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Part III: Context-Free Languages and Pushdown 
Automata 
 

 

In this section, we move out one level and 

explore the class of context-free 

languages.   

 

This class is important.  For most 

programming languages, the set of 

syntactically legal statements is (except 

possibly for type checking) a context-free 

language.  The set of well-formed Boolean 

queries is a context-free language.  A great 

deal of the syntax of English can be 

described in the context-free framework 

that we are about to discuss.  To describe 

these languages, we need more power than 

the regular language definition allows.  

For example, to describe both 

programming language statements and 

Boolean queries requires the ability to 

specify that parentheses be balanced.  Yet 

we showed in Section 8.4 that it is not 

possible to define a regular language that 

contains exactly the set of strings of 

balanced parentheses. 

 

We will begin our discussion of the context-free languages by defining a grammatical formalism that can be used to 

describe every language in the class (which, by the way, does include the language of balanced parentheses).  Then, 

in Chapter 12, we will return to the question of defining machines that can accept strings in the language.  At that 

point, we’ll see that the pushdown automaton, an NDFSM augmented with a single stack, can accept exactly the class 

of context-free languages that we are about to describe.  In Chapter 13, we will see that the formalisms that we have 

presented stop short of the full power that is provided by a more general computational model.  So we’ll see that there 

are straightforward languages that are not context-free.  But, because of the restrictions that the context-free formalism 

imposes, it will turn out to be possible to define algorithms that perform at least the most basic operations on context-

free languages, including deciding whether a string is in a language.  We’ll summarize those algorithms in Chapters 

14 and 15. 

 

The theory that we are about to present for the context-free languages is not as straightforward and elegant as the one 

that we have just described for the regular languages.  We’ll see, for example, that there doesn’t exist an algorithm 

that compares two pushdown automata to see if they are equivalent.  Given an arbitrary context-free grammar G, there 

doesn’t exist a linear-time algorithm that decides whether a string w is an element of L(G).  But there does exist such 

an algorithm if we restrict our attention to a useful subset of the context-free languages.  The context-free languages 

are not closed under many common operations like intersection and complement.   

 

On the other hand, because the class of context-free languages includes most programming languages, query 

languages, and a host of other languages that we use daily to communicate with computers, it is worth taking the time 

to work through the theory that is presented here, even though it is less clear than the one we were able to build in Part 

II. 
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11 Context-Free Grammars 

We saw, in our discussion of the regular languages in Part II, that there are substantial advantages to using descriptive 

frameworks (in that case, FSMs, regular expressions, and regular grammars) that offer less power and flexibility than 

a general purpose programming language provides.  Because the frameworks were restrictive, we were able to describe 

a large class of useful operations that could be performed on the languages that we defined.   

 

We will begin our discussion of the context-free languages with another restricted formalism, the context-free 

grammar.  But before we define it, we will pause and answer the more general question, “What is a grammar?” 

11.1 Introduction to Rewrite Systems and Grammars 
We’ll begin with a very general computational model:  Define a rewrite system (also called a production system or a 

rule-based system) to be a list of rules and an algorithm for applying them.  Each rule has a left-hand side and a right-

hand side.  For example, the following could be rewrite-system rules: 

 

 S → aSb 

 aS →  

 aSb → bSabSa 

 

In the discussion that follows, we will focus on rewrite system that operate on strings.  But the core ideas that we will 

present can be used to define rewrite systems that operate on richer data structures.  Of course, such data structures 

can be represented as strings, but the power of many practical rule-based systems comes from their ability to 

manipulate other structures directly. 

 

Expert systems, C 774, are programs that perform tasks in domains like engineering, medicine, 

and business, that require expertise when done by people.  Many kinds of expertise can naturally 

be modeled as sets of condition/action rules.  So many expert systems are built using tools that 

support rule-based programming. 

 

Rule based systems are also used to model business practices, C 774, and as the basis for reasoning 

about the behavior of nonplayer characters in computer games, C 791.  

 

When a rewrite system R is invoked on some initial string w, it operates as follows: 

 

    simple-rewrite(R: rewrite system, w: initial string) =  

1. Set working-string to w. 

2. Until told by R to halt do: 

2.1. Match the left-hand side of some rule against some part of working-string. 

2.2. Replace the matched part of working-string with the right-hand side of the rule that was matched. 

3. Return working-string. 

 

If simple-rewrite(R, w) can return some string s then we’ll say that R can derive s from w or that there exists a 

derivation in R of s from w.   

 

Rewrite systems can model natural growth processes, as occur, for example, in plants.  In addition, 

evolutionary algorithms can be applied to rule sets.  Thus rewrite systems can model evolutionary 

processes, C 809. 

 

We can define a particular rewrite-system formalism by specifying the form of the rules that are allowed and the 

algorithm by which they will be applied.  In most of the rewrite-system formalisms that we will consider, a rule is 

simply a pair of strings.  If the string on the left-hand side matches, it is replaced by the string on the right-hand side.  
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But more flexible forms are also possible.  For example, variables may be allowed.  Let x be a variable.  Then consider 

the rule: 

 

 axa → aa 

 

This rule will squeeze out whatever comes between a pair of a’s.   

 

Another useful form allows regular expressions as left-hand sides.  If we do that, we can write rules like the following, 

which squeezes out b’s between a’s: 

 

 ab*ab*a → aaa 

 

The extended form of regular expressions that is supported in programming languages like Perl is 

often used to write substitution rules. C 792. 

 

In addition to describing the form of its rules, a rewrite-system formalism must describe how its rules will be applied.  

In particular, a rewrite-system formalism will define the conditions under which simple-rewrite will halt and the 

method by which it will choose a match in step 2.1.  For example, one rewrite-system formalism might specify that 

any rule that matches may be chosen.  A different formalism might specify that the rules have to be tried in the order 

in which they are written, with the first one that matches being the one that is chosen next. 

 

Rewrite systems can be used to define functions.  In this case, we write rules that operate on an input string to produce 

the required output string.  And rewrite systems can be used to define languages.  In this case, we define a unique start 

symbol.  The rules then apply and we will say that the language L that is generated by the system is exactly the set of 

strings, over L’s alphabet, that can be derived by simple-rewrite from the start symbol. 

 

A rewrite-system formalism can be viewed as a programming language and some such languages 

turn out to be useful.  For example, Prolog, C 762, supports a style of programming called logic 

programming.  A logic program is a set of rules that correspond to logical statements of the form 

A if B.  The interpreter for a logic program reasons backwards from a goal (such as A), chaining 

rules together until each right-hand side has been reduced to a set of facts (axioms) that are already 

known to be true.   

 

The study of rewrite systems has played an important role in the development of the theory of computability.  We’ll 

see in Part V that there exist rewrite-system formalisms that have the same computational power as the Turing 

machine, both with respect to computing functions and with respect to defining languages.  In the rest of our discussion 

in this chapter, however, we will focus just on their use to define languages.   

 

A rewrite system that is used to define a language is called a grammar.  If G is a grammar, let L(G) be the language 

that G generates.  Like every rewrite system, every grammar contains a list (almost always treated as a set, i.e., as an 

unordered list) of rules.  Also, like every rewrite system, every grammar works with an alphabet, which we can call 

V.  In the case of grammars, we will divide V into two subsets: 

 

• a terminal alphabet, generally called , which contains the symbols that make up the strings in L(G), and  

• a nonterminal alphabet, the elements of which will function as working symbols that will be used while the 

grammar is operating.  These symbols will disappear by the time the grammar finishes its job and generates a 

string. 

 

One final thing is required to specify a grammar.  Each grammar has a unique start symbol, often called S.    

 

Grammars can be used to describe phenomena as different as English, C 743, programming 

languages like Java, C 664, music, C 776, dance, C 808, the growth of living organisms, C 809, 

and the structure of RNA, C 737.  
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A grammar formalism (like any rewrite-system formalism) specifies the form of the rules that are allowed and the 

algorithm by which they will be applied.  The grammar formalisms that we will consider vary in the form of the rules 

that they allow.  With one exception (Lindenmayer systems, which we’ll describe in Section 24.4), all of the grammar 

formalisms that we will consider include a control algorithm that ignores rule order.  Any rule that matches may be 

applied next. 

 

To generate strings in L(G), we invoke simple-rewrite (G, S).  Simple-rewrite will begin with S and will apply the 

rules of G, which can be thought of (given the control algorithm we just described) as licenses to replace one string 

by another.  At each step of one of its derivations, some rule whose left-hand side matches somewhere in working-

string is selected.  The substring that matched is replaced by the rule’s right-hand side, generating a new value for 

working string.   

 

Grammars can be used to define languages that, in turn, define sets of things that don’t look at all 

like strings.  For example, SVG, C 808, is a language that is used to describe two-dimensional 

graphics.  SVG can be described with a context-free grammar.   

 

We will use the symbol  to indicate steps in a derivation.  So, for example, suppose that G has the start symbol S 

and the rules S → aSb, S → bSa, and S → .  Then a derivation could begin with: 

 

 S  aSb  aaSbb  … 

 

At each step, it is possible that more than one rule’s left-hand side matches the working string.  It is also possible that 

a rule’s left-hand side matches the working string in more than one way.  In either case, there is a derivation 

corresponding to each alternative.  It is precisely the existence of these choices that enables a grammar to generate 

more than one string. 

 

Continuing with our example, there are three choices at the next step: 

 

 S  aSb  aaSbb  aaaSbbb  (using the first rule),  

 S  aSb  aaSbb  aabSabb  (using the second rule), and 

 S  aSb  aaSbb  aabb  (using the third rule). 

 

The derivation process may end whenever one of the following things happens: 

 

(1) The working string no longer contains any nonterminal symbols (including, as a special case, when the working 

string is ), or 

(2) There are nonterminal symbols in the working string but none of them appears on the left-hand side of any rule 

in the grammar.  For example, if the working string were AaBb, this would happen if no rule had A or B as its left-

hand side. 

 

In the first case, but not the second, we say that the working string is generated by the grammar.  Thus, the language 

that a grammar generates includes only strings over the terminal alphabet, i.e., strings in *.  In the second case, we 

have a blocked or non-terminated derivation but no generated string. 

 

It is also possible that, in a particular case, neither (1) nor (2) is achieved.  Suppose, for example, that a grammar 

contained only the rules S → Ba and B → bB, with S the start symbol.  Then all derivations proceed in the following 

way: 

 

S  Ba  bBa  bbBa  bbbBa  bbbbBa  ... 

 

The working string is always rewriteable (in only one way, as it happens), and so this grammar can produce no 

terminated derivations consisting entirely of terminal symbols (i.e., generated strings).  Thus this grammar generates 

the language . 
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11.2 Context-Free Grammars and Languages 
We’ve already seen our first specific grammar formalism.  In Chapter 7, we defined a regular grammar to be one in 

which every rule must:  

 

• have a left-hand side that is a single nonterminal, and 

• have a right-hand side that is  or a single terminal or a single terminal followed by a single nonterminal. 

 

We now define a context-free grammar (or CFG)  to be a grammar in which each rule must: 

 

• have a left-hand side that is a single nonterminal, and 

• have a right-hand side.  

 

To simplify the discussion that follows, define an A rule, for any nonterminal symbol A, to be a rule whose left-hand 

side is A.  

 

Next we must define a control algorithm of the sort we described at the end of the last section.  A derivation will halt 

whenever no rule’s left-hand side matches against working-string.  At every step, any rule that matches may be chosen. 

 

Context-free grammar rules may have any (possibly empty) sequence of symbols on the right-hand side.  Because the 

rule format is more flexible than it is for regular grammars, the rules are more powerful.  We will soon show some 

examples of languages that can be generated with context-free grammars but that can not be generated with regular 

ones. 

 

All of the following are allowable context-free grammar rules (assuming appropriate alphabets): 

 

 S → aSb 

 S →  

 T → T 

 S → aSbbTT 

 

The following are not allowable context-free grammar rules: 

 

 ST → aSb 

 a → aSb 

  → a 

 

The name for these grammars, “context-free,” makes sense because, using these rules, the decision to replace a 

nonterminal by some other sequence is made without looking at the context in which the nonterminal occurs.  In 

Chapters 23 and 24 we will consider less restrictive grammar formalisms in which the left-hand sides of the rules may 

contain several symbols.  For example, the rule aSa → aTa would be allowed.  This rule says that S can be replaced 

by T when it is surrounded by a’s.  One of those formalisms is called “context-sensitive” because its rules allow 

context to be considered.   

 

Programming language syntax is typically described using context-free grammars, as we’ll see 

below and in C 664. 

 

Formally, a context-free grammar G is a quadruple (V, , R, S), where: 

 

• V is the rule alphabet, which contains nonterminals (symbols that are used in the grammar but that do not appear 

in strings in the language) and terminals, 

•  (the set of terminals) is a subset of V, 

• R (the set of rules) is a finite subset of (V - )  V*, and 

• S (the start symbol) can be any element of V - . 
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Given a grammar G, define x G y (abbreviated  when G is clear from context) to be the binary relation derives-in-

one-step, defined so that: 

 

x, y  V* (x G y iff x = A, y = , and there exists a rule A→  in RG). 

 

Any sequence of the form w0 G w1 G w2 G . . . G wn is called a derivation in G.  Let G* be the reflexive, 

transitive closure of G.  We’ll call G* the derives relation. 

 

The language generated by G, denoted L(G), is {w  * : S G* w}.  In other words, the language generated by G 

is the set of all strings of terminals that can be derived from S using zero or more applications of rules in G.   

