD   PERSON   THIRD 

NUMBER   SINGULAR]   NUMBER   SINGULAR] 

 

Instead of atomic terminal symbols like bear, we might have: 

 
           [ CATEGORY  N   
 LEX  bear    

 PERSON   THIRD  

 NUMBER   SINGULAR] 

 

Instead of grammar rules like S → NP VP, we will now have rules that are stated in terms of feature sets.  The idea is 

that we will write rules that describe constraints on how features must match in order for constituents to be combined.  

So, for example the S → NP VP rule might become: 

 

            [ CATEGORY S]     →      [ CATEGORY NP             [ CATEGORY VP 

    NUMBER  x1  NUMBER x1 

    PERSON  x2  ]  PERSON x2  ] 

 

This rule exploits two variables, x1 and x2, to describe the values of the NUMBER and PERSON features.  Whenever a 

particular NP is constructed, it will (by a mechanism that we won’t go into) acquire values for its NUMBER and 

PERSON features from its constituents (usually the head noun, such as bear).  The same thing will happen for each 

individual VP.  The scope of the variables x1 and x2 should be taken to be the entire rule, which will thus be interpreted 

to say that an NP and a VP can be combined to form an S iff they have matching values for their NUMBER and PERSON 

features.  We’ve oversimplified here by suggesting that the only way for values to match is for them to be identical.  

Practical systems typically exploit a more powerful notion of matching.  For example, past tense verbs in English 

aren’t marked for number.  So a VP that dominated the verb shot, for instance, would have a NUMBER value that 

would enable it to combine with an NP whose NUMBER was either SINGULAR or PLURAL.  

 

Several important natural language grammar formalisms are feature (unification)-based 

.  Grammars written in those formalisms exploit features that describe agreement 

constraints between subjects and verbs, between nouns and their modifiers, and between 

verbs and their arguments, to name just a few.  C 750.  They may also use semantic 

features, both as additional constraints on the way in which sentences can be generated 

and as the basis for assigning meanings to sentences once they have been parsed. 
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Both the formal power and the computational efficiency of attribute/feature/unification grammars depend on the 

details of how features are defined and used.  Not all attribute/feature/unification grammar formalisms are stronger 

than context-free grammars.  In particular, consider a formalism that requires that both the number of features and the 

number of values for each feature must be finite.  Then, given any grammar G in that formalism, there exists an 

equivalent context-free grammar G.  The proof of this claim is straightforward and is left as an exercise.  With this 

restriction then, attribute/feature/unification grammars are simply notational conveniences.  In English, there are only 

two values (singular and plural) for syntactic number and only three values (first, second and third) for person.  So the 

grammar that we showed in Example 24.3 can be rewritten as a (longer and more complex) context-free grammar. 

 

Now consider the grammar that we showed in Example 24.2.  The single attribute size can take an arbitrary integer 

value.  We know that no context-free equivalent of that grammar exists.  When the number of attribute-value pairs is 

not finite, the power of a grammar formalism depends on the way in which attributes can be computed and evaluated.  

Some formalisms have the power of Turing machines.   

 

Grammars, augmented with attributes and constraints, can be used in a wide variety of 

applications.  For example, they can describe component libraries and product families 

. 

 

Particularly in the attribute grammar tradition, it is common to divide attributes into two classes: 

 

• Synthesized attributes, which are passed up the parse tree, and 

• Inherited attributes, which are passed down the tree. 

 

Both of the examples that we have presented use synthesized attributes, which are particularly well-suited to use by 

bottom-up parsers.  Inherited attributes, on the other hand, are well-suited to use by top-down parsers. 

 

One appeal of attribute/feature/unification grammars is that features can be used not just as a way to describe 

constraints on the strings that can be generated.  They may also be used as a way to construct the meanings of strings.  

Assume that we are working with a language for which a compositional semantic interpretation function (as defined 

in Section 2.2.6) exists.  Then the meaning of anything other than a primitive structure is a function of the meanings 

of its constituent structures.  So, to use attributes as a way to compute meanings for the strings in a language L, we 

must: 

 

• Create a set of attributes whose values will describe the meanings of the primitives of L.  For English, the 

primitives will typically be words (or possibly smaller units, like morphemes).  For programming languages, the 

primitives will be variables, constants, and the other primitive language constructs. 

 

• Associate with each grammar rule a rule that describes how the meaning attributes of each element of the rule’s 

right hand side should be combined to form the meaning of the left-hand side.  For example, the English rule S 

→ NP VP can specify that the meaning of an S is structure whose subject is the meaning of the constituent NP 

and whose predicate is the meaning of the constituent VP.   

 

Attribute grammars for programming languages were introduced as a way to define the 

semantics of programs that were written in those languages.  They can be a useful tool 

for parser generators . 

24.4 Lindenmayer Systems 
Lindenmayer systems, or simply L-systems, were first described by Aristid Lindenmayer, a biologist whose goal was 

to model plant development and growth.  L-systems are grammars.  They use rules to derive strings.  But there are 

three differences between L-systems and the other grammar formalisms we have discussed so far.  These differences 

arise from the fact that L-systems were designed not to define languages but rather to model ongoing, dynamic 

processes.   
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The first difference is in the way in which rules are applied.  In all of our other grammar formalisms, rules are applied 

sequentially.  In L-systems, as in the Game of Life and the other cellular automata that we mentioned in Chapter 18, 

rules are applied, in parallel, to all the symbols in the working string.  For example, think of each working string as 

representing an organism at some time t.  At time t+1, each of its cells will have changed according to the rules of cell 

development.  Or think of each working string as representing a population at some time t.  At time t+1, each of the 

individuals will have matured, died, or reproduced according to the rules of population change.  

 

The second difference is in what it means to generate a string.  In all our other grammar formalisms, derivation 

continues at least until no nonterminal symbols remain in the working string.  Only strings that contain no nonterminal 

symbols are considered to have been generated by the grammar.  In L-systems, because we are modeling a process, 

each of the working strings will be considered to have been generated by the grammar.  The distinction between 

terminals and nonterminals disappears, although there may be some symbols that will be treated as constants (i.e., no 

rules apply to them). 

 

The third difference is that we will start with an initial string (of one or more symbols), rather than just an initial 

symbol. 

 

An L-system G is a triple (, R, ), where: 

 

•  is an alphabet, which may contain a subset C of constants, to which no rules will apply, 

• R is a set of rules, 

•  (the start sequence) is an element of +. 

 

Each rule in R is of the form: A → , where: 

 

• A  .  A is the symbol that is to be rewritten by the rule. 

• ,   *.   and  describe context that must be present in order for the rule to fire.  If they are equal to , no 

context is checked. 

•   *.   is the string that will replace A when the rule fires. 

 

The most straightforward way to describe L(G), the set of strings generated by an L-system G is to specify an 

interpreter for G.  We do that as follows:  

 

    L-system-interpret(G: L-system) =  

1. Set working-string to . 

2. Do forever: 

2.1. Output working-string. 

2.2. new-working-string = . 

2.3. For each character c in working-string (moving left to right) do: 

If possible, choose a rule r whose left-hand side matches c and where c’s neighbors (in working-

string) satisfy any context constraints included in r. 

If a rule r was found, concatenate its right-hand side to the right end of new-working-string. 

If none was found, concatenate c to the right end of new-working-string. 

2.4. working-string = new-working-string. 

 

In addition to their original purpose, L-systems have been used for applications ranging 

from composing music C 778 to predicting protein folding  to designing buildings . 

 

Because each successive string is built by recursively applying the rules to the symbols in the previous string, the 

strings that L-systems generate typically exhibit a property called self-similarity.  We say that an object is self-similar 

whenever the structure exhibited by its constituent parts is very similar to the structure of the object taken as a whole.   

Example 24.4 Fibonacci’s Rabbits 

Let G be the L-system defined as follows: 
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      = {I, M}. 

      = I. 

     R = { I → M, 

   M → M I }. 

 

The sequence of strings generated by G begins: 

 

     0. I 

     1. M 

     2. M I 

     3. M I M 

     4. M I M M I 

     5. M I M M I M I M 

     6.  M I M M I M I M M I M M I 

 

If we describe each string by its length, then the sequence that G generates is known as the Fibonacci sequence , 

defined as: 

 

  Fibonacci0 = 1. 

  Fibonacci1 = 1. 

  For n > 1, Fibonaccin = Fibonnacin-1 + Fibonnacin-2. 

 

Fibonacci’s goal, in defining the sequence that bears his name, was 

to model the growth of an idealized rabbit population in which no one 

dies and each mature pair produces a new male-female pair at each 

time step.  Assume that it takes one time step for each rabbit to reach 

maturity and mate.  Also assume that the gestation period of rabbits 

is one time step and that we begin with one pair of (immature) rabbits.  

So at time step 0, there is 1 pair.  At time step 1 there is still 1 pair, 

but they have matured and mated.  So, at time step 2, the original pair 

is alive and has produced one new one.  At time step 3, all pairs from 

time step 2 (of which there are 2) are still alive and all pairs (of which 

there is just 1) that have been around at least two time steps have 

produced a new pair.  So there are 2 + 1 = 3 pairs.  At time step 4, the 

3 pairs from the previous step are still alive and the 2 pairs from two steps ago have reproduced, so there are 3 + 2 = 

5 pairs.  And so forth.   

 

Notice that the strings that G produces mirror this structure.  Each I corresponds to one immature pair of rabbits and 

each M corresponds to one mature pair.  Each string is the concatenation of its immediately preceding string (the 

survivors) with the string that preceded it two steps back (the breeders).   

 

Leonardo Pisano Fibonacci lived from 1170 to 1250.  Much more recently, the L-system 

that describes the sequence that bears his name has been used to model things as various 

as plant structure C 809, limericks  and ragtime music .   