 

A language L is context-free iff it is generated by some context-free grammar G.   The context-free languages (or 

CFLs) are a proper superset of the regular languages.  In the next several examples, we will see languages that are 

context-free but not regular.  Then, in Chapter 13, we will prove the other part of this claim, namely that every regular 

language is also context-free. 

Example 11.1 The Balanced Parentheses Language 

Consider Bal = {w  {), (}* : the parentheses are balanced}.  We showed in Example 8.10 that Bal is not regular.  But 

it is context-free because it can be generated by the grammar G = ({S, ), (}, {), (}, R, S), where: 

 

              R = { S → (S) 

  S → SS 

  S →  }. 

 

Some example derivations in G: 

 

S  (S)  (). 

S  (S)  (SS)  ((S)S)  (()S)  (()(S))  (()()). 

 

So, S * () and S * (()()). 

 

The syntax of Boolean query languages is describable with a context-free grammar.  C 805. 

 

Example 11.2 AnBn 

Consider AnBn = {anbn : n  0}.  We showed in Example 8.8 that AnBn is not regular.  But it is context-free because 

it can be generated by the grammar G = ({S, a, b}, {a, b}, R, S), where: 

 

              R = { S → aSb 

   S →  }. 

 

What is it about context-free grammars that gives them the power to define languages like Bal and AnBn? 

 

We can begin answering that question by defining a rule in a grammar G to be recursive iff it is of the form X → 

w1Yw2, where Y G* w3Xw4 and all of w1, w2, w3, and w4 may be any element of V*.  A grammar is recursive iff it 

contains at least one recursive rule.  For example, the grammar we just presented for Bal is recursive because it 

contains the rule S → (S).  The grammar we presented for AnBn is recursive because it contains the rule S → aSb.  A 

grammar that contained the rule S → aS would also be recursive.  So the regular grammar whose rules are {S → aT, 

T → aW, W → aS, W → a} is recursive.  Recursive rules make it possible for a finite grammar to generate an infinite 

set of strings.   
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Let’s now look at an important property that gives context-free grammars the power to define languages that aren’t 

regular.  A rule in a grammar G is self-embedding iff it is of the form X → w1Yw2, where Y G* w3Xw4 and both w1w3 

and w4w2 are in +.  A grammar is self-embedding iff it contains at least one self-embedding rule.  So now we require 

that a nonempty string be generated on each side of the nested X.  The grammar we presented for Bal is self-embedding 

because it contains the rule S → (S).  The grammar we presented for AnBn is self-embedding because it contains the 

rule S → aSb.  The presence of a rule like S → aS does not by itself make a grammar self-embedding.  But the rule S 

→ aT is self-embedding in any grammar G that also contains the rule T → Sb, since S → aT and T G* Sb.  Self-

embedding grammars are able to define languages like Bal, AnBn, and others whose strings must contain pairs of 

matching regions, often of the form uvixyiz.  No regular language can impose such a requirement on its strings. 

 

The fact that a grammar G is self-embedding does not guarantee that L(G) isn’t regular.  There might be a different 

grammar G that also defines L(G) and that is not self-embedding.  For example G1 = ({S, a}, {a}, {S → , S → a, 

S → aSa}, S) is self-embedding, yet it defines the regular language a*.  However, we note the following two important 

facts: 

 

• If a grammar G is not self-embedding then L(G) is regular.  Recall that our definition of regular grammars did not 

allow self-embedding.   

• If a language L has the property that every grammar that defines it is self-embedding, then L is not regular.   

 

The rest of the grammars that we will present in this chapter are self-embedding. 

Example 11.3 Even Length Palindromes 

Consider PalEven = {wwR : w  {a, b}*}, the language of even-length palindromes of a’s and b’s.   We showed in 

Example 8.11 that PalEven is not regular.  But it is context-free because it can be generated by the grammar G = ({S, 

a, b}, {a, b}, R, S), where: 

 

              R = { S → aSa 

  S → bSb 

  S →  }. 

 

Example 11.4 Equal Numbers of a’s and b’s 

Let L = {w  {a, b}*: #a(w) = #b(w)}. We showed in Example 8.14 that L is not regular.  But it is context-free because 

it can be generated by the grammar G = ({S, a, b}, {a, b}, R, S), where: 

 

              R = { S → aSb 

  S → bSa 

   S → SS 

  S →  }. 

 

These simple examples are interesting because they capture, in a couple of lines, the power of the context-free grammar 

formalism.  But our real interest in context-free grammars comes from the fact that they can describe useful and 

powerful languages that are substantially more complex.   

 

It quickly becomes apparent, when we start to build larger grammars, that we need a more flexible grammar-writing 

notation.  We’ll use the following two extensions when they are helpful: 

 

• The symbol | should be read as “or”.  It allows two or more rules to be collapsed into one.  So the following single 

rule is equivalent to the four rules we wrote in Example 11.4: 

 

S → aSb | bSa | SS |  
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• We often require nonterminal alphabets that contain more symbols than there are letters.  To solve that problem, 

we will allow a nonterminal symbol to be any sequence of characters surrounded by angle brackets.  So <program> 

and <variable> could be nonterminal symbols using this convention.   

 

BNF (or Backus Naur form)  is a widely used grammatical formalism that exploits both of these 

extensions.  It was created in the late 1950s as a way to describe the programming language 

ALGOL 60.  It has since been extended and several dialects developed C 664. 

 

Example 11.5 BNF for a Small Java Fragment 

Because BNF was originally designed when only a small character set was available, it uses the three symbol sequence 

::= in place of →.  The following BNF-style grammar describes a highly simplified and very small subset of Java: 

 
 <block> ::= {<stmt-list>} | {} 

 <stmt-list> ::= <stmt> | <stmt-list> <stmt> 

 <stmt> ::= <block> | while (<cond>) <stmt> | if (<cond>) <stmt> |  

       do <stmt> while (<cond>); | <assignment-stmt>; |  

       return | return <expression> | <method-invocation>; 

 

The rules of this grammar make it clear that the following block may be legal in Java (assuming that the appropriate 

declarations have occurred):  

 
  { while (x < 12) { 

       hippo.pretend(x); 

            x = x + 2; 

       }} 

 

On the other hand, the following block is not legal: 

 
  { while x < 12}) ( 

       hippo.pretend(x); 

            x = x + 2; 

       }} 

 

Many other kinds of practical languages are also context-free.  For example, HTML can be 

described with a context-free grammar using a BNF-style grammar.  C 805. 

 

Example 11.6 A Fragment of an English Grammar 

Much of the structure of an English sentence can be described by a (large) context-free grammar.  For historical 

reasons, linguistic grammars typically use a slightly different notational convention.  Nonterminals will be written as 

strings whose first symbol is an upper case letter.  So the following grammar describes a tiny fragment of English.  

The symbol NP will derive noun phrases; the symbol VP will derive verb phrases: 

 

  S → NP VP 

  NP → the Nominal | a Nominal | Nominal | ProperNoun | NP PP 

 Nominal  → N | Adjs N 

 N → cat | dogs | bear |girl | chocolate | rifle  

 ProperNoun → Chris | Fluffy 

 Adjs → Adj Adjs | Adj 

 Adj → young | older | smart 

 VP → V | V NP | VP PP 

 V → like | likes | thinks | shot | smells 
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 PP → Prep NP 

 Prep → with 

 

Is English (or German or Chinese) really context-free?  C 747. 

11.3 Designing Context-Free Grammars 
In this section, we offer a few simple strategies for designing straightforward context-free grammars.  Later we’ll see 

that some grammars are better than others (for various reasons) and we’ll look at techniques for finding “good” 

grammars.  For now, we will focus on finding some grammar. 

 

The most important rule to remember in designing a context-free grammar to generate a language L is the following:   

 

• If L has the property that every string in it has two regions and those regions must bear some relationship to each 

other (such as being of the same length), then the two regions must be generated in tandem.  Otherwise, there is 

no way to enforce the necessary constraint. 

 

Keeping that rule in mind, there are two simple ways to generate strings: 

 

• To generate a string with multiple regions that must occur in some fixed order but do not have to correspond to 

each other, use a rule of the form: 

 

A → BC …   

 

This rule generates two regions, and the grammar that contains it will then rely on additional rules to describe how to 

form a B region and how to form a C region.  Longer rules, like A → BCDE, can be used if additional regions are 

necessary. 

 

The outside-in structure of context-free grammars makes them well suited to describing physical 

things, like RNA molecules, that fold.  C 737. 

 

• To generate a string with two regions that must occur in some fixed order and that must correspond to each other, 

start at the outside edges of the string and generate toward the middle.  If there is an unrelated region in between 

the related ones, it must be generated after the related regions have been produced. 

Example 11.7 Concatenating Independent Sublanguages 

Let L = {anbncm : n, m  0}.  Here, the cm portion of any string in L is completely independent of the anbn portion, so 

we should generate the two portions separately and concatenate them together.  So let G = ({S, N, C, a, b, c},  {a, b, 

c}, R, S) where: 

 

              R = { S → NC    /* generate the two independent portions. 

  N → aNb   /* generate the anbn portion, from the outside in. 

  N →   

  C → cC   /* generate the cm portion. 

  C →  }.  

 

Example 11.8 The Kleene Star of a Language 

Let L = { kk nnnnnn
bababa ...2211  : k  0 and i (ni  0)}.  For example, the following strings are in L: , abab, 

aabbaaabbbabab.  Note that L = {anbn : n  0}*, which gives a clue how to write the grammar we need.  We know 

how to produce individual elements of {anbn : n  0}, and we know how to concatenate regions together.  So a solution 
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is G = ({S, M, a, b}, {a, b}, R, S) where: 

 

              R = { S → MS    /* each M will generate one {anbn : n  0} region. 

  S →   

  M → aMb   /* generate one region. 

  M → }. 

 

11.4 Simplifying Context-Free Grammars  
In this section, we present two algorithms that may be useful for simplifying context-free grammars. 

 

Consider the grammar G = ({S, A, B, C, D, a, b}, {a, b}, R, S), where:  

 

              R = { S → AB | AC 

  A → aAb |  

  B → bA 

  C → bCa 

  D → AB }. 

 

G contains two useless variables: C is useless because it is not able to generate any strings in *.  (Every time a rule 

is applied to a C, a new C is added.)  D is useless because it is unreachable, via any derivation, from S.  So any rules 

that mention either C or D can be removed from G without changing the language that is generated.  We present two 

algorithms, one to find and remove variables like C that are unproductive, and one to find and remove variables like 

D that are unreachable.  

 

Given a grammar G = (V, , R, S), we define removeunproductive(G) to create a new grammar G, where L(G) = L(G) 

and G does not contain any unproductive symbols.  Rather than trying to find the unproductive symbols directly, 

removeunproductive will find and mark all the productive ones.  Any that are left unmarked at the end are 

unproductive.  Initially, all terminal symbols will be marked as productive since each of them generates a terminal 

string (itself).  A nonterminal symbol will be marked as productive when it is discovered that there is at least one way 

to rewrite it as a sequence of productive symbols.  So removeunproductive effectively moves backwards from 

terminals, marking nonterminals along the way.  

 

     removeunproductive(G: CFG) =  

1. G = G.  

2. Mark every nonterminal symbol in G as unproductive. 

3. Mark every terminal symbol in G as productive. 

4. Until one entire pass has been made without any new symbol being marked do: 

For each rule X →  in R do: 

If every symbol in  has been marked as productive and X has not yet been marked as productive, 

then mark X as productive. 

5. Remove from VG every unproductive symbol. 

6. Remove from RG every rule with an unproductive symbol on either the left-hand side or the right-hand 

side.  

7. Return G. 

 

Removeunproductive must halt because there is only some finite number of nonterminals that can be marked as 

productive.  So the maximum number of times it can execute step 4 is |V - |.  Clearly L(G)  L(G) since G can 

produce no derivations that G could not have produced.  And L(G) = L(G) because the only derivations that G can 

perform but G cannot are those that do not end with a terminal string. 

 

Notice that it is possible that S is unproductive.  This will happen precisely in case L(G) = .  We will use this fact in 

Section 14.1.2 to show the existence of a procedure that decides whether or not a context-free language is empty. 
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Next we’ll define an algorithm for getting rid of unreachable symbols like D in the grammar we presented above.  

Given a grammar G = (V, , R, S), we define removeunreachable(G) to create a new grammar G, where L(G) = L(G) 

and G does not contain any unreachable nonterminal symbols.  What removeunreachable does is to move forward 

from S, marking reachable symbols along the way.  

 

     removeunreachable(G: CFG) =  

1. G = G.  

2. Mark S as reachable. 

3. Mark every other nonterminal symbol as unreachable. 

4. Until one entire pass has been made without any new symbol being marked do: 

For each rule X → A (where A  V -  and ,   V*) in R do: 

If X has been marked as reachable and A has not, then mark A as reachable. 

5. Remove from VG every unreachable nonterminal symbol. 

6. Remove from RG every rule with an unreachable symbol on the left-hand side.  

7. Return G. 

 

Removeunreachable must halt because there is only some finite number of nonterminals that can be marked as 

reachable.  So the maximum number of times it can execute step 4 is |V - |.  Clearly L(G)  L(G) since G can 

produce no derivations that G could not have produced.  And L(G) = L(G) because every derivation that can be 

produced by G can also be produced by G. 