 

L-systems can be used to model two and three-dimensional structures by assigning appropriate meanings to the 

symbols that get generated.  For example, the turtle geometry system  provides a set of basic drawing primitives.  A 

turtle program is simply a string of those symbols.  So we can use L-systems to generate turtle programs and thus to 

generate two-dimensional images.  Three-dimension structures can be built in a similar way.   

 

Fractals  are self-similar, recursive structures, so they are easy to generate using L-systems. 
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Example 24.5 Sierpinski Triangle 

Let G be the L-system defined as follows: 

 

      = {A, B, +, -}. 

      = A. 

     R = { A → B – A – B, 

   B → A + B + A }. 

 

Notice that + and – are constants.  No rules transform them so they are simply copied to each successive output string.  

The sequence of strings generated by G begins: 

 

       1. A  

     2. B – A – B 

     3. A + B + A – B – A – B – A + B + A  

     4. B – A – B + A + B + A + B – A – B – A + B + A – B – A – B – A + B + A – B – A – B + A +  

         B + A + B – A – B 

 

We can interpret these strings as turtle programs by choosing a line length k and then attaching meanings to the 

symbols in  as follows:  

 

• A and B mean move forward, drawing a line of length k. 

• + means turn to the left 60. 

• – means turn to the right 60. 

 

Strings 3, 4, 8, and 10 then correspond to turtle programs that can draw the following sequence of figures (scaling k 

appropriately):  

 
The limit of this sequence (assuming that an appropriate scaling factor is applied at each step) is the fractal known as 

the Sierpinski triangle . 

 

The growth of many natural structures can most easily be described as the development of branches, which split into 

new branches, which split into new branches, and so forth.  We can model this process with an L-system by introducing 

into V two new symbols: [ will correspond to a push operation and ] will correspond to a pop.  If we are interpreting 

the strings the L-system generates as turtle programs, push will push the current pen position onto a stack.  Pop will 

pop off the top pen position, pick up the pen, return it to the position that is on the top of the stack, and then put it 

down again. 
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Example 24.6 Trees 

Let G be the L-system defined as follows: 

 

      = {F, +, –, [, ]}. 

      = F. 

       R = { F → F [ – F ] F [ + F ] [ F ] }. 

 

The sequence of strings generated by G begins: 

 

       1. F  

     2. F [ – F ] F [ + F ] [ F ] 

     3.  F [ – F ] F [ + F ] [ F ] [ – F [ – F ] F [ + F ] [ F ] ] F [ – F ] F [ + F ] [ F ] [ + F [ – F ] F  

            [ + F ] [ F ] ] [ F [ – F ] F [ + F ] [ F ] ] 

 

We can interpret these strings as turtle programs by choosing a line length k and then attaching meanings to the 

symbols in  as follows:  

 

• F means move forward, drawing a line of length k. 

• + means turn to the left 36. 

• – means turn to the right 36. 

• [ means push the current pen position and direction onto the stack. 

• ] means pop the top pen position/direction off the stack, lift up the pen, move it to the position that is now on the 

top of the stack, put it back down, and set its direction to the one on the top of the stack. 

 

Strings 2, 3, 4, and 8 then correspond to turtle programs that can draw the following sequence of figures (scaling k 

appropriately): 

 

 
 

One note about these pictures: The reason that the number of line segments is not consistently a power of 5 is that 

some lines are drawn on top of others.  

 

Much more realistic trees, as well as other biological structures, can also be described 

with L-systems. C 809. 

 

So far, all of the L-systems that we have considered are context-free (because we have put no context requirements 

on the left-hand sides of any of the rules) and deterministic (because there is no more than one rule that matches any 

symbol).  Deterministic, context-free L systems are called D0L-systems and are widely used.  But we could, for 

example, give up determinism and allow competing rules with the same left-hand side.  In that case, one common way 

to resolve the competition is to attach probabilities to the rules and thus to build a stochastic L-system.   
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We can also build L-systems that are not context-free.  In such systems, the left-hand side of a rule may include 

contextual constraints.  These constraints will be checked before a rule can be applied.  But the constraints do not 

participate in the substitution that the rule performs.  Each rule still describes how a single symbol is to be rewritten. 

Example 24.7 Sierpinski Triangle, Again 

Imagine a one-dimensional cellular automaton.  Each cell may contain the value black or white.  At any point in time, 

the automaton consists of a finite number of cells, although it may grow to the right from one step to the next.  We 

will display successive time steps on successive lines, with each cell immediately below its position at the previous 

time step.  With this arrangement, define the parents of a cell at time t to be the cell immediately above it (i.e., itself 

at time t-1) and (if it exists) the one that is one row above it but shifted one cell to the left (i.e., its left neighbor at time 

t-1).  Now we can state the rule for moving from one time step to the next:  At each time step after the first, a cell will 

exist if it would have at least one parent.  And its value will be: 

 

• Black if it has exactly one black parent. 

• White otherwise.   

 

Note that, at each time step, one additional cell to the right will have a parent (the cell above and to its left).  So the 

automaton will grow to the right by one black cell at each time step. We will start with the one-cell automaton .  

After 32 steps, our sequence of automata will draw the following Sierpinski triangle:     

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can define G, a context-sensitive L-system to generate this sequence.  We’ll use the following notation for 

specifying context in the rules of G: The left-hand side (a, b, …, c) m (x, y, …z) will match the symbol m iff the 

symbol to its left is any of the symbols in the list (a, b, …, c) and the symbol to its right is any of the symbols in the 

list (x, y, …z).  The symbol  will match iff the corresponding context is empty.  (Note that this differs from our usual 

interpretation of , in which it matches everywhere.) 

 

With those conventions, G is: 

 

      = {, }. 

      = . 

      R = {( | )  () →  , /* This square is black with no black one to the left, so at t+1 

         there’s exactly one black parent.  The new cell is black. 

         And there’s no cell to the right, so add one, which also has one 

          black parent so it too is black. 

 ( | )  ( | ) → , } /* This square is black and no black one to the left, so at t+1 

        there’s exactly one black parent.  The new cell is black. 

 ()  () →  ,  /* Black, plus black to the left.  Two black parents.  New 

        cell is white.  No cell to the right, so add one.  It has one black 

          parent so it is black. 
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  ()  ( | ) → ,  /* Two black parents.  New one is white. 

  ( | )  () →  , /* Two white parents.  New one is white.  Add cell to right. 

  ( | )  ( | ) → , } /* Two white parents.  New one is white. 

  ()  () →  ,  /* One black parent.  New one is white.  Add cell to right. 

  ()  ( | ) →  }.  /* One black parent.  New one is black. 

 

G generates a Sierpinski triangle point wise, while the L-system we described in Example 24.5 generates one by 

drawing lines. 

 

Context-free L-systems do not have the power of Turing machines.  But, if context is allowed, L-systems are 

equivalent in power to Turing machines.  So we can state the following theorem: 

Theorem 24.14  Context-Sensitive L-Systems are Turing Equivalent 

Theorem: The computation of any context-sensitive L-system can be simulated by some Turing machine.  And the 

computation of any Turing machine can be simulated by some deterministic, context-sensitive L-system. 

 

Proof: The computation of any L-system can be simulated by a Turing machine that implements the algorithm L-

system-interpret.  So it remains to show the other direction.  

 

The proof that the execution of any Turing machine can be simulated by some deterministic, context-sensitive L-

system is by construction.  More precisely, we’ll show that Turing machine M, on input w, halts in some halting state 

q and with tape contents v iff L-system L converges to the static string qv.    

 

If M is not deterministic, create an equivalent deterministic machine and proceed with it.  Then, given M and w, define 

L as follows: 

 

• Let L be M, augmented as follows: 

• Add the symbol 0 to encode M’s start state. 

• If M has the halting state y, add the symbol y to encode it. 

• If M has the halting state n, add the symbol n to encode it. 

• If M has any other halting states, add the symbol h to encode all of them. 

• Add one distinct symbol for each nonhalting state of M.   

 

• Let  (L’s start string) encode M’s initial configuration.  Configurations will be encoded by a string that represents 

M’s active tape, plus two blank squares on each end.  The symbol that represents M’s current state will be inserted 

into the string immediately to the left of the tape symbol that is under the read/write head.  We will follow our 

usual convention that, just before it starts, M’s read/write is on the blank square just to the left of the first input 

character.  So  =  0w. 

 

• Let the rules R of L encode M’s transitions.  To do this, we exploit the fact that the action of a Turing machine is 

very local.  Things only change near the read/write head.  So, letting integers correspond to states, suppose that 

the working string of L is ga4bcde.  This encodes a configuration in which M’s read/write head is on the b and 

M is in state 4.  The read/write head can move one square to the left or one square to the right.  Whichever way it 

moves, the character under it can change.  So, if it moves left, the a changes to some state symbol, the 4 changes 

to an a, and the b changes to whatever it gets rewritten as.  If, on the other hand, the read/write head moves to 

the right, the 4 changes to whatever the b gets rewritten as and the b gets rewritten as the new state symbol.  To 

decide how to rewrite some character in the working string, it is sufficient to look at one character to its left and 

two to its right.  If there is no state symbol in that area, the symbol gets rewritten as itself.  No rule need be 

specified to make this happen.  For all the combinations that do involve a state symbol, we add to R rules that 

cause the system to behave as M behaves.  Finally, add rules so that, if h, y, or n is ever generated, it will be 

pushed all the way to the left, leaving the rest of the string unchanged.  Add no other rules to R (and in particular 

no other rules involving any of the halting state symbols).   
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L will converge to qv iff M halts, in state q, with v on its tape. 
◼ 

24.5 Exercises 
1) Write context-sensitive grammars for each of the following languages L.  The challenge is that, unlike with an 

unrestricted grammar, it is not possible to erase working symbols. 

a) AnBnCn = {anbncn : n  0}.  

b) WW = {ww : w  {a, b}*}. 

c) {w  {a, b, c}* : #a(w) = #b(w) = #c(w)}. 