11.5 Proving That a Grammar is Correct  
In the last couple of sections, we described some techniques that are useful in designing context-free languages and 

we argued that the grammars that we built were correct (i.e., that they correctly describe languages with certain 

properties).  But, given some language L and a grammar G, can we actually prove that G is correct (i.e., that it generates 

exactly the strings in L)?  To do so, we need to prove two things: 

 

1. G generates only strings in L, and 

2. G generates all the strings in L. 

 

The most straightforward way to do step 1 is to imagine the process by which G generates a string as the following 

loop (a version of simple-rewrite, using st in place of working-string): 

 

1. st = S.     

2. Until no nonterminals are left in st do: 

        Apply some rule in R to st. 

3. Output st. 

 

Then we construct a loop invariant I and show that: 

 

• I is true when the loop begins, 

• I is maintained at each step through the loop (i.e., by each rule application), and 

• I  (st contains only terminal symbols) → st  L. 

 

Step 2 is generally done by induction on the length of the generated strings. 

Example 11.9 The Correctness of the AnBn Grammar 

In Example 11.2, we considered the language AnBn.  We built for it the grammar G = ({S, a, b}, {a, b}, R, S), where: 

 

              R = { S → aSb (1) 

  S →  }.  (2) 
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We now show that G is correct.  We first show that every string w in L(G) is in AnBn:  Let st be the working string at 

any point in a derivation in G.  We need to define I so that it captures the two features of every string in AnBn: the 

number of a’s equals the number of b’s and the letters are in the correct order.  So we let I be: 

 

           (#a(st) = #b(st))  (st  a*(S  ) b*). 

 

Now we prove: 

 

• I is true when st = S: in this case, #a(st) = #b(st)) = 0 and st is of the correct form. 

• If I is true before a rule fires, then it is true after the rule fires: to prove this, we consider the rules one at a time and 

show that each of them preserves I.  Rule (1) adds one a and one b to st, so it does not change the difference 

between the number of a’s and the number of b’s.  Further, it adds the a to the left of S and the b to the right of S, 

so if the form constraint was satisfied before applying the rule it still is afterwards.  Rule (2) adds nothing so it does 

not change either the number of a’s or b’s or their locations. 

• If I is true and st contains only terminal symbols, then st  AnBn: in this case, st possesses the three properties 

required of all strings in AnBn: they are composed only of a’s and b’s, (#a(st) = #b(st)), and all a’s come before all 

b’s.  

 

Next we show that every string w in AnBn can be generated by G:  Every string in AnBn is of even length, so we will 

prove the claim only for strings of even length.  The proof is by induction on |w|:   

 

• Base case: if |w| = 0, then w = , which can be generated by applying rule (2) to S.   

• Prove: if every string in AnBn of length k, where k is even, can be generated by G, then every string in AnBn of 

length k + 2 can also be generated.  Notice that, for any even k, there is exactly one string in AnBn of length k: 

ak/2bk/2.  There is also only one string of length k + 2, namely aak/2bk/2b, that can be generated by first applying 

rule (1) to produce aSb, and then applying to S whatever rule sequence generated ak/2bk/2.  By the induction 

hypothesis, such a sequence must exist.   
◼ 

 

Example 11.10 The Correctness of the Equal a’s and b’s Grammar 

In Example 11.4 we considered the language L = {w  {a, b}*: #a(w) = #b(w)}.  We built for it the grammar G = ({S, 

a, b}, {a, b}, R, S), where: 

 

              R = { S → aSb (1) 

  S → bSa (2) 

   S → SS  (3) 

  S →  }.  (4) 

 

This time it is perhaps less obvious that G is correct.  In particular, does it generate every sequence where the number 

of a’s equals the number of b’s?  The answer is yes, which we now prove. 

 

To make it easy to describe this proof, we define the following function: 

 

(w) = #a(w) - #b(w).  

 

Note that string w is in L iff w  {a, b}* and (w) = 0. 

 

We begin by showing that every string w in L(G) is in L:  Again, let st be the working string at any point in a derivation 

in G.  Let I be: 

 

 st  {a, b, S}*  (st) = 0.  
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Now we prove: 

• I is true when st = S.  In this case, #a(st) = #b(st)) = 0.  So (st) = 0. 

• If I is true before a rule fires, then it is true after the rule fires.  The only symbols that can be added by any rule are 

a, b, and S.  Rules (1) and (2) each add one a and one b to st, so neither of them changes (st).  Rules (3) and (4) 

add neither a’s nor b’s to the working string, so (st) does not change. 

• If I is true and st contains only terminal symbols, then st  L.  In this case, st possesses the two properties required 

of all strings in L:  They are composed only of a’s and b’s and (st) = 0. 

 

It is perhaps less obviously true that G generates every string in L.  Can we be sure that there are no permutations that 

it misses?  Yes, we can.  We next we show that every string w in L can be generated by G.  Every string in L is of even 

length, so we will prove the claim only for strings of even length.  The proof is by induction on |w|.   

 

• Base case: if |w| = 0, w = , which can be generated by applying rule (4) to S.   

• Prove that if every string in L of length  k, where k is even, can be generated by G, then every string w in L of 

length k + 2 can also be generated.  Since w has length k + 2, it can be rewritten as one of the following: axb, bxa, 

axa, or bxb, for some x  {a, b}*.  |x| = k.  We consider two cases: 

 

• w = axb or bxa.  If w  L, then (w) = 0 and so (x) must also be 0.  |x| = k.  So, by the induction hypothesis, 

G generates x.  Thus G can also generate w: it first applies either rule (1) (if w = axb) or rule (2) (if w = bxa).  

It then applies to S whatever rule sequence generated x.  By the induction hypothesis, such a sequence must 

exist. 

 

• w = axa, or bxb.  We consider the former case.  The argument is parallel for the latter.  Note that any string in 

L, of either of these forms, must have length at least 4.  We will show that w = vy, where both v and y are in L, 

2  |v|  k, and 2  |y|  k.  If that is so, then G can generate w by first applying rule (3) to produce SS, and then 

generating v from the first S and y from the second S.  By the induction hypothesis, it must be possible for it to 

do that since both v and y have length  k.   

 

To find v and y, we can imagine building w (which we’ve rewritten as axa) up by concatenating one character at a 

time on the right.  After adding only one character, we have just a.  (a) = 1.  Since w  L, (w) = 0.  So (ax) = -1 

(since it is missing the final a of w).  The value of  changes by exactly 1 each time a symbol is added to a string.  

Since  is positive when only a single character has been added and becomes negative by the time the string ax has 

been built, it must at some point before then have been 0.  Let v be the shortest nonempty prefix of w to have a value 

of 0 for .  Since v is nonempty and only even length strings can have  equal to 0, 2  |v|.  Since  became 0 sometime 

before w became ax, v must be at least two characters shorter than w (it must be missing at least the last character of 

x plus the final a), so |v|  k.  Since (v) = 0, v  L.  Since w = vy, we know bounds on the length of y: 2  |y|  k.  

Since (w) = 0 and (v) = 0, (y) must also be 0 and so y  L.     
◼ 

11.6 Derivations and Parse Trees 
Context-free grammars do more than just describe the set of strings in a language.  They provide a way of assigning 

an internal structure to the strings that they derive.  This structure is important because it, in turn, provides the starting 

point for assigning meanings to the strings that the grammar can produce.   

 

The grammatical structure of a string is captured by a parse tree, which records which rules were applied to which 

nonterminals during the string’s derivation.  In Chapter 15, we will explore the design of programs, called parsers, 

that, given a grammar G and a string w, decide whether w  L(G) and, if it is, create a parse tree that captures the 

process by which G could have derived w.  

 

A parse tree, derived by a grammar G = (V, , R, S), is a rooted, ordered tree in which: 

 

• Every leaf node is labeled with an element of   {},  

• The root node is labeled S,  
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• Every other node is labeled with some element of V - , and 

• If m is a nonleaf node labeled X and the children of m are labeled x1, x2, …, xn, then R contains the rule X → x1, x2, 

…, xn. 

 

Define the branching factor of a grammar G to be length (the number of symbols) of the longest right-hand side of 

any rule in G.  Then the branching factor of any parse tree generated by G is less than or equal to the branching factor 

of G. 

Example 11.11 The Parse Tree of a Simple English Sentence 

Consider again the fragment of an English grammar that we wrote in Example 11.6.  That grammar can be used to 

produce the following parse tree for the sentence the smart cat smells chocolate: 

 

      S 

 

    NP       VP 

 

     Nominal      V  NP 

 

              Adjs   N            Nominal 

 

              Adj    N 

 
   the      smart cat    smells    chocolate 

 

Notice that, in Example 11.11, the constituents (the subtrees) correspond to objects (like some particular cat) that have 

meaning in the world that is being described.  It is clear from the tree that this sentence is not about cat smells or smart 

cat smells.   

 

Because parse trees matter, it makes sense, given a grammar G, to distinguish between: 

 

• G’s weak generative capacity, defined to be the set of strings, L(G), that G generates, and 

• G’s strong generative capacity, defined to be the set of parse trees that G generates. 

 

When we design grammars it will be important that we consider both their weak and their strong generative capacities. 

 

In our last example, the process of deriving the sentence the smart cat smells chocolate began with: 

 

S  NP VP  … 

 

Looking at the parse tree, it isn’t possible to tell which of the following happened next: 

 

S  NP VP  The Nominal VP   

S  NP VP  NP V NP  

 

Parse trees are useful precisely because they capture the important structural facts about a derivation but throw away 

the details of the order in which the nonterminals were expanded.   

 

While it’s true that the order in which nonterminals are expanded has no bearing on the structure that we wish to assign 

to a string, order will become important when we attempt to define algorithms that work with context-free grammars.  

For example, in Chapter 15 we will consider various parsing algorithms for context-free languages.  Given an input 

string w, such algorithms must work systematically through the space of possible derivations in search of one that 

could have generated w.  To make it easier to describe such algorithms, we will define two useful families of 

derivations: 
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• A left-most derivation is one in which, at each step, the leftmost nonterminal in the working string is chosen for 

expansion. 

• A right-most derivation is one in which, at each step, the rightmost nonterminal in the working string is chosen 

for expansion. 

 

Returning to the smart cat example above: 

 

• A left-most derivation is: 

 

S  NP VP  the Nominal VP  the Adjs N VP  the Adj N VP  the smart N VP   

  the smart cat VP  the smart cat V NP   the smart cat smells NP   

   the smart cat smells Nominal  the smart cat smells N  
    the smart cat smells chocolate  

• A right-most derivation is: 

 

S  NP VP  NP V NP  NP V Nominal  NP V N  NP V chocolate   

NP smells chocolate  the Nominal smells chocolate   

the Adjs N smells chocolate  the Adjs cat smells chocolate   

 the Adj cat smells chocolate   
the smart cat smells chocolate 

11.7 Ambiguity 
Sometimes a grammar may produce more than one parse tree for some (or all) of the strings it generates.  When this 

happens we say that the grammar is ambiguous.  More precisely, a grammar G is ambiguous iff there is at least one 

string in L(G) for which G produces more than one parse tree. 

 

It is easy to write ambiguous grammars if we are not careful.  In fact, we already have. 

Example 11.12 The Balanced Parentheses Grammar is Ambiguous 

Recall the language Bal = {w  {), (}* : the parentheses are balanced}, for which we wrote the grammar G = ({S, ), 

(}, {), (}, R, S), where: 

 

              R = { S → (S) 

   S → SS 

   S →  }. 

 

G can produce both of the following parse trees for the string (())(): 

 

   S       S   

 

  S     S   S    S 

 

(  S       )   ( S )         S           S     ( S          ) 

 

      (   S        )                             (      S      )                           

 

                                                      (   S   ) 

 

                     

 

In fact, G can produce an infinite number of parse trees for the string (())(). 
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A grammar G is unambiguous iff, for all strings w, at every point in a leftmost or rightmost derivation of w, only one 

rule in G can be applied.  The grammar that we just presented in Example 11.12 clearly fails to meet this requirement.  

For example, here are two leftmost derivations of the string (())(): 

 

• S  SS  (S)S  ((S))S  (())S  (())(S)  (())(). 

• S  SS  SSS  SS  (S)S  ((S))S  (())S  (())(S)  (())(). 

11.7.2 Why Is Ambiguity a Problem? 
Why are we suddenly concerned with ambiguity?  Regular grammars can also be ambiguous.  And regular expressions 

can often derive a single string in several distinct ways. 

Example 11.13 Regular Expressions Grammars Can Be Ambiguous 

Let L = {w  {a, b}* : w contains at least one a}.  L is regular.  It can be defined with both a regular expression and 

a regular grammar.  We show two ways in which the string aaa can be generated from the regular expression we have 

written and two ways in which it can be generated by the regular grammar: 

 

Regular Expression 

 

(a  b)*a (a  b)*. 

 

choose a from (a  b), then 

choose a from (a  b), then 

choose a, then 

choose  from (a  b)*. 

 

 or 

 

choose  from (a  b)*, then 

choose a, then 

choose a from (a  b), then 

choose a from (a  b).  

Regular Grammar 

 

 S → a 

 S → bS 

 S → aS 

 S → aT 

 T→ a 

 T → b 

 T → aT 

 T → bT 

 

       S                   S 

   a     S          a     T 

       a    S             a   T 
             a                   a 

 

 

We had no reason to be concerned with ambiguity when we were discussing regular languages because, for most 

applications of them, we don’t care about assigning internal structure to strings.  With context-free languages, we 

usually do care about internal structure because, given a string w, we want to assign meaning to w.  We almost always 

want to assign a unique such meaning.  It is generally difficult, if not impossible, to assign a unique meaning without 

a unique parse tree.  So an ambiguous grammar, which fails to produce a unique parse tree, is a problem, as we’ll see 

in our next example. 