 

2) Prove that each of the following languages is context-sensitive: 

a) {an : n is prime}. 

b) {a
2n : n  0}. 

c) {xwxR : x, w  {a, b}+ and |x| = |w|}. 

 

3) Prove that every context-free language is accepted by some deterministic LBA. 

 

4) Recall the diagonalization proof that we used in the proof of Theorem 24.5, which tells us that the context-

sensitive languages are a proper subset of D.  Why cannot that same proof technique be used to show that there 

exists a decidable language that is not decidable or an SD language that is not decidable?   

 

5) Prove that the context-sensitive languages are closed under reverse. 

 

6) Prove that each of the following questions is undecidable: 

a) Given a context-sensitive language L, is L = *? 

b) Given a context-sensitive language L, is L finite? 

c) Given two context-sensitive languages L1 and L2, is L1 = L2? 

d) Given two context-sensitive languages L1 and L2, is L1  L2? 

e) Given a context-sensitive language L, is L regular? 

 

7) Prove the following claim, made in Section 24.3: Given an attribute/feature/unification grammar formalism that 

requires that both the number of features and the number of values for each feature must be finite and a grammar 

G in that formalism, there exists an equivalent context-free grammar G.  
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8) The following sequence of figures corresponds to a fractal called a Koch island: 

 

 
 

These figures were drawn by interpreting strings as turtle programs, just as we did in Example 24.5 and Example 

24.6.  The strings were generated by an L-system G, defined with:  

 

 = {F, +, –}. 

 = F – F – F – F. 

 

To interpret the strings as turtle programs, attach meanings to the symbols in  as follows (assuming that some 

value for k has been chosen): 

 

• F means move forward, drawing a line of length k. 

• + means turn left 90. 

• – means turn right 90. 

 

Figure (a) was drawn by the first generation string .  Figure (b) was drawn by the second generation string, and 

so forth.  RG contains a single rule.  What is it? 
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25   Computable Functions  

In almost all of our discussion so far, we have focused on exactly one kind of problem: deciding a language.  We saw 

in Chapter 2 that other kinds of problems can be recast as language-decision problems and so can be analyzed within 

the framework that we have described.   But, having introduced the Turing machine, we now also have a way to 

analyze programs that compute functions whose range is something other than {Accept, Reject}. 

25.1 What is a Computable Function? 
Informally, a function is computable iff there exists a Turing machine that can compute it.  In this section we will 

formalize that notion. 

25.1.1 Total and Partial Functions 
We begin by considering two classes of functions.  Let f be an arbitrary function.  Then: 

 

• f is a total function on the domain Dom iff f is defined on all elements of Dom.  This is the standard mathematical 

definition of a function on a domain. 

 

• f is a partial function on the domain Dom iff f is defined on zero or more elements of Dom.  This definition allows 

for the existence of elements of the domain on which the function is not defined. 

Example 25.1 Total and Partial Functions 

• Consider the successor function succ and the domain ℕ (the natural numbers).  Succ is a total function on ℕ.  It 

is also a partial function on ℕ. 

 

• Consider the simple string function midchar, which returns the middle character of its argument string if there 

is one.  The midchar function is a partial function on the domain of strings.  But it is not a total function on the 

domain of strings, since it is undefined for strings of even length.  It is, however, a total function on the smaller 

domain of odd length strings.  

 

• Consider the function steps, defined on inputs of the form <M, w>.  It returns the number of steps that Turing 

machine M executes, on input w, before it halts.  The steps function is a partial function on the domain {<M, 

w>}.  But it is not a total function on that domain, since it is undefined for values of <M, w> where M does not 

halt on w.  It is, however, a total function on the smaller domain {<M, w>: Turing machine M halts on input w}.   

 

Why do we want to expand the notion of a function to allow for partial functions?  A cleaner approach is simply to 

narrow the domain so that it includes only values on which the function is defined.  So, for example, in the case of the 

midchar function, we simply assert that its domain is the set of odd length strings.  Then we have a total function and 

thus a function in the standard mathematical sense.  Of course we can do the same thing with the function steps: we 

can refine its domain to include only values on which it is defined.  But now we face an important problem given that 

our task is to write programs (more specifically, to design Turing machines) that can compute functions.  The set of 

values on which steps is defined is the language H.  And H is not in D (i.e., it is not a decidable set).  So, no matter 

what Turing machine we might build to compute steps, there exists no other Turing machine that can examine a value 

and decide whether the steps machine should be able to run.  Another way to think of this problem is that it is 

impossible for any implementation of steps to check its precondition.  The only way it is going to be possible to build 

an implementation of steps is going to be to define its domain as some decidable set and then allow that there are 

elements of that domain for which steps will not return a value.  Thus steps will be a partial and not a total function 

of the domain on which the program that implements it runs.  So any such program will fail to halt on some inputs. 

25.1.2 Partially Computable and Computable Functions 
Recall that, in Section 17.2.2, we introduced the notion of a Turing machine that computes an arbitrary function.  In 

the rest of this section we will expand on the ideas that we sketched there.  In particular, we will now consider 

functions, like midchar and steps, that are not defined on all elements of *.  
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We begin by restating the basic definitions that we gave in Section 17.2.2: 

 

• Let M be a Turing machine with start state s, halting state h, input alphabet , and tape alphabet .  The initial 

configuration of M will be (s, w), where w  *.   

 

• Define M(w) = z iff (s, w) |-M*  (h, z).  In other words M(w) = z iff M, when started on a string w in *, halts 

with z on its tape and its read/write head is just to the left of z. 

 

• We say that a Turing machine M computes a function f iff, for all w  *: 

 

• If w is an input on which f is defined, M(w) = f(w).  In other words, M halts with f(w) on its tape. 

• Otherwise M(w) does not halt. 

 

• A function f is recursive or computable iff there is a Turing machine M that computes it and that always halts.  

 

But what about functions that are not defined on all elements of *.  They are not computable under this definition.  

Let f be any function defined on some subset of *.  Then f is partially computable iff there exists a Turing machine 

M that computes it.  In other words, M halts and returns the correct value for all inputs on which f is defined.  On all 

other inputs, M fails to halt. 

 

Let f be any partially computable function whose domain is only a proper subset of *.  Then any Turing machine 

that computes f will fail to halt on some inputs.  But now consider only those functions f such that the set of values 

Dom on which f is defined is decidable.  In other words, f is a total function on the decidable set Dom.  For example, 

midchar is such a function, defined on the decidable set of odd length strings.  For any such function f, we define a 

new function f that is identical to f except that its range includes one new value, which we will call Error.  On any 

input z on which f is undefined, f(z) = Error.  Given a Turing machine M that computes f, we can construct a new 

Turing machine M that computes f and that always halts.  Let Dom be the set of values on which f is defined.  Since 

Dom is in D, there is some Turing machine TF that decides it.  Then the following Turing machine M computes f: 
 

M(x) = 

1. Run TF on x.   

2. If it rejects, output Error. 

3. If it accepts, run M on x. 

  

We have simply put a wrapper around M.  The job of the wrapper is to check M’s precondition and only run M when 

its precondition is satisfied.  This is the technique we use all the time with real programs.  

 

Using the wrapper idea we can now offer a broader and more useful definition of computability: 

 

Let f be a function whose domain is some subset of *.  Then f is computable iff there exists a Turing machine M that 

computes f (as described above) and that halts on all inputs.  Equivalently, f is computable iff it is partially computable 

and its domain is a decidable set. 

 

Now suppose that f is a function whose domain and/or range is not a set of strings.  For example, both the domain and 

the range of the successor function succ are the integers.  Then f is computable iff all of the following conditions hold: 

 

• There exist alphabets  and . 

• There exists an encoding of the elements of the domain of f as strings in *. 

• There exists an encoding of the elements of the range of f as strings in *.  

• There exists some computable function f with the property that, for every w  *: 

• If w = <x> and x is an element of f’s domain, then f(w) = <f(x)>, and 

• If w is not the encoding of any element of f’s domain (either because it is not syntactically well formed or because 

it encodes some value on which f is undefined), then f(w) = Error. 
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Example 25.2 The Successor Function succ 

Consider again the successor function: 

succ: ℕ → ℕ,  

succ(x) = x + 1. 

 

We can encode both the domain and the range of succ in unary (i.e., as strings drawn from {1}*).  Then we can define 

the following Turing machine M to compute it: 

 

          M(x) = 

 1. Write 1. 

  2. Move left once. 

  3. Halt. 

 

The function succ is a total function on ℕ.  Every element of * = {1}* is the encoding of some element of ℕ.  For 

each such element x, M computes f(x) and halts.  So succ is computable. 

 

Example 25.3 The Function midchar 

Consider again the function midchar that we introduced in Example 25.1.  Recall that midchar is a total function on 

the set of odd length strings and a partial function on the set of strings.  Now we want to build a Turing machine M to 

compute midchar.   

 

The most straightforward way to encode a string x as input to M is as itself.  If we do that, then we can build a 

straightforward Turing machine M: 

 

        M(x) = 

     1. If the length of x is odd, compute midchar(x).   

    2. If the length of x is even, then what?  By the definition of a machine that computes a function f, M should 

        loop on all values for which f is not defined.  So it must loop on all even length inputs. 