Example 11.14 An Ambiguous Expression Grammar 

Consider Expr, which we’ll define to be the language of simple arithmetic expressions of the kind that could be part of 

anything from a small calculator to programming language.  We can define Expr with the following context-free 

grammar G = ({E, id, +, , (, )}, {id, +, , (, )}, R, E), where: 

 

              R = { E → E + E 

   E → E  E 

   E → (E) 

  E → id  }. 

 

So that we can focus on the issues we care about, we’ve used the terminal symbol id as a shorthand for any of the 

numbers or variables that can actually occur as the operands in the expressions that G generates.  Most compilers and 
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interpreters for expression languages handle the parsing of individual operands in a first pass, called lexical analysis, 

which can be done with an FSM.  We’ll return to this topic in Chapter 15. 

 

Consider the string 2 + 3  5, which we will write as id + id  id.  Using G, we can get two parses for this string: 

 

  E        E 

 

 

E    E    E    E 

 

 

   E   E  E   E   

 

 

id  + id            id  id + id   id 

 

 2    3  5    2   3   5 

 

Should an evaluation of this expression return 17 or 25?  (See Example 11.19 for a different expression grammar that 

fixes this problem.) 

 

Natural languages, like English and Chinese, are not explicitly designed.  So it isn’t possible to go 

in and remove ambiguity from them.  See Example 11.22 and C 752.  

 

Designers of practical languages must be careful that they create languages for which they can write unambiguous 

grammars. 

11.7.3 Inherent Ambiguity 

In many cases, when confronted with an ambiguous grammar G, it is possible to construct a new grammar G that 

generates L(G) and that has less (or no) ambiguity.  Unfortunately, it is not always possible to do this.  There exist 

context-free languages for which no unambiguous grammar exists.  We call such languages inherently ambiguous. 

Example 11.15 An Inherently Ambiguous Language 

Let L = {aibjck : i, j, k  0, i = j or j = k}.  An alternative way to describe it is {anbncm : n, m  0}  {anbmcm : n, m 

 0}.  Every string in L has either (or both) the same number of a’s and b’s or the same number of b’s and c’s.  L is 

inherently ambiguous.  One grammar that describes it is G = ({S, S1, S2, A, B, a, b, c}, {a, b, c}, R, S), where: 

 

              R = { S → S1 | S2   

  S1 → S1c | A  /* Generate all strings in {anbncm : n, m  0}. 

  A → aAb |  

  S2 → aS2|B  /* Generate all strings in {anbmcm : n, m  0}. 

  B → bBc |   }. 

 

Now consider the strings in AnBnCn = {anbncn : n  0}.  They have two distinct derivations, one through S1 and the 

other through S2.  It is possible to prove that L is inherently ambiguous: given any grammar G that generates L there 

is at least one string with two derivations in G. 

 

Example 11.16 Another Inherently Ambiguous Language 

Let L = {aibjakbl : i, j, k, l  0, i = k or j = l}.  L is also inherently ambiguous. 
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Unfortunately, there are no clean fixes for the ambiguity problem for context-free languages.  In Section 22.5 we’ll 

see that both of the following problems are undecidable: 

 

• Given a context-free grammar G, is G ambiguous? 

• Given a context-free language L, is L inherently ambiguous? 

11.7.4 Techniques for Reducing Ambiguity  
Despite the negative theoretical results that we have just mentioned, it is usually very important, when we are 

designing practical languages and their grammars, that we come up with a language that is not inherently ambiguous 

and a grammar for it that is unambiguous.  Although there exists no general purpose algorithm to test for ambiguity 

in a grammar or to remove it when it is found (since removal is not always possible), there do exist heuristics that we 

can use to find some of the more common sources of ambiguity and remove them.  We’ll consider here three grammar 

structures that often lead to ambiguity: 

 

•  rules like S → . 

• rules like S → SS or E → E + E.  In other words recursive rules whose right-hand sides are symmetric and contain 

at least two copies of the nonterminal on the left-hand side.  

• rule sets that lead to ambiguous attachment of optional postfixes. 

Eliminating -Rules 

In Example 11.12, we showed a grammar for the balanced parentheses language.  That grammar is highly ambiguous.  

Its major problem is that it is possible to apply the rule S → SS arbitrarily often, generating unnecessary instances of 

S, which can then be wiped out without a trace using the rule S → .  If we could eliminate the rule S → , we could 

eliminate that source of ambiguity.  We’ll call any rule whose right-hand side is  an -rule. 

 

We’d like to define an algorithm that could remove -rules from a grammar G without changing the language that G 

generates.  Clearly if   L(G), that won’t be possible.  Only an -rule can generate .  However, it is possible to define 

an algorithm that eliminates -rules from G and leaves L(G) unchanged except that, if   L(G), it will be absent from 

the language generated by the new grammar.  We will show such an algorithm.  Then we’ll show a simple way to add 

 back in, when necessary, without adding back the kind of -rules that cause ambiguity. 

 

Let G = (V, , R, S) be any context-free grammar.  The following algorithm constructs a new grammar G such that 

L(G) = L(G) – {} and G contains no -rules: 

 

       removeEps(G: CFG) =   

1. Let G = G. 

2. Find the set N of nullable variables in G.  A variable X is nullable iff either: 

(1) there is a rule X → , or 

(2) there is a rule X → PQR… such that P, Q, R, … are all nullable. 

So compute N as follows: 

2.1. Set N to the set of variables that satisfy (1).   

2.2. Until an entire pass is made without adding anything to N do: 

Evaluate all other variables with respect to (2).  If any variable satisfies (2) and is not in N, 

insert it. 

3. Define a rule to be modifiable iff it is of the form P → Q for some Q in N and any ,  in V*.  Since 

Q is nullable, it could be wiped out by the application of -rules.  But those rules are about to be deleted.  

So one possibility should be that Q just doesn’t get generated in the first place.  To make that happen 

requires adding new rules.  So, repeat until G contains no modifiable rules that haven’t been processed: 

3.1. Given the rule P → Q, where Q  N, add the rule P →  if it is not already present and if   

 and if P  .  This last check prevents adding the useless rule P → P, which would otherwise 

be generated if the original grammar contained, for example, the rule P → PQ and Q were nullable.   

4. Delete from G all rules of the form X → . 

5. Return G. 
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If removeEps halts, L(G) = L(G) – {} and G contains no -rules.  And removeEps must halt.  Since step 2 must add 

a nonterminal to N at each pass and it cannot add any symbol more than once, it must halt within |V - | passes.  Step 

3 may have to be done once for every rule in G and once for every new rule that it adds.  But note that, whenever it 

adds a new rule, that rule has a shorter right-hand side than the rule from which it came.  So the number of new rules 

that can be generated by some original rule in G is finite.  So step 3 can execute only a finite number of times. 

Example 11.17 Eliminating -Rules 

Let G = ({S, T, A, B, C, a, b, c}, {a, b, c}, R, S), where: 

 

              R = { S → aTa   

    T → ABC 

    A → aA | C   

   B → Bb | C  

   C → c |  }.   

 

On input G, removeEps behaves as follows:  Step 2 finds the set N of nullable variables by initially setting N to {C}.  

On its first pass through step 2.2 it adds A and B to N.  On the next pass, it adds T (since now A, B, and C are all in N).  

On the next pass, no new elements are found, so step 2 halts with N = {C, A, B, T}.  Step 3 adds the following new 

rules to G: 

 

   S → aa   /* Since T is nullable. 

   T → BC   /* Since A is nullable. 

   T → AC  /* Since B is nullable. 

   T → AB  /* Since C is nullable. 

   T → C  /* From T → BC, since B is nullable.  Or from T → AC. 

   T → B  /* From T → BC, since C is nullable.  Or from T → AB. 

   T → A  /* From T → AC, since C is nullable.  Or from T → AB. 

   A → a   /* Since A is nullable. 

   B → b   /* Since B is nullable. 

 

Finally, step 4 deletes the rule C → . 

 

Sometimes L(G) contains  and it is important to retain it.  To handle this case, we present the following algorithm, 

which constructs a new grammar G, such that L(G) = L(G).  If L(G) contains , then G will contain a single -rule 

that can be thought of as being “quarantined”.  Its sole job is to generate the string .  It can have no interaction with 

the other rules of the grammar.   

 

      atmostoneEps(G: CFG) =  

1. G = removeEps(G). 

2. If SG is nullable then:    /* This means that   L(G). 

2.1. Create in G a new start symbol S*. 

2.2. Add to RG the two rules: S* →  and S* → SG. 

3. Return G. 

Example 11.18 Eliminating -Rules from the Balanced Parens Grammar 

We again consider Bal = {w  {), (}* : the parentheses are balanced} and the grammar G = ({S, ), (}, {), (}, R, S), 

where: 

 

              R = { S → (S)   (1) 

   S → SS  (2) 

   S →  }.  (3) 
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We would like to eliminate the ambiguity in G.  Since   L(G), we call atmostoneEps(G), which begins by applying 

removeEps to G: 

 

• In step 2, N = {S}. 

• In step 3, rule (1) causes us to add the rule S → ().  Rule (2) causes us to consider adding the rule S → S, but we 

omit adding rules whose right-hand sides and left-hand sides are the same. 

• In step 4, we delete the rule S → .   

 

So removeEps(G) returns the grammar G = ({S, ), (}, {), (}, R, S), where R = 

 

            { S → (S) 

 S → () 

 S → SS }. 

 

In its step 2, atmostoneEps creates the new start symbol S*.  In step 3, it adds the two rules S* → , S* → S.  So 

atmostoneEps returns the grammar G = ({S*, S, ), (}, {), (}, R, S*), where: 

 

              R = { S* →  

  S* → S 

  S → (S) 

  S → () 

  S → SS }. 

 

The string (())() has only one parse in G. 

Eliminating Symmetric Recursive Rules 

The new grammar that we just built for Bal is better than our original one.  But it is still ambiguous.  The string ()()() 

has two parses, shown in Figure 11.1.  The problem now is the rule S → SS, which must be applied n-1 times to 

generate a sequence of n balanced parentheses substrings.  But, at each time after the first, there is a choice of which 

existing S to split.    

 

 

 

 

 

 

 

 

 

 

Figure 11.1  Two parse trees for the string ()()() 

 

 

The solution to this problem is to rewrite the grammar so that there is no longer a choice.  We replace the rule S → SS 

with one of the following rules: 

 

S → SS1   /* force branching to the left. 

S → S1S   /* force branching to the right. 

 

Then we add the rule S → S1 and replace the rules S → (S) and S → () with the rules S1 → (S) and S1 → ().  What we 

have done is to change the grammar so that branching can occur only in one direction.  Every S that is generated can 

branch, but no S1 can.  When all the branching has happened, S rewrites to S1 and the rest of the derivation can occur. 
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So one unambiguous grammar for Bal is G = ({S, ), (}, {), (}, R, S), where: 

 

              R = { S* →   (1) 

  S* → S  (2) 

  S → SS1   (3)   /* Force branching to the left. 

  S → S1   (4) 

  S1 → (S)  (5) 

   S1 → ()  }. (6) 

 

The technique that we just used for Bal is useful in any situation in which ambiguity arises from a recursive rule whose 

right-hand side contains two or more copies of the left-hand side.  An important application of this idea is to expression 

languages, like the language of arithmetic expressions that we introduced in Example 11.14. 

Example 11.19 An Unambiguous Expression Grammar 

Consider again the language Expr, which we defined with the following context-free grammar G = ({E, id, +, , (, )}, 

{id, +, , (, )}, R, E), where: 

 

              R = { E → E + E 

   E → E  E 

   E → (E) 

  E → id }. 

 

G is ambiguous in two ways: 

 

1. It fails to specify associativity.  So, for example, there are two parses for the string id + id + id, corresponding 

to the bracketings (id + id) + id and id + (id + id). 

2. It fails to define a precedence hierarchy for the operators + and .  So, for example, there are two parses for the 

string id + id  id, corresponding to the bracketings (id + id)  id and id + (id  id). 

 

The first of these problems is analogous to the one we just solved for Bal.  We could apply that solution here, but then 

we’d still have the second problem.  We can solve both of them with the following grammar G = ({E, T, F, id, +, , 

(, )}, {id, +, , (, )}, R, E), where: 

 

              R = { E → E + T 

   E → T 

  T → T  F 

  T → F 

  F → (E)  

  F → id }. 

 

Just as we did for Bal, we have forced branching to go in a single direction (to the left) when identical operators are 

involved.  And, by adding the levels T (for term) and F (for factor) we have defined a precedence hierarchy: times has 

higher precedence than plus does.  Using G, there is now a single parse for the string id + id  id: 
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  E      

 

 

E    T    

 

 

T   T   F   

 

 

F   F 

 

 

id  + id            id   

 

Ambiguous Attachment 

The third source of ambiguity that we will consider arises when constructs with optional fragments are nested.  The 

problem in such cases is then, “Given an instance of the optional fragment, at what level of the parse tree should it be 

attached?” 

 

Probably the most often described instance of this kind of ambiguity is known as the dangling else problem.  Suppose 

that we define a programming language with an if statement that can have either of the following forms: 

 

<stmt> ::= if <cond> then <stmt> 

<stmt> ::= if <cond> then <stmt> else <stmt> 

 

In other words, the else clause is optional.  Then the following statement, with just a single else clause, has two 

parses: 

 

 if cond1 then if cond2 then st1 else st2 

 

In the first parse, the single else clause goes with the first if.  (So it attaches high in the parse tree.)  In the second 

parse, the single else clause goes with the second if.  (In this case, it attaches lower in the parse tree).  

 

Example 11.20 The Dangling Else Problem in Java 

Most programming languages that have the dangling else problem (including C, C++, and Java) specify that each 

else goes with the innermost if to which it can be attached.  The Java grammar forces this to happen by changing 

the rules to something like these (presented here in a simplified form that omits many of the statement types that are 

allowed): 

 

<Statement> ::= <IfThenStatement> | <IfThenElseStatement> | <IfThenElseStatementNoShortIf> 

<StatementNoShortIf> ::= <block> | <IfThenElseStatementNoShortIf> | … 

<IfThenStatement> ::= if ( <Expression> ) <Statement> 

<IfThenElseStatement> ::= if ( <Expression> ) <StatementNoShortIf> else <Statement> 

<IfThenElseStatementNoShortIf> ::= if ( <Expression> ) <StatementNoShortIf> else <StatementNoShortIf> 

 

In this grammar, there is a special class of statements called <StatementNoShortIf>.  These are statements that are 

guaranteed not to end with a short (i.e., else-less if statement).  The grammar uses this class to guarantee that, if a 

top-level if statement has an else clause, then any embedded if must also have one.  To see how this works, 

consider the following parse tree: 
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      <Statement> 

 

 

            <IfThenElseStatement> 

 

 

          if      (cond)                      <StatementNoShortIf>          else           <Statement> 

 

The top-level if statement claims the else clause for itself by guaranteeing that there will not be an embedded if 

that is missing an else.  If there were, then that embedded if would grab the one else clause there is.  

 

For a discussion of another way in which programming languages can solve this problem, see C 

668. 

 

Attachment ambiguity is also a problem for parsers for natural languages such as English, as we’ll see in Example 

11.22 

Proving that a Grammar is Unambiguous 

While it is undecidable, in general, whether a grammar is ambiguous or unambiguous, it may be possible to prove 

that a particular grammar is either ambiguous or unambiguous.  A grammar G can be shown to be ambiguous by 

exhibiting a single string for which G produces two parse trees.  To see how it might be possible to prove that G is 

unambiguous, recall that G is unambiguous iff every string derivable in G has a single leftmost derivation.  So, if we 

can show that, during any leftmost derivation of any string w  L(G), exactly one rule can be applied, then G is 

unambiguous. 

Example 11.21 The Final Balanced Parens Grammar is Unambiguous 

We return to the final grammar G that we produced for Bal.  G = ({S, ), (}, {), (}, R, S), where: 

 

              R = { S* →   (1) 

  S* → S  (2) 

  S → SS1   (3)    

  S → S1   (4) 

  S1 → (S)  (5) 

   S1 → ()  }. (6) 

 

We prove that G is unambiguous.  Given the leftmost derivation of any string w in L(G), there is, at each step of the 

derivation, a unique symbol, which we’ll call X, that is the leftmost nonterminal in the working string.  Whatever X 

is, it must be expanded by the next rule application, so the only rules that may be applied next are those with X on the 

left-hand side.  There are three nonterminals in G.  We show, for each of them, that the rules that expand them never 

compete in the leftmost derivation of a particular string w.  We do the two easy cases first: 

 

• S*: the only place that S* may occur in a derivation is at the beginning.  If w = , then rule (1) is the only one that 

can be applied.  If w  , then rule (2) is the only one that can be applied.  

• S1: if the next two characters to be derived are (), S1 must expand by rule 6.  Otherwise, it must expand by rule 5. 

 

In order discuss S, we first define, for any matched set of parentheses m, the siblings of m to be the smallest set that 

includes any matched set p adjacent to m and all of p’s siblings.  So, for example, consider the string: 

 

   ( ( ) ( ) ) ( ) ( )  

     1   2    3   4 

       5 

 

The set () labeled 1 has a single sibling, 2.  The set (()()) labeled 5 has two siblings, 3 and 4.  Now we can consider S. 

We observe that: 
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• S must generate a string in Bal and so it must generate a matched set, possibly with siblings.   

• So the first terminal character in any string that S generates is (.  Call the string that starts with that ( and ends with 

the ) that matches it, s.   

• The only thing that S1 can generate is a single matched set of parentheses that has no siblings.   

• Let n be the number of siblings of s.  In order to generate those siblings, S must expand by rule (3) exactly n times 

(producing n copies of S1) before it expands by rule (4) to produce a single S1, which will produce s.  So, at every 

step in a derivation, let p be the number of occurrences of S1 to the right of S.  If p < n, S must expand by rule 3.  

If p = n, S must expand by rule 4. 

Going Too Far 

We must be careful, in getting rid of ambiguity, that we don’t do so at the expense of being able to generate the parse 

trees that we want.  In both the arithmetic expression example and the dangling else case, we were willing to force 

one interpretation.  Sometimes, however, that is not an acceptable solution. 

Example 11.22 Throwing Away The Parses That We Want 

Let’s return to the small English grammar that we showed in Example 11.6.  That grammar is ambiguous.  It has an 

ambiguous attachment problem, similar to the dangling else problem.  Consider the following two sentences: 

 

• Chris likes the girl with a cat. 

• Chris shot the bear with a rifle. 

 

Each of these sentences has two parse trees because, in each case, the prepositional phrase with a N, can be attached 

either to the immediately preceding NP (the girl or the bear) or to the VP.  The correct interpretation for the 

first sentence is that there is a girl with a cat and Chris likes her.  In other words, the prepositional phrase attaches to 

the NP.  Almost certainly, the correct interpretation for the second sentence is that there is a bear (with no rifle) and 

Chris used a rifle to shoot it.  In other words, the prepositional phrase attaches to the VP.  See C 752 for additional 

discussion of this example.  

 

For now, the key point is that we could solve the ambiguity problem by eliminating one of the choices for PP 

attachment.  But then, for one of our two sentences, we’d get a parse tree that corresponds to nonsense.  In other words, 

we might still have a grammar with the required weak generative capacity.  But we would no longer have one with 

the required strong generative capacity.  The solution to this problem is to add some additional mechanism to the 

context-free framework.  That mechanism must be able to choose the parse that corresponds to the most likely 

meaning. 

 

English parsers must have ways to handle various kinds of attachment ambiguities, including those 

caused by prepositional phrases and relative clauses.  C 752. 

11.8 Normal Forms  
So far, we’ve imposed no restrictions on the form of the right-hand side of our grammar rules, although we have seen 

that some kinds of rules, like those whose right-hand side is , can make grammars harder to use.  In this section, we 

consider what happens if we carry the idea of getting rid of -productions a few steps farther. 

 

Normal forms for queries and data can simplify database processing.  C 690.  Normal forms for 

logical formulas can simplify automated reasoning in artificial intelligence systems, C 760, and 

in program verification systems.  C 679. 

 

Let C be any set of data objects.  For example, C might be the set of context-free grammars.  Or it could be the set of 

syntactically valid logical expressions or a set of database queries.  We’ll say that a set F is a normal form for C iff it 

possesses the following two properties: 
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• For every element c of C, except possibly a finite set of special cases, there exists some element f of F such that f 

is equivalent to c with respect to some set of tasks. 

• F is simpler than the original form in which the elements of C are written.  By “simpler” we mean that at least 

some tasks are easier to perform on elements of F than they would be on elements of C. 

 

We define normal forms in order to make other tasks easier.  For example, it might be easier to build a parser if we 

could make some assumptions about the form of the grammar rules that the parser will use.  Recall that, in Section 

5.8, we introduced the notion of a canonical form for a set of objects.  A normal form is a weaker notion, since it does 

not require that there be a unique representation for each object in C, nor does it require that “equivalent” objects map 

to the same representation.  So it is sometimes possible to define useful normal forms when no useful canonical form 

exists.  We’ll now do that for context-free grammars. 

11.8.1 Normal Forms for Grammars 
We’ll define the following two useful normal forms for context-free grammars: 

 

• Chomsky Normal Form: in a Chomsky normal form grammar G = (V, , R, S), all rules have one of the following 

two forms: 

 

• X → a, where a  , or 

• X → BC, where B and C are elements of V - . 

 

Every parse tree that is generated by a grammar in Chomsky normal form has a branching factor of exactly 2, 

except at the branches that lead to the terminal nodes, where the branching factor is 1.  This property makes 

Chomsky normal form grammars useful in several ways, including: 

 

• Parsers can exploit efficient data structures for storing and manipulating binary trees. 

• Every derivation of a string w contains |w|-1 applications of some rule of the form X → BC, and |w| applications 

of some rule of the form X → a.  So it is straightforward to define a decision procedure to determine whether 

w can be generated by a Chomsky normal form grammar G. 

 

In addition, because the form of all the rules is so restricted, it is easier than it would otherwise be to define other 

algorithms that manipulate grammars.   

 

• Greibach Normal Form: in a Greibach normal form grammar G = (V, , R, S), all rules have the following form: 

 

• X → a , where a   and   (V - )*. 

 

In every derivation that is produced by a grammar in Greibach normal form, precisely one terminal is generated 

for each rule application.  This property is useful in several ways, including: 

 

• Every derivation of a string w contains |w| rule applications.  So again it is straightforward to define a decision 

procedure to determine whether w can be generated by a Greibach normal form grammar G. 

• As we’ll see in Theorem 14.2, Greibach normal form grammars can easily be converted to pushdown automata 

with no -transitions.  This is useful because such PDAs are guaranteed to halt. 

Theorem 11.1  Chomsky Normal Form 

Theorem: Given a context-free grammar G, there exists an equivalent Chomsky normal form grammar GC such that 

L(GC) = L(GC) – {}. 

 

Proof:  The proof is by construction, using the algorithm converttoChomsky presented below.   
◼ 
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Theorem 11.2  Greibach Normal Form 

Theorem: Given a context-free grammar G, there exists an equivalent Greibach normal form grammar GG such that 

L(GG) = L(G) – {}. 

 

Proof: The proof is also by construction.   We present it in B 630. 
◼ 

11.8.2 Converting to a Normal Form  
Normal forms are useful if there exists a procedure for converting an arbitrary object into a corresponding object that 

meets the requirements of the normal form.  Algorithms to convert grammars into normal forms generally begin with 

a grammar G and then operate in a series of steps as follows: 

 

1. Apply some transformation to G to get rid of undesirable property 1.  Show that the language generated by G is 

unchanged. 

2. Apply another transformation to G to get rid of undesirable property 2.  Show that the language generated by G 

is unchanged and that undesirable property 1 has not been reintroduced. 

3. Continue until the grammar is in the desired form. 

 

Because it is possible for one transformation to undo the work of an earlier one, the order in which the transformation 

steps are performed is often critical to the correctness of the transformation algorithm.  

 

One transformation that we will exploit in converting grammars both to Chomsky normal form and to Greibach normal 

form is based on the following observation.  Consider a grammar that contains the three rules: 

 

X → aYc 

Y → b 

 Y → ZZ 

 

We can construct an equivalent grammar by replacing the X rule with the rules: 

 

X → abc 

X → aZZc 

 

Instead of letting X generate an instance of Y, X immediately generates whatever Y could have generated.  The 

following theorem generalizes this claim. 

Theorem 11.3  Rule Substitution 

Theorem: Let G = (V, , R, S) be a context-free grammar that contains a rule r of the form X → Y, where  and  

are elements of V* and Y  (V - ).  Let Y → 1 | 2 | … | n be all of G’s rules whose left-hand side is Y.  And let G 

be the result of removing from R the rule r and replacing it by the rules X → 1, X → 2, …, X → n.  Then 

L(G) = L(G). 

 

Proof: We first show that every string in L(G) is also in L(G): suppose that w is in L(G).  If G can derive w without 

using rule r, then G can do so in exactly the same way.  If G can derive w using rule r, then one of its derivations has 

the following form, for some value of k between 1 and n: 

 

          S  …  X  Y   k  …  w. 

 

Then G can derive w with the derivation: 

 

          S  …  X                 k  …  w. 
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Next we show that only strings in L(G) can be in L(G). this must be so because the action of every new rule X → k 

could have been performed in G by applying the rule X → Y and then the rule Y → k. 
◼ 

 

11.8.3 Converting to Chomsky Normal Form  

There exists a straightforward four-step algorithm that converts a grammar G = (V, , R, S) into a new grammar GC 

such that GC is in Chomsky normal form and L(GC) = L(G) – {}.  Define: 

 

     converttoChomsky(G: CFG) =  

1. Let GC be the result of removing from G all -rules, using the algorithm removeEps, defined in Section 

11.7.3. 

2. Let GC be the result of removing from GC all unit productions (rules of the form A → B), using the 

algorithm removeUnits defined below.  It is important that removeUnits run after removeEps since 

removeEps may introduce unit productions.  Once this step has been completed, all rules whose right-hand 

sides have length 1 are in Chomsky normal form (i.e., they are composed of a single terminal symbol).   

3. Let GC be the result of removing from GC all rules whose right-hand sides have length greater than 1 and 

include a terminal (e.g., A → aB or A → BaC).  This step is simple and can be performed by the algorithm 

removeMixed given below.  Once this step has been completed, all rules whose right-hand sides have 

length 1 or 2 are in Chomsky normal form.  

4. Let GC be the result of removing from GC all rules whose right-hand sides have length greater than 2 (e.g., 

A → BCDE).  This step too is simple.  It can be performed by the algorithm removeLong given below. 