 

The existence of M proves that midchar is partially computable.  But midchar is also computable because the following 

Turing machine M, which halts on all inputs, computes midchar: 
 

        M(x) = 

   1. If the length of x is even, output Error. 

      2. Otherwise, find the middle character of x and output it. 

 

Example 25.4 The Function steps 

Consider again the function steps that we introduced in Example 25.1.  Recall that steps is a total function on the set 

{<M, w>: Turing machine M halts on input w}.  It is a partial function on the set {<M, w>}.  And it is also a partial 

function on the larger set of strings that includes syntactically ill-formed inputs.  Steps is a partially computable 

function because the following three-tape Turing machine S computes it: 

 

         S(x) =  

    1. If x is not a syntactically well formed <M, w> string then loop.   

    2. If x is a syntactically well formed <M, w> string then: 

                  2.1. Copy M to tape 3. 

                  2.2. Copy w to tape 2. 

                  2.3. Write 0 on tape 1. 

                  2.4. Simulate M on w on tape 2, keeping a count on tape 1 of each step that M makes. 
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S halts whenever its input is well-formed and M halts on w.  If it halts, it has the value of steps(<M, w>) on tape 1.  By 

Theorem 17.1, there exists a one-tape Turing machine S whose output is identical to the value that S placed on tape 

1.  So S is a standard Turing machine that computes steps.  The existence of S proves that steps is partially 

computable.  

 

But steps is not computable.  We show that it is not by showing that there exists no Turing machine that computes the 

function steps, defined as: 

 

 steps(x) = If x is not a syntactically well-formed <M, w> string, then Error. 

      If x is well-formed but steps(<M, w>) is undefined (i.e., M does not halt on w), then Error. 

     If steps(<M, w>) is defined (i.e., M halts on w), then steps(<M, w>). 

 

We prove that no such Turing machine exists by reduction from H.  Suppose that there did exist such a machine.  Call 

it ST.  Then the following Turing machine DH would decide the language H = {<M, w> : Turing machine M halts on 

input string w}:  

 

      DH(<M, w>) =  

   1. Run ST(<M, w>). 

   2. If the result is Error then reject.  Else accept. 

 

But we know that there can exist no Turing machine to decide H.  So ST must not exist.  So steps is not computable. 

25.1.3 Functions That Are Not Partially Computable 
There exist functions like succ and midchar that are computable.  There exist functions like steps that are partially 

computable but not computable.  But there also exist functions that are not even partially computable.  

Theorem 25.1  There Exist Functions that are Not Even Partially Computable 

Theorem: There exist (a very large number of ) functions that are not partially computable. 

 

Proof: We will use a counting argument similar to the one we used to prove a similar result, Theorem 20.3, which 

says that there exist languages that are not semidecidable.  We will consider only unary functions from some subset 

of ℕ (the nonnegative integers) to ℕ.  Call the set of all such functions U.  We will encode both the input to functions 

in U and their outputs as binary strings.  

 

Lemma: There is a countably infinite number of partially computable functions in U. 

 

Proof of Lemma: Every partially computable function in U is computed by some Turing machine M with  and  

equal to {0, 1}.  By Theorem 17.7, there exists an infinite lexicographic enumeration of all such syntactically legal 

Turing machines.  So, by Theorem 32.1, there is a countably infinite number of Turing machines that compute 

functions in U.  There cannot be more partially computable functions than there are Turing machines, so there is at 

most a countably infinite number of partially computable functions in U.  There is not a one-to-one correspondence 

between partially computable functions and the Turing machines that compute them since there is an infinite number 

of Turing machines that compute any given function.  But the number of partially computable functions must be 

infinite because it includes all the constant functions (which are also computable): 

 

cf1(x) = 1, cf2(x) = 2, cf3(x) = 3, … 

 

So there is a countably infinite number of partially computable functions in U. 

 

Lemma: There is an uncountably infinite number of functions in U. 

 

Proof of Lemma: For any element s in P(ℕ) (the power set of ℕ), let fs be the characteristic function of s.  So fs(x) = 

1 if x  s and 0 otherwise.  No two elements of P(ℕ) have the same characteristic function.  By Theorem 32.4, there 
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is an uncountably infinite number of elements in P(ℕ), so there is an uncountably infinite number of such characteristic 

functions, each of which is in U. 

 

Proof of Theorem:  Since there is only a countably infinite number of partially computable functions in U and an 

uncountably infinite number of functions in U, there is an uncountably infinite number of functions in U that are not 

partially computable. 
◼ 

 

Now we know that there exist many functions that are not partially computable.  But can we describe one?  The answer 

is yes.  One way to do so is by diagonalization.  Let E be a lexicographic enumeration of the Turing machines that 

compute the partially computable functions in U.  Let Mi be the ith machine in that enumeration.  Define a new function 

notcomp(x) as follows: 

 

notcomp: ℕ → {0, 1}, 

notcomp(x) = 1 if Mx(x) = 0, 0 otherwise. 

 

So notcomp(x) = 0 if either Mi(x) is defined and the value is something other than 0 or if Mi(x) is not defined.  This 

new function notcomp is in U, but it differs, in at least one place, from every function that is computed by a Turing 

machine whose encoding is listed in E.  So there is no Turing machine that computes it.  Thus it is not partially 

computable. 

25.1.4 The Busy Beaver Functions 
There exist even more straightforward total functions that are not partially computable.  One well known example is 

a family of functions called busy beaver functions .  To define two of these functions, consider the set T of all 

standard Turing machines M (i.e., deterministic, one-tape machines of the sort defined in Section 17.1), where M has 

tape alphabet  = {, 1} and M halts on a blank tape.  Then: 

 

• S(n) is defined by considering all machines that are in T and that have n nonhalting states.  The value of S(n) is 

the maximum number of steps that are executed by any such n-state machine, when started on a blank tape, 

before it halts.  

 

• (n) is defined by again considering all machines that are in T and that have n nonhalting states.  The value of 

(n) is the maximum number of 1’s that are left on the tape by any such n-state machine, when started on a 

blank tape, when it halts.   

 

A variety of other busy beaver functions have also been defined.  Some of them allow three or more tape symbols 

(instead of the two we allow).  Some use variants of our Turing machine definition.  For example, our versions are 

called quintuple versions, since our Turing machines both write and move the read/write head at each step (so each 

element of the transition function is a quintuple).  One common variant allows machines to write or to move, but not 

both, at each step (so each element of the transition function is a quadruple).  Quadruple machines typically require 

more steps than quintuple machines require to perform the same task.    

 

All of the busy beaver functions provide a measure of how much work a Turing machine with n states can do before 

it halts.  And none of them is computable.  In a nutshell, the reason is that their values grow too fast, as can be seen 

from Table 25.1, which summarizes some of what is known about the values of S and , as we defined them above.  

For values of n greater than 4 (in the case of S) or 5 in the case of , the actual values are not known but lower bounds 

on them are, as shown in the table.  For the latest results in determining these bounds, see .   
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n S(n) (n) 

1 1 1 

2 6 4 

3 21 6 

4 107 13 

5  47,176,870 4098 

6  3101730  1.2910865 

 

Table 25.1  Some values for the busy beaver functions 

 

Theorem 25.2  S and  are Total Functions 

Theorem: Both S and  are total functions on the positive integers. 

 

Proof: For any value n, both S(n) and (n) are defined iff there exists some standard Turing machine M, with tape 

alphabet  = {, 1}, where: 

 

• M has n nonhalting states, and 

• M halts on a blank tape. 

 

We show by construction that such a Turing machine M exists for every integer value of n  1.  We will name the 

nonhalting states of M with the integers 1, …, n.  We can build M as follows: 

 

1. Let state 1 be the start state of M.   

2. For all i such that 1 < i  n, add to M the transition ((i - 1, ), (i, , →)).   

3. Let M have a single halting state called h.   

4. Add to M the transition ((n, ), (h, , →)).   

 

M is a standard Turing machine with tape alphabet  = {, 1}, it has n nonhalting states, and it halts on a blank tape.  

It is shown in Figure 25.1: 

 

 

 

 

 

 

Figure 25.1  A halting Turing machine with n nonhalting states 

 
◼ 

 

So both S and  are defined on all positive integers.  If they are not computable, it is not because their domains are 

not in D.  But they are not computable.  We first prove a lemma and then use it to show that both busy beaver functions, 

S and , are not computable. 

Theorem 25.3  The Busy Beaver Functions are Strictly Monotonically Increasing 

Theorem: Both S and  are strictly monotonically increasing functions.  In other words: 

 

 S(n) < S(m)  iff n < m, and  

 (n) < (m)  iff n < m. 

 

Proof: We must prove four claims: 

 

• n < m → S(n) < S(m): let S(n) = k.  Then there exists an n-state Turing machine TN that runs for k steps and then 

halts.  From TN we can build an m-state Turing machine TM that runs for k + (m - n) steps and then halts.  We add 
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m - n states to TN.  Let any state that was a halting state of TN cease to be a halting state.  Instead, make it go, on 

any input character, to the first new state, write a 1, and move right.  From that first new state, go, on any input 

character, to the second new state, write a 1, and move right.  Continue through all the new states.  Make the last 

one a halting state.  This new machine executes k steps, just as TN did, and then an additional m - n steps.  Then it 

halts.  So S(m)  S(n) + (m - n).  Since m > n, (m - n) is positive.  So S(m) > S(n). 

 

• S(n) < S(m) → n < m: We can rewrite this as (n < m) → (S(n) < S(m)) and then as n  m → S(n)  S(m).  If n = 

m, then S(m) = S(n).  If n > m, then by the first claim, proved above, S(n) > S(m). 

 

• n < m → (n) < (m): Analogously to the proof that n < m → S(n) < S(m) but substitute  for S. 

 

• (n) < (m) → n < m: Analogously to the proof that S(n) < S(m) → n < m but substitute  for S. 
◼ 

Theorem 25.4  The Busy Beaver Functions are Not Computable 

Theorem:  Neither S nor  is computable. 

 

Proof: We will prove that S is not computable.  We leave the proof of  as an exercise.   

 

Suppose that S were computable.  Then there would be some Turing machine BB, with some number of states that we 

can call b, that computes it.  For any positive integer n, we can define a Turing machine Writen that writes n 1’s on its 

tape, one at a time, moving rightwards, and then halts with its read/write head on the blank square immediately to the 

right of the rightmost 1.  Writen has n nonhalting states plus one halting state.  We can also define a Turing machine 

Multiply that multiplies two unary numbers, written on its tape and separated by the ; symbol.  The design of Multiply 

was an exercise in Chapter 17.  Let m be the number of states in Multiply.   

 

Using the macro notation we described in Section 17.1.5, we can define, for any positive integer n, the following 

Turing machine, which we can call Troublen: 

 

>Writen ; R Writen L Multiply L BB 

 

Troublen first writes a string of the form 1n;1n.  It then moves its read/write head back to the left so that it is on the 

blank square immediately to the left of that string.  It invokes Multiply, which results in the tape containing a string of 

exactly n2 1’s.  It moves its read/write head back to the left and then invokes BB, which outputs S(n2).  The number 

of states in Troublen is shown in Table 25.2. 

 

 

Component Number of States 

Writen n + 1 

; R 1 

Writen n + 1 

L  2 

Multiply m 

L 2 

BB b 

  

Total 2n + m + b + 7 

 

Table 25.2  The number of states in Troublen 

 

Since BB, the final step of Troublen, writes a string of length S(n2) and it can write only one character per step, Troublen 

must run for at least S(n2) steps.  Since, for any n > 0, Troublen is a Turing machine with 2n + m + b + 7 states that 

runs for at least S(n2) steps, we know that: 
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 S(2n + m + b + 7)  S(n2). 

 

By Theorem 25.3, we know that S is monotonically increasing, so it must also be true that, for any n > 0: 

 

 2n + m + b + 7  n2. 

 

But, since n2 grows faster than n does, that cannot be true.  In assuming that BB exists, we have derived a contradiction.  

So BB does not exist.  So S is not computable. 
◼ 

25.1.5 Languages and Functions 
It should be clear by now that there is a natural correspondence between languages, which may be in D, SD/D, or 

SD, and functions, which may be computable, partially computable, or neither.  We can construct Table 25.3, which 

show us three ways to present a computational problem: 

 

 

The Problem View The Language View The Functional View 

Given three natural numbers,  

   x, y, and z, is z = xy? 

{<x>  <y> = <z> :  

        x, y, z  {0, 1}* and  

        num(x)  num(y) = num(z)}.  

 

D 

f : ℕ  ℕ → ℕ,  

f(x, y) = x  y. 

 

 

computable 

Given a Turing machine M, 

does M have an even number of 

states? 

{<M> : TM M has an even number of 

states}.  

 

 

D 

f : {<M>} → Boolean, 

f(<M>) =     True if TM M has an even 

                         number of states, 

                    False otherwise. 

computable 

Given a Turing machine M and 

a string w, does M halt on w in 

n steps? 

{<M, w, n> : TM TM M halts on w in 

n steps}. 

 

 

 

 

SD/D 

f : {<M, w>} → ℕ,  

f(<M, w>) = if TM M halts on w  

                     then the number of steps 

                       it executes before 

halting, 

                     else undefined. 

partially computable 

Given a Turing machine M, 

does M halt on all strings in no 

more than n steps? 

{<M, n> : TM M halts on each 

element of * in no more than n 

steps}. 

 

 

 

 

SD 

f: {<M>} → ℕ, 

f(<M>) = if TM M halts on all strings 

                  then the maximum number  

                     of steps it executes before 

                     halting 

                  else undefined . 

not partially computable 

 

Table 25.3  The problem, language, and functional views 

 

 

 

25.2 Recursive Function Theory 
We have been using the terms: 

 

• decidable, to describe languages that can be decided by some Turing machine, 

• semidecidable, to describe languages that can be semidecided by some Turing machine, 
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• partially computable, to describe functions that can be computed by some Turing machine, adn 

• computable, to describe functions that can be computed by some Turing machine that halts on all inputs. 

 

The more traditional terminology is: 

 

• recursive for decidable.  

• recursively enumerable for semidecidable.  The recursively enumerable languages are often called just the RE or 

r.e. languages. 

• partial recursive for partially computable. 

• recursive for computable. 

 

Before we continue, we need to issue one warning about the fact that there is no standard definition for some of these 

terms.  The terms computable and recursive are used in some discussions, including this one, to refer just to functions 

that can be computed by a Turing machine that always halts.  In some other discussions, they are used to refer to the 

class we have called the partial recursive or the partially computable functions.  

 

Why are the computable functions traditionally called recursive?  The word makes sense if you think of recursive as 

a synonym for computable.  In this section, we will see why recursive is a reasonable synonym for computable.  In 

the rest of this section, to be compatible with conventional treatments of this subject, we will use the term recursive 

function to mean computable function. 

 

A recursive function is one that can be computed by a Turing machine that halts on all inputs.  A partial recursive 

function is one that can be computed by some Turing machine (but one that may loop if there are any inputs on which 

the function is undefined).  So we have definitions, stated in terms of a computational framework, for two important 

classes of functions.  Let’s now ask a different question: Are there definitions of the same classes of functions that do 

not appeal to any model of computation but that can instead be derived from standard mathematical tools, including 

the definition of a small set of primitive functions and the ability to construct new functions using operators such as 

composition and recursion?  The answer is yes.   

 

In the rest of this section we will develop such a definition for a class of functions that turns out to be exactly, given 

an appropriate encoding, the recursive functions.  And we will develop a similar definition for the class of recursively 

enumerable functions.  We will build a theory of functions, each of which has a domain that is an ordered n-tuple of 

natural numbers and a range that is the natural numbers.  We have already shown that numbers can be represented as 

strings and strings can be represented as numbers, so there is no fundamental incompatibility between the theory we 

are about to describe and the one, based on Turing machines operating on strings, that we have already considered. 

25.2.1 Primitive Recursive Functions 

We begin by defining the primitive recursive functions to be the smallest class of functions from ℕ  ℕ  … ℕ to 

ℕ that includes: 

 

• the constant function 0, 

• the successor function: succ(n) = n + 1, and 

• a family of projection functions: for any 0 < j  k, pk,j(n1, n2, … nk) = nj,   

 

and that is closed under the operations: 

 

• composition of g with h1, h2, … hk : 

 

g(h1(   ), h2(   ), … hk(   )). 
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• primitive recursion of f in terms of g and h: 

 

f(n1,n2,…nk,     0) = g(n1,n2,…nk).  This is the base case. 

 

f(n1, n2, … nk, m+1) = h(n1, n2, … nk, m, f(n1, n2,…nk, m)).  Note that in this, the recursive case, the function 

h takes a large number of arguments.  It need not, however, use all of them, since the projection functions 

make it possible to select only those arguments that are needed.  

Example 25.5 Primitive Recursive Functions Perform Arithmetic 

To make these examples easier to read, we will define the constant 1 = succ(0). 

 

All of the following functions are primitive recursive: 

 

• The function plus, which adds two numbers: 

plus(n, 0) = p1,1(n) = n. 

plus(n, m+1) = succ(p3,3(n, m, plus(n, m))). 

 

For clarity, we will simplify our future definitions by omitting the explicit calls to the projection functions.  Doing 

that here, we get: 

plus(n, 0) = n. 

plus(n, m+1) = succ(plus(n, m)). 

 

• The function times: 

times(n, 0) = 0. 

times(n, m+1) = plus(n, times(n, m)). 

 

• The function factorial, more usually written n!: 

factorial(0) = 1. 

factorial(n + 1) = times(succ(n), factorial(n)). 

 

• The function exp, more usually written nm: 

exp(n, 0) = 1. 

exp(n, m+1) = times(n, exp(n, m)). 

 

• The predecessor function pred, which is defined as follows: 

 pred(0) = 0. 

 pred(n+1) = n. 

 

Many other straightforward functions are also primitive recursive.  We may now wish to ask, “What is the relationship 

between the primitive recursive functions and the computable functions?”  All of the primitive recursive functions 

that we have considered so far are computable.  Are all primitive recursive functions computable?  Are all computable 

functions primitive recursive?  We will answer these questions one at a time. 

Theorem 25.5  Every Primitive Recursive Function is Computable 

Theorem: Every primitive recursive function is computable. 

 

Proof: Each of the basic functions, as well as the two combining operations can be implemented in a straightforward 

fashion on a Turing machine or using a standard programming language.  We omit the details.   
◼ 

Theorem 25.6  Not Every Computable Function is Primitive Recursive 

Theorem: There exist computable functions that are not primitive recursive. 
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Proof: The proof is by diagonalization.  We will consider only unary functions; we will show that there exists at least 

one unary computable function that is not primitive recursive. 

 

We first observe that it is possible to create a lexicographic enumeration of the definitions of the unary primitive 

recursive functions.  To do so, we first define an alphabet  that contains the symbols 0, 1, the letters of the alphabet 

(for use as function names), and the special characters (, ), = and comma (,).  Using the definition of the primitive 

recursive functions given above, we can build a Turing machine M that decides the language of syntactically legal 

unary primitive recursive functions.  So, to produce the desired lexicographic enumeration of the primitive recursive 

function definitions, it suffices to enumerate lexicographically all strings over * and output only those that are 

accepted by M.  We will choose to number the elements of this enumeration (the function definitions) starting with 0. 

 

Using the lexicographic enumeration of the primitive recursive function definitions that we just described and a 

straightforward lexicographic enumeration of the natural numbers (the possible arguments to those functions), we can 

imagine the table T, shown in Table 25.4.  T[i, j] contains the value of fi applied to j.  Since every primitive recursive 

function is computable, there exists a Turing machine that can compute the value for any cell in T when it is required. 