5. Return GC. 

 

A unit production is a rule whose right-hand side consists of a single nonterminal symbol.  The job of removeUnits 

is to remove all unit productions and to replace them by a set of other rules that accomplish the job previously done 

by the unit productions.  So, for example, suppose that we start with a grammar G that contains the following rules: 

 

 S → X Y 

 X → A 

 A → B | a 

 B → b 

 

Once we get rid of unit productions, it will no longer be possible for X to become A (and then B) and thus to go on to 

generate a or b.  So X will need the ability to go directly to a and b, without any intermediate steps.  We can define 

removeUnits as follows: 

 

     removeUnits(G: CFG) =  

1. Let G = G. 

2. Until no unit productions remain in G do: 

2.1. Choose some unit production X → Y.  

2.2. Remove it from G. 

2.3. Consider only rules that still remain in G.  For every rule Y → , where   V*, do: 

        Add to G the rule X →  unless that is a rule that has already been removed once. 

3. Return G. 
 

Notice that we have not bothered to check to make sure that we don’t insert a rule that is already present.  Since R, the 

set of rules, is a set, inserting an element that is already in the set has no effect. 

 

At each step of its operation, removeUnits is performing the kind of rule substitution described in Theorem 11.3.  (It 

happens that both  and  are empty.)  So that theorem tells us that, at each step, the language generated by G is 

unchanged from the previous step.  If removeUnits halts, it is clear that all unit productions have been removed.  It is 

less obvious that removeUnits can be guaranteed to halt.  At each step, one unit production is removed, but several 

new rules may be added, including new unit productions.  To see that removeUnit must halt, we observe that there is 



  

Chapter 11                                     172                         Context-Free Grammars 

a bound = |V - |2 on the number of unit productions that can be formed from a fixed set V -  of nonterminals.  At 

each step, removeUnits removes one element from that set and that element can never be reinserted.  So removeUnits 

must halt in at most |V - |2 steps. 

 

Example 11.23 Removing Unit Productions 

Let G = (V, , R, S), where: 

 

              R = { S → X Y 

   X → A 

   A → B | a 

   B → b 

   Y → T 

   T → Y | c  }. 

 

The order in which removeUnits chooses unit productions to remove doesn’t matter.  We’ll consider one order it could 

choose: 

 

Remove X → A.  Since A → B | a, add X → B | a.   

Remove X → B.  Add X → b. 

Remove Y → T.  Add Y → Y | c.  Notice that we’ve added Y → Y, which is useless, but it will be removed later. 

Remove Y → Y.  Consider adding Y → T, but don’t since it has previously been removed. 

Remove A → B.  Add A → b. 

Remove T → Y.  Add T → c, but with no effect since it was already present. 

 

At this point, the rules of G are: 

 

 S → X Y 

 A → a | b 

 B → b 

 T → c 

 X → a | b 

 Y → c 

 

No unit productions remain, so removeUnits halts. 

 

We must now define the two straightforward algorithms that are required by steps 3 and 4 of the conversion algorithm 

that we sketched above.  We begin by defining: 

 

        removeMixed(G: CFG) =  

1. Let G = G. 

2. Create a new nonterminal Ta for each terminal a in . 

3. Modify each rule in G whose right-hand side has length greater than 1 and that contains a terminal symbol 

by substituting Ta for each occurrence of the terminal a. 

4. Add to G, for each Ta, the rule Ta → a. 

5. Return G. 
 

Example 11.24 Removing Mixed Productions 

The result of applying removeMixed to the grammar:  
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  A → a  

  A → a B 

  A → BaC 

  A → BbC 

 

is the grammar: 

 

  A → a  

  A → Ta B 

  A → BTa C 

  A → BTbC 

  Ta → a   

  Tb → b 

 

Finally we define removeLong.  The idea for removeLong is simple.  If there is a rule with n symbols on its right-hand 

side, replace it with a set of rules.  The first rule generates the first symbol followed by a new symbol that will 

correspond to “the rest”.  The next rule rewrites that symbol as the second of the original symbols, followed by yet 

another new one, again corresponding to “the rest”, and so forth, until there are only two symbols left to generate.  So 

we define: 

 

        removeLong(G: CFG) =  

1. Let G = G. 

2. For each G rule rk of the form A → N1N2N3N4…Nn, n > 2, create new nonterminals Mk
2, Mk

3, … Mk
n-1. 

3. In G, replace rk with the rule A → N1Mk
2. 

4. To G, add the rules Mk
2 → N2Mk

3, Mk
3 → N3Mk

4, … Mk
n-1 → Nn-1Nn. 

5. Return G. 
 

When we illustrate this algorithm, we typically omit the superscripts on the M’s, and, instead, guarantee that we use 

distinct nonterminals by using distinct subscripts. 

Example 11.25 Removing Rules with Long Right-Hand Sides 

The result of applying removeLong to the single rule grammar:  

 

  A → BCDEF     

 

is the grammar with rules: 

 

  A → BM2 

M2 → CM3 

M3 → DM4 

M4 → EF 

 

We can now illustrate the four steps of converttoChomsky.  

Example 11.26 Converting a Grammar to Chomsky Normal Form 

Let G = ({S, A, B, C, a, c}, {A, B, C}, R, S), where: 

 

              R = { S → aACa 

   A → B | a 

   B → C | c 

  C → cC |  }. 
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We convert G to Chomsky normal form.  Step 1 applies removeEps to eliminate -productions.  We compute N, the 

set of nullable variables.  Initially N = {C}. Because of the rule B → C, we add B.  Then, because of the rule A → B, 

we add A.  So N = {A, B, C}.  Since both A and C are nullable, we derive three new rules from the first original rule, 

giving us: 

 

 S → aACa | aAa | aCa | aa 

 

We add A →  and B → , but both of them will disappear at the end of this step.  We also add C → c.  So removeEps 

returns the rule set: 

 

 S → aACa | aAa | aCa | aa 

 A → B | a 

 B → C | c 

C → cC | c 

 

Next we apply removeUnits: 

 

   Remove A → B.  Add A → C | c.   

   Remove B → C.  Add B → cC (and B → c, but it was already there).   

   Remove A → C.  Add A → cC (and A → c, but it was already there).    

 

So removeUnits returns the rule set: 

 

 S → aACa | aAa | aCa | aa 

 A →  a | c | cC   

 B → c | cC 

C → cC | c 

 

Next we apply removeMixed, which returns the rule set: 

 

 S → TaACTa | TaATa | TaCTa | TaTa 

 A →  a | c | TcC   

 B → c | TcC 

C → TcC | c 

 Ta → a 

 Tc → c 

 

Finally, we apply removeLong, which returns the rule set: 

 

 S → TaS1 

S1 → AS2 

S2 → CTa  

S → TaS3 

S3 → ATa  

 

S → TaS4 

S4 → CTa  

 

S → TaTa 

 

 

 

 A →  a | c | TcC   

 B → c | TcC 

C → TcC | c 

 Ta → a 

 Tc → c 

 

From Example 11.26 we see that the Chomsky normal form version of a grammar may be longer than the original 

grammar was.  How much longer?  And how much time may be required to execute the conversion algorithm?  We 
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can answer both of these questions by answering them for each of the steps that the conversion algorithm executes.  

Let n be the length of an original grammar G.  Then we have: 

 

1. Use removeEps to remove -rules: suppose that G contains a rule of the form X → A1 A2 A3 …Ak.  If all of the 

variables A1 through Ak are nullable, this single rule will be rewritten as 2k-1 rules (since each of the k nonterminals 

can either be present or not, except that they cannot all be absent).  Since k can grow as n, we have that the length 

of the grammar that removeEps produces (and thus the amount of time that removeEps requires) is O(2n).  In this 

worst case, the conversion algorithm becomes impractical for all but toy grammars.  We can prevent this worst 

case from occurring though.  Suppose that all right-hand sides can be guaranteed to be short.  For example, 

suppose they all have length at most 2.  Then no rule will be rewritten as more than 3 rules.  We can make this 

guarantee if we modify converttoChomsky slightly.  We will run removeLong as step 1 rather than as step 4.  Note 

that none of the other steps can create a rule whose right-hand side is longer than the right-hand side of some rule 

that already exists.  So it is not necessary to rerun removeLong later.  With this change, removeEps runs in linear 

time. 

2. Use removeUnits to remove unit productions: we’ve already shown that this step must halt in at most  |V - |2 

steps.  Each of those steps takes constant time and may create one new rule.  So the length of the grammar that 

removeUnits produces, as well as the time required for it to run, is O(n2).  

3. Use removeMixed to remove rules with right-hand sides of length greater than 1 and that contain a terminal 

symbol: this step runs in linear time and constructs a grammar whose size is O(n).  

4. Use removeLong to remove rules with long right-hand sides: this step runs in linear time and constructs a grammar 

whose size is O(n). 

 

So, if we change converttoChomsky so that it does step 4 first, its time complexity is O(n2) and the size of the grammar 

that it produces is also O(n2). 

11.8.4 The Price of Normal Forms 
While normal forms are useful for many things, as we will see over the next few chapters, it is important to keep in 

mind that they exact a price and it’s one that we may or may not be willing to pay, depending on the application.  If 

G is an arbitrary context-free grammar and G is an equivalent grammar in Chomsky (or Greibach) normal form, then 

G and G generate the same set of strings, but only in rare cases (for example if G happened already to be in normal 

form) do they assign to those strings the same parse trees.  Thus, while converting a grammar to a normal form has no 

effect on its weak generative capacity, it may have a significant effect on its strong generative capacity.    

11.9 Island Grammars  
Suppose that we want to parse strings that possess one or more of the following properties: 

 

• Some (perhaps many) of them are ill-formed.  In other words, while there may be a grammar that describes what 

strings are “supposed to look like”, there is no guarantee that the actual strings we’ll see conform to those rules.  

Consider, for example, any grammar you can imagine for English.  Now imagine picking up the phone and hearing 

something like, “Um, I uh need a copy of uh my bill for er Ap, no May, I think, or June, maybe all of them uh, I 

guess that would work.”  Or consider a grammar for HTML.  It will require that tags be properly nested.  But 

strings like <b><i>bold italic</b></i> show up not infrequently in HTML documents.  Most browsers 

will do the right thing with them, so they never get debugged.   

 

• We simply don’t know enough about them to build an exact model, although we do know something about some 

patterns that we think the strings will contain. 

 

• They may contain substrings in more than one language.  For example, bi(multi)lingual people often mix their 

speech.  We even give names to some of the resulting hybrids: Spanglish, Japlish, Hinglish, etc.  Or consider a 

typical Web page.  It may contain fragments of HTML, Java script, or other languages, interleaved with each 

other.  Even when parsing strings that are all in the same “language”, dialectical issues may arise.  For example, 

in response to the question, “Are you going to fix dinner tonight?” an American speaker of English might say, “I 
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could,” while a British speaker of English might say, “I could do.”  Similarly, in analyzing legacy software, there 

are countless dialects of languages like Fortran and Cobol. 

 

• They may contain some substrings we care about, interleaved with other substrings we don’t care about and don’t 

want to waste time parsing.  For example, when parsing an XML document to determine its top level structure, 

we may have no interest in the text or even in many of the tags. 

 

Island grammars can play a useful role in reverse engineering software systems C 688. 

 

In all of these cases, the role of any grammar we might build is different than the role a grammar plays, say, in a 

compiler.  In the latter case, the grammar is prescriptive.  A compiler can simply reject inputs that do not conform to 

the grammar it is given.  Contrast that with a tool whose job is to analyze legacy software or handle customer phone 

calls.  Such a tool must do the best it can with the input that it sees.  When building tools of that sort, it may make 

sense to exploit what is called an island grammar.  An island grammar is a grammar that has two parts: 

 

• A set of detailed rules that describe the fragments that we care about.  We’ll call these fragments islands. 

• A set of flexible rules that can match everything else.  We’ll call everything else the water. 

 

A very simple form of island grammar is a regular expression that just describes the patterns that we seek.  A regular 

expression matcher ignores those parts of the input string that do not match the patterns.  But suppose that the patterns 

we are looking for cannot be described with regular expressions.  For example, they may require balanced parentheses.  

Or suppose that we want to assign structure to the islands.  In that case, we need something more powerful than a 

regular expression (or a regular grammar).  One way to view a context-free island grammar is that it is a hybrid 

between a context-free grammar and a set of regular expressions. 

 

To see how island grammars work, consider the problem of examining legacy software to determine patterns of static 

subroutine invocation.  To solve this problem, we could use the following island grammar, which is a simplification 

and modification of one presented in [Moonen 2001]: 

 

 [1] <input> → <chunk>* 

 [2] <chunk> → CALL <id> (<expr>)  {cons(CALL)} 

 [3] <chunk> → CALL ERROR (<expr>) {reject} 

 [4] <chunk> → <water>  

 [5] <water> → *    {avoid} 

 

• Rule 1 says that a complete input file is a set of chunks.  The next three rules describe three kinds of chunks:   

• Rule 2 describes the chunks we are trying to find.  Assume that another set of rules (such as the ones we 

considered in Example 11.19) defines the valid syntax for expressions.  Those rules may exploit the full 

power of a context-free grammar, for example to guarantee that parenthesized expressions are properly 

nested.  Then rule 2 will find well-formed function calls.  The action associated with it, {cons(CALL)}, tells 

the parser what kind of node to build whenever this rule is used. 

• Rule 3 describes chunks that, although they could be formed by rule 2, are structures that we know we are 

not interested in.  In this case, there is a special kind of error call that we want to ignore.  The action {reject} 

says that whenever this rule matches, its result should be ignored. 

• Rule 4 describes water, i.e., the chunks that correspond to the parts of the program that aren’t CALL 

statements. 