 

 

 0 1 2 3 4 5 … 

f0        

f1        

f2        

f3        

f4        

f5        

…        

 

Table 25.4  Using diagonalization to prove that there are computable functions that are not primitive recursive 

 

 

We now define the function diagonal(n) = succ(T(n, n)), which can be computed by the following Turing machine M:  

 

      M(n) = 

 1. Run the Turing machine that computes fn on n.  Let the value it produces be x. 

 2. Return x+1. 

 

The function diagonal is computable (by M) but it is not in the enumeration of primitive recursive functions since it 

differs from each of those in at least one place.  So there exist computable functions that are not primitive recursive. 
◼ 

25.2.2 Ackermann’s Function 
Now we know that there exists at least one computable primitive recursive function that is not computable.  But are 

there others?  The answer is yes. 

 

Consider Ackermann’s function , defined as follows on the domain ℕ  ℕ:  

 

A(0, y) = y + 1. 

 A(x + 1, 0) = A(x, 1). 

 A(x + 1, y + 1) = A(x, A(x + 1, y)). 

 

Table 25.5 shows a few values for A.  Table 25.6 comments on some of the values in the last row of Table 25.5. 
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        y 

x 

0 1 2 3 4 

0 1 2 3 4 5 

1 2 3 4 5 6 

2 3 5 7 9 11 

3 5 13 29 61 125 

4 13 65533  265536-3      
            

 

Table 25.5  The first few values of Ackermann’s function 

 

 

 Decimal digits required to express this value To put that number in perspective 

(4, 2) 19,729  There have been about 12109 years or 31017 

seconds since the Big Bang. 

(4, 3) 105940   There are about 1079 atoms in the causal 

universe. 

(4, 4)   

 

Table 25.6  Ackermann’s function grows very fast 

 

 

So imagine that, at every second since the Big Bang, we had written one digit on every atom in the universe.  By now 

we would have written approximately 31096 digits, which is not enough to have written (much less computed) A(4,3). 

 

Ackermann’s function, unlike the busy beaver functions of Section 25.1.4, is recursive (computable).  Ignoring 

memory and stack overflow, it is easy to write a program to compute it.  But Ackermann’s function is not primitive 

recursive.  While it does not grow as fast as the busy beaver functions, it does grow faster than many other fast-

growing functions like fermat.  It is possible to prove that A is not primitive recursive precisely because it grows so 

quickly and there is an upper bound on the rate at which primitive recursive functions can grow. 

 

Yet A is computable, given an unbounded amount of time and memory.  So it is another example of a computable 

function that is not primitive recursive. 

25.2.3 Recursive (Computable) Functions 
Since there are computable functions that are not primitive recursive, we are still looking for a way to define exactly 

the functions that Turing machines can compute.   

 

We next define the class of -recursive functions using the same basic functions that we used to define the primitive 

recursive functions.  We will again allow function composition and primitive recursion.  But we will add one way of 

defining a new function.   

 

We must first define a new notion: the minimalization f of a function g (of k + 1 arguments) is a function of k arguments 

defined as follows: 

 

f(n1,n2,…nk) =  the smallest m such that g(n1, n2, … nk, m) = 1,  if there is such an m, 

0,      otherwise. 

 

Clearly, given any function g and any set of k arguments to it, there either is at least one value m such that g(n1, n2, … 

nk, m) = 1 or there isn’t.  If there is at least one such value, then there is a smallest one (since we are considering only 

the natural numbers).  So there always exists a function f that is the minimalization of g.  If g is computable, then we 

can build a Turing machine Tmin that almost computes f as follows: 

2 3265536

− 2 32
265536

−

10105939
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Tmin(n1, n2, … nk) =  

1. m = 0. 

2. While g(n1, n2, … nk, m)  1 do: 

m = m + 1. 

3. Return m. 

 

The problem is that Tmin will not halt if no value of m exists.  There is no way for Tmin to discover that no such value 

exists and thus return 0. 

 

Since we are trying to build a theory of computable functions (those for which there exists a Turing machine that 

always halts), we next define the class of minimalizable functions as follows:  A function g is minimalizable iff, for 

every n1, n2, … nk, there is an m such that g(n1, n2, … nk, m) = 1.  In other words, g is minimalizable if Tmin, as defined 

above, always halts.  

 

We define the -recursive functions to be the smallest class of functions from ℕ  ℕ  … ℕ to ℕ that includes: 

 

• the constant function 0, 

• the successor function: succ(n) = n + 1, and 

• the family of projection functions: for any k ≥ j > 0, pk,j(n1, n2, … nk) = nj,   

 

and that is closed under the operations: 

 

• composition of g with h1, h2, … hk : 

g(h1(   ), h2(   ), … hk(   )), 

• primitive recursion of f in terms of g and h, and 

• minimalization of minimalizable functions.   

 

A good way to get an intuitive understanding of the difference between the primitive recursive functions and the -

recursive functions is the following: 

 

• In the computation of any primitive recursive function, iteration is always bounded; it can be implemented with a 

for loop that runs for nk steps, where nk is the value of the last argument to f.  So, for example, computing times(2, 

3) requires invoking plus three times. 

 

• In the computation of a -recursive function, on the other hand, iteration may require the execution of a while loop 

like the one in Tmin.  So it is not always possible to impose a bound, in advance, on the number of steps required by 

the computation. 

Theorem 25.7  Equivalence of -Recursion and Computability 

Theorem: A function is -recursive iff it is computable. 

 

Proof: We must show both directions: 

 

• Every -recursive function is computable.  We show this by showing how to build a Turing machine for each of 

the basic functions and for each of the combining operations. 

 

• Every computable function is -recursive.  We show this by showing how to construct -recursive functions to 

perform each of the operations that a Turing machine can perform. 

 

We will omit the details of both of these steps.  They are straightforward but tedious.   
◼ 

 

We have now accomplished our first goal.  We have a functional definition for the class of computable functions.   
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It is worth pointing out here why the same diagonalization argument that we used in the case of primitive recursive 

functions cannot be used again to show that there must exist some computable function that is not -recursive.  The 

key to the argument in the case of the primitive recursive functions was that it was possible to create a lexicographic 

enumeration of exactly the primitive recursive function definitions.  The reason it was possible is that a simple 

examination of the syntax of a proposed function tells us whether or not it is primitive recursive.  But now consider 

trying to do the same thing to decide whether a function f is -recursive.  If f is defined in terms of the minimalization 

of some other function g, we would first have to check to see whether g is minimalizable.  To do that, we would need 

to know whether Tmin halts on all inputs.  That problem is undecidable.  So there exists no lexicographic enumeration 

of the -recursive functions. 

 

Next we will attempt to find a functional definition for the class of partially computable functions.   

 

We define the partial -recursive functions to be the smallest class of functions from ℕ  ℕ  … ℕ to ℕ that 

includes: 

 

• the constant function 0, 

• the successor function: succ(n) = n + 1, 

• the family of projection functions: for any k ≥ j > 0, pk,j(n1, n2, … nk) = nj,   

 

and that is closed under the operations: 

 

• composition of g with h1, h2, … hk.,  

• primitive recursion of f in terms of g and h, and 

• minimalization.   

 

The only difference between this definition and the one that we gave for the -recursive functions is that we now 

allow minimalization of any function, not just the minimalizable ones.  A function that is defined in this way may, 

therefore, not be a total function.  So it is possible that there exists no Turing machine that computes it and that always 

halts. 

Theorem 25.8  Equivalence of Partial -Recursion and Partial Computability 

Theorem: A function is a partial -recursive function iff it is partially computable. 

 

Proof: We must show both directions: 

 

• Every partial -recursive function is partially computable.  We show this by showing how to build a Turing machine 

for each of the basic functions and for each of the combining operations.  Note that the Turing machine that 

implements the minimalization of a function that is not minimalizable will not be guaranteed to halt on all inputs. 

 

• Every partially computable function is partial -recursive.  We show this by showing how to construct -recursive 

functions to perform each of the operations that a Turing machine can perform. 

 

We will omit the details of both of these steps.  They are straightforward but tedious.   
◼ 

25.3 The Recursion Theorem and its Use 
In this section, we prove the existence of a very useful computable (recursive) function: obtainSelf.  When called as a 

subroutine by any Turing machine M, obtainSelf writes onto M’s tape the string encoding of M. 

 

We begin by asking whether there exists a Turing machine that implements the following specification: 
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virus() = 

1. For each address in address book do: 

Write a copy of myself. 

Mail it to the address. 

2. Do something fun and malicious like change one bit in every file on the machine. 

3. Halt. 

 

In particular, can we implement step 1.1 and build a program that writes a copy of itself?  That seems simple until we 

try.  A program that writes any literal string s = “a1 a2 a3 … an” is simply: 

 

Write “a1 a2 a3 … an”. 

 

But, using that simple string encoding of a program, this program is 8 characters longer than the string it writes.  So 

if we imagined that our original code had length k then the program to write it would have length k + 8.  But if that 

code contained the write statement, we would need to write: 

 

 Write “Write” || “a1 a2 a3 … an”. 

 

But now we need to write that, and so forth.  Perhaps this seems hopeless.  But it is not. 

 

First, let’s rearrange virus a little bit: 

 

virus() = 

1. copyme = copy of myself. 

2. For each address in address book do: 

             2.1. Mail copyme to the address. 

3. Do something fun and malicious like change one bit in every file on the machine. 

4. Halt. 

 

If virus can somehow get a single copy of itself onto its tape, a simple loop (of fixed length, independent of the length 

of the copy) can make additional copies, which can then be treated like any other string.  The problem is for virus to 

get access to that first copy of itself.  Here’s how we can solve that problem. 

 

First, we will define a family of printing functions, Ps. For any literal string s, Ps is the description of a Turing machine 

that writes the string s onto the tape.  Think of s as being hardwired into Ps.  For example, Pabbb = <aRbRbRbR>.  