• Rule 5 is used to generate the water.  But notice that it has the {avoid} action associated with it.  That means that 

it will not be used to match any text that can be matched by some other, non-avoiding rule.   

 

Island grammars can be exploited by appropriately crafted parsers.  But we should note here, to avoid confusion, that 

there is also a somewhat different notion, called island parsing, in which the goal is to use a standard grammar to 

produce a complete parse given an input string.  But, while conventional parsers read and analyze their inputs left-to-

right, an island parser first scans its input looking for one or more regions where it seems likely that a correct parse 

tree can be built.  Then it grows the parse tree outward from those “islands” of (relative) certainty.  If the input is ill-

formed (as is likely to happen, for example, in the case of spoken language understanding), then the final output of 
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the parser will be a sequence of islands, rather than a complete parse.  So island grammars and island parsing are both 

techniques for coping with ill-formed and unpredictable inputs.  Island grammars approach the task by specifying, at 

grammar-writing time, which parts of the input should be analyzed and which should be ignored.  Island parsers, in 

this other sense, approach the task by using a full grammar and deciding, at parse time, which input fragments appear 

to be parsable and which don’t. 

11.10  Stochastic Context-Free Grammars  
Recall that, at the end of our discussion of finite state machines in Chapter 5, we introduced the idea of a stochastic 

FSM: an NDFSM whose transitions have been augmented with probabilities that describe some phenomenon that we 

want to model.  We can apply that same idea to context-free grammars:  We can add probabilities to grammar rules 

and so create a stochastic context-free grammar (also called a probabilistic context-free grammar) that generates 

strings whose distribution matches some naturally occurring distribution with which we are concerned. 

 

A stochastic context-free grammar can be used to generate random English text that may seem 

real enough to fool some people .  

 

A stochastic context-free grammar G is a quintuple (V, , R, S, D), where: 

 

• V is the rule alphabet, which contains nonterminals (symbols that are used in the grammar but that do not appear 

in strings in the language) and terminals, 

•  (the set of terminals) is a subset of V, 

• R (the set of rules) is a finite subset of (V - ) V*,  

• S (the start symbol) can be any element of V - , 

• D is a function from R to [0 - 1].  So D assigns a probability to each rule in R.  D must satisfy the requirement 

that, for every nonterminal symbol X, the sum of the probabilities associated with all rules whose left-hand side 

is X must be 1.  

Example 11.27 A Simple Stochastic Grammar 

Recall PalEven = {wwR : w  {a, b}*}, the language of even-length palindromes of a’s and b’s.  Suppose that we 

want to describe the specific case in which a’s occur three times as often as b’s do.  Then we might write the grammar 

G = ({S, a, b}, {a, b}, R, S, D), where R and D are defined as follows: 

 

  S → aSa [.72] 

   S → bSb [.24] 

   S →   [.04] 

 

Given a grammar G and a string s, the probability of a particular parse tree t is the product of the probabilities 

associated with the rules that were used to generate it.  In other words, if we let C be the collection (in which duplicates 

count) of rules that were used to generate t and we let Pr(r) be the probability associated with rule r, then: 

 




=
Cr

rt )Pr()Pr( . 

 

Stochastic context-free grammars play an important role in natural language processing.  C 754. 

 

Stochastic grammars can be used to answer two important kinds of questions: 

 

• In an error-free environment, we know that we need to analyze a particular string s.  So we want to solve the 

following problem: Given s, find the most likely parse tree for it. 

 

• In a noisy environment, we may not be sure exactly what string we need to analyze.  For example, suppose that it 

is possible that there have been spelling errors, so the true string is similar but not identical to the one we have 

observed.  Or suppose that there may have been transmission errors.  Or suppose that we have transcribed a spoken 
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string and it is possible that we didn’t hear it correctly.  In all of these cases we want to solve the following problem: 

Given a set of possible true strings X and an observed string o, find the particular string s (and possibly also the 

most likely parse for it) that is most likely to have been the one that was actually generated.  Note that the 

probability of generating any particular string w is the sum of the probabilities of generating each possible parse 

tree for w.  In other words, if T is the set of possible parse trees for w, then the total probability of generating w is: 

 




=
Tt

tw )Pr()Pr( . 

 

Then the sentence s that is most likely to have been generated, given the observation o, is the one with the highest 

conditional probability given o.  Recall that argmax of w returns the value of the argument w that maximizes the 

value of the function it is given.  So the highest probability sentence s is: 

 

)|(Prmaxarg ows
Xw

=  

   

)Pr(

)Pr()|Pr(
maxarg

o

wwo

Xw

= . 

 

Stochastic context-free grammars can be used model the three-dimensional structure of RNA.  C 

737. 

 

In Chapter 15, we will discuss techniques for parsing context-free languages that are defined by standard (i.e., without 

probabilistic information) context-free grammars.  Those techniques can be extended to create techniques for parsing 

using stochastic grammars.  So they can be used to answer both of the questions that we just presented. 

11.11  Exercises 
1) Let  = {a, b}. For the languages that are defined by each of the following grammars, do each of the following: 

(i) List five strings that are in L. 

(ii) List five strings that are not in L (or as many as there are, whichever is greater). 

(iii) Describe L concisely.  You can use regular expressions, expressions using variables (e.g., anbn, or 

set theoretic expressions (e.g., {x: …}). 

(iv) Indicate whether or not L is regular.  Prove your answer. 

a) S → aS | Sb |  

b) S → aSa | bSb | a | b 

c) S → aS | bS |  

d) S → aS | aSbS |  

 

2) Let G be the grammar of Example 11.12.  Show a third parse tree that G can produce for the string (())(). 

 

3) Consider the following grammar G: 

 

S → 0S1 | SS | 10 

 

Show a parse tree produced by G for each of the following strings: 

a) 010110. 

b) 00101101. 
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4) Consider the following context free grammar G: 

 S → aSa  

 S → T 

 S →  

 T → bT 

 T → cT 

 T →  

One of these rules is redundant and could be removed without altering L(G).  Which one? 

 

5) Using the simple English grammar that we showed in Example 11.6, show two parse trees for each of the 

following sentences.  In each case, indicate which parse tree almost certainly corresponds to the intended 

meaning of the sentence: 

a) The bear shot Fluffy with the rifle. 

b) Fluffy likes the girl with the chocolate. 

 

6) Show a context-free grammar for each of the following languages L: 

a) BalDelim = {w : w is a string of delimiters: (, ), [, ], {, }, that are properly balanced}. 

b) {aibj : 2i = 3j + 1}. 

c) {aibj : 2i  3j + 1}. 

d) {w  {a, b}* : #a(w) = 2 #b(w)}.}. 

e) L = {w  {a, b}* : w = wR}. 

f) {aibjck : i, j, k  0 and (i  j or j  k)}. 

g) {aibjck : i, j, k  0 and (k  i  or  k  j)}. 

h) {w  {a, b}* : every prefix of w has at least as many a’s as b’s}. 

i) {anbm : m  n, m-n is even}. 

j) {ambncpdq : m, n, p, q  0 and m + n = p + q}. 

k) {xcn : x  {a, b}* and (#a(x) = n or #b(x) = n)}. 

l) {bi#bi+1
R : bi is the binary representation of some integer i, i  0, without leading zeros}. (For example 

101#011  L.) 

m) {xR#y : x, y  {0, 1}* and x is a substring of y}. 

 

7) Let G be the ambiguous expression grammar of Example 11.14.  Show at least three different parse trees that 

can be generated from G for the string id+id*id*id.  

 

8) Consider the unambiguous expression grammar G of Example 11.19.   

a) Trace the derivation of the string id+id*id*id in G. 

b) Add exponentiation () and unary minus (-) to G, assigning the highest precedence to unary minus, followed 

by exponentiation, multiplication, and addition, in that order. 

 

9) Let L = {w  {a, b, , , (, ), *, +}* : w is a syntactically legal regular expression}.    

a) Write an unambiguous context-free grammar that generates L.  Your grammar should have a structure similar 

to the arithmetic expression grammar G that we presented in Example 11.19.  It should create parse trees 

that: 

• Associate left given operators of equal precedence, and 

• Correspond to assigning the following precedence levels to the operators (from highest to lowest): 

• * and + 

• concatenation 

•  

b) Show the parse tree that your grammar will produce for the string (a  b) ba*. 
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10) Let L = {w  {A - Z, , , , →, (, )}* : w is a syntactically legal Boolean expression}.   

a) Write an unambiguous context-free grammar that generates L and that creates parse trees that: 

• Associate left given operators of equal precedence, and 

• Correspond to assigning the following precedence levels to the operators (from highest to lowest): , , 

, and →.  

b) Show the parse tree that your grammar will produce for the string P  R → Q → S. 

 

11) In C 704, we present a simplified grammar for URIs (Uniform Resource Identifiers), the names that we use to 

refer to objects on the Web.   

a) Using that grammar, show a parse tree for: 

 
https://www.mystuff.wow/widgets/fradgit#sword 

 

b) Write a regular expression that is equivalent to the grammar that we present. 

 

12) Prove that each of the following grammars is correct: 

a) The grammar, shown in Example 11.3, for the language PalEven.  

b) The grammar, shown in Example 11.1, for the language Bal. 

 

13) For each of the following grammars G, show that G is ambiguous.  Then find an equivalent grammar that is not 

ambiguous. 

a) ({S, A, B, T, a, c}, {a, c}, R, S), where R = {S → AB, S → BA, A → aA, A → ac, B → Tc, T → aT, T → 

a}.  

b) ({S, a, b}, {a, b}, R, S), where R = {S → , S → aSa, S → bSb, S → aSb, S → bSa, S → SS}. 

c) {{S, A, B, T, a, c}, {a, c}, R, S), where R = {S → AB, A → AA, A → a, B → Tc, T → aT, T → a}.  

d) ({S, a, b}, {a, b}, R, S), where R = {S → aSb, S → bSa, S → SS , S → }.  (G is the grammar that we 

presented in Example 11.10 for the language L = {w  {a,b}*: #a(w) = #b(w)}.) 

e) ({S, a, b}, {a, b}, R, S), where R = {S → aSb, S → aaSb, S → }.  

 

14) Let G be any context-free grammar.  Show that the number of strings that have a derivation in G of length n or 

less, for any n > 0, is finite.  

 

15) Consider the fragment of a Java grammar that is presented in Example 11.20.  How could it be changed to force 

each else clause to be attached to the outermost possible if statement?  

 

16) How does the COND form in Lisp, as described in C 672, avoid the dangling else problem? 

 

17) Consider the grammar G of Example 11.19.   

a) Convert G to Chomsky normal form. 

b) Consider the string id*id+id.   

i) Show the parse tree that G produces for it. 

ii) Show the parse tree  that your Chomsky normal form grammar produces for it. 

 

18) Convert each of the following grammars to Chomsky normal form: 

a) S → a S a 

 S → B 

 B → b b C 

 B → b b 

 C →  

 C → c C 
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b) S → ABC 

A → aC | D 

B → bB |  | A 

C → Ac |  | Cc 

D → aa 

c) S → aTVa 

T → aTa | bTb |  | V 

V → cVc |   
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12 Pushdown Automata 

Grammars define context-free languages.  We’d also like a computational formalism that is powerful enough to enable 

us to build an acceptor for every context-free language.  In this chapter, we describe such a formalism.   

12.1 Definition of a (Nondeterministic) PDA 
A  pushdown automaton, or PDA, is a finite state machine that has been augmented by a single stack.  In a minute, 

we will present the formal definition of the PDA model that we will use.  But, before we do that, one caveat to readers 

of other books is in order.  There are several competing PDA definitions, from which we have chosen one to present 

here.  All are provably equivalent, in the sense that, for all i and j, if there exists a versioni PDA that accepts some 

language L then there also exists a versionj PDA that accepts L.  We’ll return to this issue in Section 12.5, where we 

will mention a few of the other models and sketch an equivalence proof.  For now, simply beware of the fact that other 

definitions are also in widespread use. 

 

We will use the following definition:  A pushdown automaton (or PDA) M is a sixtuple (K, , , , s, A), where: 

 

• K is a finite set of states, 

•  is the input alphabet, 

•  is the stack alphabet, 

• s  K is the start state, 

• A  K is the set of accepting states, and 

•  is the transition relation.  It is a finite subset of  

 

(K         (  {})            *                    )                   (      K               *                          ).   

 

 state       input or     string of symbols to pop                         state             string of symbols to 

         from top of stack                                  push on top of stack 

        

 

A configuration of a PDA M is an element of K  *  *.  It captures the three things that can make a difference to 

M’s future behavior: 

 

• its current state, 

• the input that is still left to read, and 

• the contents of its stack. 

 

The initial configuration of a PDA M, on input w, is (s, w, ).   

 

We will use the following notational convention for describing M’s stack as a string:  The top of the stack is to the left 

of the string.  So: 

 
  c 

  a will be written as:   cab 
  b 

 

If a sequence c1c2…cn of characters is pushed onto the stack, they will be pushed rightmost first, so if the value of the 

stack before the push was s, the value after the push will be c1c2…cns.   

 

Analogously to what we did for FSMs, we define the relation yields-in-one-step, written |-M.  Yields-in-one-step relates 

configuration1 to configuration2 iff M can move from configuration1 to configuration2 in one step.  Let c be any 

element of   {}, let 1, 2 and  be any elements of *, and let w be any element of *.  Then: 

 

 (q1, cw, 1) |-M (q2, w, 2) iff ((q1, c, 1), (q2, 2))  . 
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Note two things about what a transition ((q1, c, 1), (q2, 2)) says about how M manipulates its stack: 

 

• M may only take the transition if the string 1 matches the current top of the stack.  If it does, and the transition is 

taken, then M pops 1 and then pushes 2.  M cannot “peek” at the top of its stack without popping off the values 

that it examines. 