Notice that the length of the Turing machine Ps depends on the length of s. 

 

Next we define a Turing machine, createP, that takes a string s as input on one tape and outputs the printing function 

Ps on a second tape: 

 

createP(s) =  

1. For each character c in s (on tape 1) do on tape 2: 

              1.1. Write c. 

            1.2. Write R.  

 

Notice that the length of createP is fixed.  It does not need separate code for each character of s.  It has just one simple 

loop that reads the characters of s one at a time and outputs two characters for each.   

 

Now let’s break virus down into two parts: 

 

• Step 1: We’ll call this step copy.  It writes on the tape a string that is the description of virus. 

• Steps 2, 3, and 4, or whatever else virus wants to do: We’ll call this part work.  This part begins with virus’s 

description on the tape and does whatever it wants with it. 
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We will further break step 1, copy, down into two pieces that we will call A and B.  A will execute first.  Its job will 

be to write <B, work>, the description of B and work onto the tape.  The string <B, work> will be hardwired into A, so 

the length of A itself depends on |<B, work>|.  When A is done, the tape will be as shown in Figure 25.2 (a).   

 

The job of B will be to write <A>, the description of A, onto the tape immediately to the left of what A wrote.  So, after 

B has finished, the job of copying virus will be complete and the tape will be as shown in Figure 25.2 (b). 

 

 
 

Figure 25.2  The result of running A and then B 

 

 

Suppose that we knew exactly what B was.  Then A would be P<B> <work>.  Assuming that we describe A in our macro 

language, |<A>| would then be 2|<B> <work>|, since for each character it must write and then move one square to the 

right.  But what is B?  It must be a machine that writes <A>.  And its length must be fixed.  It cannot depend on the 

length of <A>, since then the length of <A> would depend on the length of <B>, which would depend on the length 

of <A> and so forth.  So it cannot just be P<A>. 

 

Fortunately, we know how to build B so that it writes <A> and does so with a fixed chunk of code, independent of the 

length of A.  Given any string s on tape 1, createP writes, onto a second tape, the description of a Turing machine that 

writes s.  And it does so with a fixed length program.  A is a program that writes a string.  So perhaps B could use 

createP to write a description of A.  That will work if B has access to the string s that A wrote.  But it does.  A wrote 

<B> <work>, which is exactly what is on the tape when B gets control.  So we have (expanding out the code for 

createP): 

 

B = 

1. /* Invoke createP to write onto tape 2 the code that writes the string that is currently on tape 1. 

       For each character c in s (on tape 1) do on tape 2: 

1.1 Write c. 

1.2 Write R. 

2. /* Copy tape 2 to tape 1, moving right to left.  Place this copy to the left of what is already on tape 1. 

      Starting at the rightmost character c on tape 2 and the blank immediately to the left of the leftmost 

      character on tape 1, loop until all characters have been processed: 

2.1 Copy c to tape 1. 

2.2 Move both read/write heads one square to the left. 

 

So the code for B (unlike the code for A) is independent of the particular Turing machine of which we need to make a 

copy. 

 

When B starts, the two tapes will be as shown in Figure 25.3 (a).  After step 1, they will be as shown in Figure 25.3 

(b).  Remember that <A> is the description of a Turing machine that writes <B> <work>.  Then, after step 2, they will 

be as shown in Figure 25.3 (c). 

 



  

Chapter 25                                                424       Computable Functions 

 
 

 

Figure 25.3  The tape before, during, and after the execution of B 

 

 

Notice that the code for B is fixed.  It first writes <A> onto tape 2 using a simple loop.  Then, starting from the right, 

it copies <A> onto tape 2 just to the left of the string <B> <work> that was already there. Again, it does this with a 

simple loop.   

 

Now we can describe virus exactly as follows.  Recall that <M> means the string description, written in the macro 

language described in Section 17.6, of the Turing machine M.  So <B> is the description of the Turing machine labeled 

B here: 

 

       virus() = 

           A: Write on tape 1 <B> <work>. 

           B:   /* createP, which will write onto tape 2 the code that writes the string that is currently on tape 1. 

   For each character c in s (on tape 1) do on tape 2: 

          Write c. 

          Write R. 

  /* Copy tape 2 to tape 1, moving right to left.  Place this copy to the left of what is already on tape 1. 

  Starting at the rightmost character c on tape 2 and the blank immediately to the left of the leftmost character 

  on tape 1, loop until all characters have been processed: 

        Copy c to tape 1. 

        Move both read/write heads one square to the left. 

           work. 

 

Or, more succinctly, using Ps and createP: 

 

       virus() = 

           A: P<B><work>. 

           B: createP. 

           work. 
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The construction that we just did for virus is not unique to it.  In fact, that construction enables us to describe the 

function obtainSelf, which we mentioned at the beginning of this section.  Let M be a Turing machine composed of 

two steps: 

 

1. obtainSelf. 

2. work (which may exploit the description that obtainSelf produced). 

 

Then we can define obtainSelf, which constructs <M>: 

 

    obtainSelf(work) =  

A: P<B><work>. 

B: createP. 

 

The Recursion Theorem, defined below, tells us that any Turing machine can obtain its own description and then use 

that description as it sees fit.  There is one issue that we must confront in showing that, however.  Virus ignored its 

input.  But many Turing machines don’t.  So we need a way to write the description of a Turing machine M onto its 

tape without destroying its input.  This is easy.  If M is a k-tape Turing machine, we build a k+2 tape machine, where 

the extra two tapes are used, as we have just described, to create a description of M. 

Theorem 25.9  The Recursion Theorem 

Theorem: For every Turing machine T that computes a partially computable function t of two string arguments, there 

exists a Turing machine R that computes a partially computable function r of one string argument and: 

 

x (r(x) = t(<R>, x)).   

 

To understand the Recursion Theorem, it helps to see an example.  Recall the Turing machine that we specified in our 

proof of Theorem 21.14 (that the language of descriptions of minimal Turing machines is not in SD): 

 

     M#(x) = 

1. Invoke obtainSelf to produce <M#>.  

2. Run ENUM until it generates the description of some Turing machine M whose description is longer than 

|<M#>|. 

3. Invoke the universal Turing machine U on the string <M, x>. 

 

Steps 2 and 3 are the guts of M# and correspond to a Turing machine T that takes two arguments, <M#> and x, and 

computes a function we can call t.  M#, on the other hand, takes a single argument, x.  But M#(x) is exactly T(<M#>, 

x) because in step 1, M# constructs <M#>, which it then hands to T (i.e., steps 2 and 3).   So, given that we wish to 

compute T(<M#>, x), M# is the Turing machine R that the Recursion Theorem says must exist.  The only difference 

between R and T is that R constructs its own description and then passes that description, along with its own argument, 

on to T.  Since, for any T, R must exist, it must always be possible for R to construct its own description and pass it to 

T.   

 

Proof:  The proof is by construction.  The construction is identical to the one we showed above in our description of 

virus except that we substitute T for work.   
◼ 

 

The Recursion Theorem is sometimes stated in a different form, as a fixed-point theorem.  We will state that version 

as a separate theorem whose proof follows from the Recursion Theorem as just stated and proved.   

Theorem 25.10    The Fixed-Point Definition of the Recursion Theorem 

Theorem: Let f: {<M> : M is a Turing machine description} → {<M> : M is a Turing machine description} be any 

computable function on the set of Turing machine descriptions.  There exists some Turing machine F such that f(<F>) 

is the description of some Turing machine G and it is the case that F and G are equivalent (i.e., they behave identically 

on all inputs).  We call F a fixed point of the function f, since it does not change when f is applied to it. 
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Proof: The Turing machine F that we claim must exist is: 

F(x) =  

1. Invoke obtainSelf to produce <F>. 

2. Since f is a computable function, there must be some Turing machine Mf that computes it.  Invoke 

Mf(<F>), which produces the description of some Turing machine we can call G. 

3. Run G on x. 

 

Whatever f is, f(<F>) = <G>.  F and G are equivalent since, on any input x, F halts exactly when G would halt and it 

leaves on its tape exactly what G leaves.   
◼ 

 

This theorem says something interesting and, at first glance perhaps, counterintuitive.  Let’s consider again the virus 

program that we described above.  In its work section, it changes one bit in every file on its host machine.  Consider 

the files that correspond to programs.  Theorem 25.10 says that there exists at least one program whose behavior will 

not change when it is altered in that way.  Of course, most programs will change.  That is why virus can be so 

destructive.  But there is not only one fixed point for virus, there are many, including: 

 

• Every program that infinite loops on all inputs and where the bit that f changes comes after the section of code that 

went into the loop. 

• Every program that has a chunk of redundant code, such as: 

a = 5 

a = 7  

where the bit that gets changed is in the first value that is assigned and then overwritten. 

• Every program that has a branch that can never be reached and where the bit that f changes is in the unreachable 

chunk of code. 

 

We have stated and proved the Recursion Theorem in terms of the operation of Turing machines.  It can also be stated 

and proved in the language of recursive functions.  When done this way, its proof relies on another theorem that is 

interesting in its own right.  We state and prove it next.  To do so, we need to introduce a new technique for describing 

functions since, so far, we have described them as strings (i.e., the string encodings of the Turing machines that 

compute them).  Yet the theory of recursive functions is a theory of functions on the natural numbers. 

 

We define the following one-to-one function Gödel that maps from the set of Turing machines to the positive integers: 

Let M be a Turing machine that computes some partially computable function.  Let <M> be the string description of 

M, using the encoding mechanism that we defined in Section 17.6.1.  That encoding scheme used nine symbols, which 

can be encoded in binary using four bits.  Rewrite <M> as a binary string.  Now view that string as the number it 

encodes.  We note that Gödel is a function (since each Turing machine is assigned a unique number); it is one-to-one 

(since no two Turing machines are assigned the same number); but it is not onto (since there are numbers that do not 

encode any Turing machine).  A one-to-one function that assigns natural numbers to objects is called a Gödel 

numbering, since the technique was introduced by Kurt Gödel.  It played a key role in the proof of his Incompleteness 

Theorem.   

 

We’ll now create a second Gödel numbering, this time of the partial recursive functions.  For each such function, 

assign to it the smallest number that has been assigned to some Turing machine that computes it.  Now define: 

 

 k to be the partially computable function with Gödel number k. 

 

Notice that since functions are now represented as numbers, it is straightforward to talk about functions whose inputs 

and/or outputs are other functions.  We’ll take advantage of this and describe our next result.  Suppose that f(x1, x2, 

…, xm, y1, y2, …, yn) is an arbitrary function of m+n arguments.  Then we’ll see that it is always possible, whenever 

we fix values for x1, x2, …, xm, to create a new function f of only n arguments.  The new function f will behave as 

though it were f with the fixed values supplied for the first m arguments.  One way to think of f is that it encapsulates 

f and a set of values v1, v2, …, vm.  We’ll show that there exists a family of functions, one for each pair of values m 

and n, that, given f and v1, v2, …, vm, creates f as required. 
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Theorem 25.11 The s-m-n Theorem 

Theorem: For all m, n  1, there exists a computable function sm,n with the following property: Let k be the Gödel 

number of some partially computable function of m+n arguments.  Then:  

 

For all k, v1, v2, …, vm, y1, y2, …, yn: 

 

• sm,n(k, v1, v2, …, vm) returns a number j that is the Gödel number of some partially computable 

function of n arguments, and 

 

• j(y1, y2, …, yn) = k(v1, v2, …, vm, y1, y2, …, yn).  

 

Proof: We will prove the theorem by defining a family of Turing machines Mm,n that compute the sm,n family of 

functions.  On input (k, v1, v2, …, vm), Mm,n will construct a new Turing machine Mj that operates as follows on input 

w:  Write v1, v2, …, vm on the tape immediately to the left of w; move the read/write head all the way to the left in front 

of v1; and pass control to the Turing machine encoded by k.  Mm,n will then return j, the Gödel number of the function 

computed by Mj. 
◼ 

 

The s-m-n Theorem has important applications in the design of functional programming 

languages. C 671.  In particular, it is the basis for currying, which implements the process 

we have just described.  When a function of k>0 arguments is curried, one or more of its 

arguments are fixed and a new function, of fewer arguments, is constructed. 

25.4 Exercises 
1) Define the function pred(x) as follows: 

 

pred: ℕ → ℕ,  

pred(x) = x - 1. 

 

a) Is pred a total function on ℕ? 

b) If not, is it a total function on some smaller, decidable domain? 

c) Show that pred is computable by defining an encoding of the elements of ℕ as strings over some alphabet  

and then showing a Turing machine that halts on all inputs and that computes either pred or pred (using the 

notion of a primed function as described in Section 25.1.2). 

 

2) Prove that every computable function is also partially computable. 

 

3) Consider f: A → ℕ, where A  ℕ.  Prove that, if f is partially computable, then A is semidecidable (i.e., Turing 

enumerable). 

 

4) Give an example, other than steps, of a function that is partially computable but not computable. 

 

5) Define the function countL(<M>) as follows: 

 

countL: {<M> : M is a Turing machine} → ℕ  {0},  

countL(<M>) = the number of input strings that are accepted by Turing machine M. 

 

a) Is countL a total function on {<M> : M is a Turing machine}? 

b) If not, is it a total function on some smaller, decidable domain? 

c) Is countL computable, partially computable, or neither?  Prove your answer. 

 

6) Give an example, other than any mentioned in the book, of a function that is not partially computable. 
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7) Let g be some partially computable function that is not computable.  Let h be some computable function and let 

f(x) = g(h(x)).  Is it possible that f is a computable function? 

 

8) Prove that the busy beaver function  is not computable. 

 

9) Prove that each of the following functions is primitive recursive: 

a) The function double(x) = 2x. 

b) The proper subtraction function monus, which is defined as follows: 

 

    monus(n, m) =   n - m     if n > m  

    0           if n  m 

 

c) The function half, which is defined as follows: 

 

    half(n) =   n/2     if n is even 

    (n - 1)/2   if n is odd 

 

10) Let A be Ackermann’s function.  Verify that A(4, 1) = 65533.   
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26   Summary and References 

One way to think about what we have done in Part IV is to explore the limits of computation.  We have considered 

many different models of “the computable”.  All of them were described and studied by people who were trying to 

answer the question, “What can we compute?”  Some of the models look similar.  For example, Post production 

systems and unrestricted grammars both define languages by providing a start symbol and a set of production rules 

that rewrite one string into another.  While there are differences (Post systems exploit variables and must match entire 

strings while unrestricted grammars use only constants and can match substrings), it turns out that the two formalisms 

are identical: they both define exactly the class of languages that we are calling SD.  Similarly, Turing machines and 

tag systems look similar.  One uses a tape with a moveable read/write head, the other uses a first-in, first-out queue.  

But that difference also turns out not to matter.  A machine of either kind can be simulated by a machine of the other 

kind.   

 

Some of the models look very different.  Turing machines seem like sequential computers.  Expressions in the lambda 

calculus read like mathematical function definitions.  Unrestricted grammars are rewrite systems.  One of the most 

important structural differences is between the models (such as Turing machines, tag systems, the lambda calculus, 

semi-Thue systems, and Markov algorithms) that accept inputs, and so compute functions, and those (such as 

unrestricted grammars, Post systems, and Lindenmayer systems) that include a start symbol and so generate languages.  

But all of these systems can be viewed as mechanisms for defining languages.  The generating systems generate 

languages; the function-computation systems compute a language’s characteristic function.  So even that difference 

doesn’t effect the bottom line of what is computable. 

 

Another thing that we did in Part IV was to introduce three new classes of languages: D, SD, and the context-sensitive 

languages.  Table 26.1 summarizes the properties of those languages and compares them to the regular and the context-

free languages. 

 

 

 

 Regular Context-Free Context-Sensitive D SD 

Automaton FSM PDA LBA  TM 

Grammar(s) Regular 

Regular expressions  

Context-free Context-sensitive  Unrestricted 

ND = D? Yes No unknown  Yes 

Closed under:      

   Concatenation Yes Yes Yes Yes Yes 

   Union Yes Yes Yes Yes Yes 

   Kleene star Yes Yes Yes Yes Yes 

   Complement Yes No Yes Yes No 

   Intersection Yes No Yes Yes Yes 

    with Regular Yes Yes Yes Yes Yes 

Decidable:      

   Membership Yes Yes Yes  No 

   Emptiness Yes Yes No  No 

   Finiteness Yes Yes No  No 

   = * Yes No No  No 

   Equivalence  Yes No No  No 

 

Table 26.1  Comparing the classes of languages 
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for Presburger arithmetic requires time that is O(
cn22 ). 

 

See [Bar-Hillel, Perles and Shamir 1961], [Ginsburg and Rose 1963], and [Hartmanis and Hopcroft 1968] for 

fundamental results on the undecidability of questions involving context-free languages.  The fact that it is undecidable 

whether a context-free grammar is ambiguous was published independently by [Cantor 1962], [Floyd 1962] and 

[Chomsky and Schutzenberger 1963]. 

 

Theorem 23.4, which tells us that the word problem for semi-Thue systems is undecidable, was proved in [Post 1947].  

 

The Chomsky hierarchy was defined in [Chomsky 1959], with unrestricted grammars as the most powerful of the 

formalisms to occur in the hierarchy.  Also in that paper Chomsky proved Theorem 23.1, which says that the set of 

languages that can be generated by an unrestricted grammar is equivalent to the set SD.   
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[Chomsky 1959] also defined the context-sensitive languages to be those that could be described with a context-

sensitive grammar.  It also proved Theorem 24.4, which says that the context-sensitive languages are a proper subset 

of D.  The equivalence of the context-sensitive languages in that sense and the languages that can be accepted by a 

(nondeterministic) linear bounded automaton was shown in [Kuroda 1964].  The fact that the context-sensitive 

languages (unlike the context-free ones) are closed under intersection was proved in [Landweber 1963].  The proofs 

we give for the closure of the context-sensitive languages under union, concatenation, Kleene star, and intersection 

are from [Hopcroft and Ullman 1979].  The fact that the membership problem for context-sensitive languages is NP-

hard was proved in [Karp 1972]. 

 

Attribute grammars as a way to define the semantics of context-free languages were introduced in [Knuth 1968].  For 

an introduction to the use of feature/unification grammars in natural language processing, see [Jurafsky and Martin 

2000]. 

 

Lindenmayer systems (L-systems) were first described in [Lindenmayer 1968].  See [Prusinkiewicz and Lindenmayer 

1990] for an excellent description of them and of their use as the basis for simulations of plant development.  The L-

system that generates the trees in Example 24.6 was taken from [Ochoa 1998]. 

 

The busy beaver functions were first described in [Rado 1962].  

 

Primitive recursive functions were described in [Dedekind 1888].  See [Martin 2003] for a comprehensive discussion 

of primitive recursive functions with many examples.  

 

[Ackermann 1928] showed the existence of a function that was computable but not primitive recursive.  His original 

function was one of three variables.  Rózsa Péter and Raphael Robinson created the simpler version, of two variables, 

that now bears Ackermann’s name.  It was described in [Péter 1967].   

 

The -recursive functions are described in [Kleene 1936a].  The s-m-n Theorem and the Recursion Theorem are also 

due to Kleene.  See [Kleene 1964].  The constructive proof that we present for Theorem 25.9 follows the one given in 

[Sipser  2006]. 
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