 

• If 1 = , then M must match  against the top of the stack.  But  matches everywhere.  So letting 1 be  is equivalent 

to saying “without bothering to check the current value of the stack”.  It is not equivalent to saying, “if the stack is 

empty.”  In our definition, there is no way to say that directly, although we will see that we can create a way by 

letting M, before it does anything else, push a special marker onto the stack.  Then, whenever that marker is on the 

top of the stack, the stack is otherwise empty. 

 

The relation yields, written |-M*, is the reflexive, transitive closure of |-M.  So configuration C1 yields configuration C2 

iff:  

 

 C1 |-M*  C2. 

 

A computation by M is a finite sequence of configurations C0, C1, …, Cn for some n  0 such that: 

 

• C0 is an initial configuration, 

• Cn is of the form (q, , ), for some state q  K and some string  in *, and 

• C0 |-M  C1 |-M  C2 |-M … |-M  Cn. 

 

Note that we have defined the behavior of a PDA M by a transition relation , not a transition function.  Thus we 

allow nondeterminism.  If M is in some configuration (q1, s, ), it is possible that: 

 

•  contains exactly one transition that matches.  In that case, M makes the specified move. 

•  contains more than one transition that matches.  In that case, M chooses one of them.  Each choice defines one 

computation that M may perform. 

•  contains no transition that matches.  In that case, the computation that led to that configuration halts. 

 

Let C be a computation of M on input w  *.  Then we will say that: 

 

• C is an accepting computation iff C = (s, w, ) |-M* (q, , ), for some q  A.  Note the strength of this requirement:  

A computation accepts only if it runs out of input when it is in an accepting state and the stack is empty.  

 

• C is a rejecting computation iff C = (s, w, ) |-M* (q, w, ), where C is not an accepting computation and where 

M has no moves that it can make from (q, w, ).  A computation can reject only if the criteria for accepting have 

not been met, and there are no further moves (including following -transitions) that can be taken.  

 

Let w be a string that is an element of *.  Then we will say that: 

 

• M accepts w iff at least one of its computations accepts. 

 

• M rejects w iff all of its computations reject.   

 

The language accepted by M, denoted L(M), is the set of all strings accepted by M.  Note that it is possible that, on 

input w, M neither accepts nor rejects. 

 

In all the examples that follow, we will draw a transition ((q1, c, 1), (q2, 2)) as an arc from q1 to q2, labeled c/1/2.  

So such a transition should be read to say, “If c matches the input and  1 matches the top of the stack, the transition 

from q1 to q2 can be taken, in which case c should be removed from the input, 1 should be popped from the stack, and 

2 should be pushed onto it.”  If c = , then the transition can be taken without consuming any input.  If 1 = , the 
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transition can be taken without checking the stack or popping anything.  If 2 = , nothing is pushed onto the stack 

when the transition is taken.  As we did with FSMs, we will use a double circle to indicate accepting states. 

 

Even very simple PDAs may be able to accept languages that cannot be accepted by any FSM.  The power of such 

machines comes from the ability of the stack to count. 

Example 12.1 The Balanced Parentheses Language 

Consider again Bal = {w  {), (}* : the parentheses are balanced}.  The following one-state PDA M accepts Bal.  M 

uses its stack to count the number of left parentheses that have not yet been matched.  We show M graphically and 

then as a sixtuple: 

 

                                                               (//( 

                                             s 

                      )/(/ 
 

 

M = (K, , , , s, A), where: 

 

 K= {s},    (the states) 

  = {(, )},    (the input alphabet) 

  = {(},    (the stack alphabet) 

 A = {s}, and   (the accepting state) 

  = {((s, (, ), (s, ( )),  

          ((s, ), ( ), (s, ))}.    

 

If M sees a (, it pushes it onto the stack (regardless of what was already there).  If it sees a ) and there is a ( that can be 

popped off the stack, M does so.  If it sees a ) and there is no ( to pop, M halts without accepting.  If, after consuming 

its entire input string, M’s stack is empty, M accepts.  If the stack is not empty, M rejects. 

 

PDAs, like FSMs, can use their states to remember facts about the structure of the string that has been read so far.  We 

see this in the next example. 

Example 12.2 AnBn 

Consider again AnBn = {anbn : n  0}. The following PDA M accepts AnBn.  M uses its states to guarantee that it only 

accepts strings that belong to a*b*.  It uses its stack to count a’s so that it can compare them to the b’s.  We show M 

graphically: 

 

 

                                   a//a                                      b/a/ 

                                                              b/a/ 

                                                 s                                            f 

 

     

Writing it out, we have M = (K, , , , s, A), where: 

 

 K= {s, f},   (the states) 

  = {a, b)},    (the input alphabet) 

  = {a},    (the stack alphabet) 

 A = {s, f}, and   (the accepting states) 

  = {((s, a, ), (s, a)),    

          ((s, b, a), (f, )), 

         ((f, b, a), (f, ))}.    
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Remember that M only accepts if, when it has consumed its entire input string, it is in an accepting state and its stack 

is empty.  So, for example, M will reject aaa, even though it will be in state s, an accepting state, when it runs out of 

input.  The stack at that point will contain aaa. 

 

Example 12.3 WcWR 

Let WcWR = {wcwR: w  {a, b}*}.  The following PDA M accepts WcWR: 

 

 

                                   a//a                                     a/a/ 

                                                              c// 

                                                 s                                            f 

 

                                  b//b                                     b/b/ 

 

 

M moves from state s, in which it is recording w, to state f, in which it is checking for wR, when it sees the character 

c.  Since every string in WcWR must contain the middle c, state s is not an accepting state. 

 

The definition that we have chosen to use for a PDA is flexible; it allows several symbols to be pushed or popped 

from the stack in one move.  This will turn out to be particularly useful when we attempt to build PDAs that correspond 

to practical grammars that contain rules like T → T  F (the multiplication rule that was part of the arithmetic 

expression grammar that we defined in Example 11.19).  But we illustrate the use of this flexibility here on a simple 

case. 

Example 12.4 AnB2n 

Let AnB2n = {anb2n : n  0}.  The following PDA M accepts AnB2n by pushing two a’s onto the stack for every a in 

the input string.  Then each b pops a single a: 

 

 

                                a//aa                                     b/a/ 

                                                              b/a/ 

                                                 s                                            f 

 

     

12.2 Deterministic and Nondeterministic PDAs 
The definition of a PDA that we have presented allows nondeterminism.  It sometimes makes sense, however, to 

restrict our attention to deterministic PDAs.  In this section we will define what we mean by a deterministic PDA.  We 

also show some examples of the power of nondeterminism in PDAs.  Unfortunately, in contrast to the situation with 

FSMs, and as we will prove in Theorem 13.13, there exist nondeterministic PDAs for which no equivalent 

deterministic PDA exists. 

12.2.1 Definition of a Deterministic PDA 
Define a PDA M to be deterministic iff there exists no configuration of M in which M has a choice of what to do next.  

For this to be true, two conditions must hold: 

 

1. M contains no pairs of transitions that compete with each other.   

2. If q is an accepting state of M, then there is no transition ((q, , ), (p, a)) for any p or a.  In other words, M is 

never forced to choose between accepting and continuing.  Any transitions out of an accepting state must either 

consume input (since, if there is remaining input, M does not have the option of accepting) or pop something 

from the stack (since, if the stack is not empty, M does not have the option of accepting).    
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So far, all of the PDAs that we have built have been deterministic.  So each machine followed only a single 

computational path.   

12.2.2 Exploiting Nondeterminism 
But a PDA may be designed to have multiple competing moves from a single configuration.  As with FSMs, the easiest 

way to envision the operation of a nondeterministic PDA M is as a tree, as shown in Figure 12.1.  Each node in the 

tree corresponds to a configuration of M and each path from the root to a leaf node corresponds to one computation 

that M might perform. 

 

 

 

              q1,abab,  

 

 

 q2, abab, #        q1, bab, a# 

 

 

     q1, ab, ab#      q3, ab, a# 

 

Figure 12.1  Viewing nondeterminism as search through a space of computation paths 

 

 

 

Notice that the state, the stack, and the remaining input can be different along different paths.  As a result, it will not 

be possible to simulate all paths in parallel, the way we did for NDFSMs. 

Example 12.5 Even Length Palindromes 

Consider again PalEven = {wwR : w  {a,b}*}, the language of even-length palindromes of a’s and b’s.   The 

following nondeterministic PDA M accepts PalEven: 

 

                                   a//a                                     a/a/ 

                                                              // 

                                                 s                                            f 

 

                                  b//b                                      b/b/ 

 

 

M is nondeterministic because it cannot know when it has reached the middle of its input.  Before each character is 

read, it has two choices:  It can guess that it has not yet gotten to the middle.  In that case, it stays in state s, where it 

pushes each symbol it reads.  Or it can guess that it has reached the middle.  In that case, it takes the -transition to 

state f, where it pops one symbol for each symbol that it reads. 

 

Example 12.6 Equal Numbers of a’s and b’s 

Let L = {w  {a, b}* : #a(w) = #b(w)}.  Now we don’t know the order in which the a’s and b’s will occur.  They can 

be interleaved.  So for example, any PDA to accept L must accept aabbba.  The only way to count the number of 

characters that have not yet found their mates is to use the stack.  So the stack will sometimes count a’s and sometimes 

count b’s.  It will count whatever it has seen more of.  The following simple PDA accepts L: 
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                             a//a                                     

                                                                   a/b/ 

                                                 s                                    

 

                         b/a/                              b//b 

 

This machine is highly nondeterministic.  Whenever it sees an a in the input, it can either push it (which is the right 

thing to do if it should be counting a’s) or attempt to pop a b (which is the right thing to do if it should be counting 

b’s).  All the computations that make the wrong guess will fail to accept since they will not succeed in clearing the 

stack.  But if #a(w) = #b(w), there will be one computation that will accept.   

 

Example 12.7 The a Region and the b Region are Different 

Let L = {ambn : m  n; m, n > 0}.  We want to build a PDA M to accept L.  It is hard to build a machine that looks for 

something negative, like .  But we can break L into two sublanguages: {ambn : 0 < m < n} and {ambn : 0 < n < m}.  

Either there are more a’s or more b’s.  M must accept any string that is in either of those sublanguages.  So M is:  

 

 

    a//a                                      b/a/                                    /a/ 

                                  b/a/                                        /a/ 

                 1                                             2                                          3 

                                                                             

                   

                                     b// 

         4                    b// 

 

 

As long as M sees a’s, it stays in state 1 and pushes each a onto the stack.  When it sees the first b, it goes to state 2.  

It will accept nothing but b’s from that point on.  So far, its behavior has been deterministic.  But, from state 2, it must 

make choices.  Each time it sees another b and there is an a on the stack, it should consume the b and pop the a and 

stay in state 2.  But, in order to accept, it must eventually either read at least one b that does not have a matching a or 

pop an a that does not have a matching b.  It should do the former (and go to state 4) if there is a b in the input stream 

when the stack is empty.  But we have no way to specify that a move can be taken only if the stack is empty.  It should 

do the latter (and go to state 3) if there is an a on the stack but the input stream is empty.  But we have no way to 

specify that the input stream is empty. 

 

As a result, in most of its moves in state 2, M will have a choice of three paths to take.  All but the correct one will die 

out without accepting.  But a good deal of computational effort will be wasted first.  

 

In the next section, we present techniques for reducing nondeterminism caused by the two problems we’ve just 

presented:  

 

• a transition that should be taken only if the stack is empty, and 

• a transition that should be taken only if the input stream is empty. 

 

But first we present one additional example of the power of nondeterminism. 

Example 12.8 AnBnCn 

Let’s first consider AnBnCn = {anbncn : n  0}.  If we try to think about building a PDA to accept AnBnCn, we 

immediately run into trouble.  We can use the stack to count a’s and then compare them to the b’s.  But then the stack 



  

Chapter 12                                       188                             Pushdown Automata 

will be empty and it won’t be possible to compare the c’s.  We can try to think of something clever to get around this 

problem, but we will fail.  We’ll prove in Chapter 13 that no PDA exists to accept this language. 

 

But now let L = AnBnCn.  There is a PDA that accepts L.  L = L1  L2, where: 

 

• L1 = {w  {a, b, c}* : the letters are out of order}. 

• L2 = {aibjck : i, j, k  0 and (i  j or j  k)}  (in other words,  not equal numbers of a’s, b’s, and c’s). 

 

A simple FSM can accept L1.  So we focus on L2.  It turns out to be easier to check for a mismatch in the number of 

a’s, b’s, and c’s than to check for a match because, to detect a mismatch, it is sufficient to find one thing wrong.  It 

is not necessary to compare everything.  So a string w is in L2 iff either (or both) the a’s and b’s don’t match or the 

b’s and c’s don’t match.  We can build PDAs, such as the one we built in Example 12.7, to check each of those 

conditions.  So we can build a straightforward PDA for L.  It first guesses which condition to check for.  Then 

submachines do the checking.  We sketch a PDA for L here and leave the details as an exercise: 

 

 

     A PDA that doesn’t use its stack.  It accepts L1 by checking for letters  

       out of order. 

 

             // 

 

 

 0         // A PDA like the one in Example 12.7 that checks for unequal numbers  

                           of a’s and b’s, followed by any number of c’s 

 

             // 

 

   A PDA like the one in Example 12.7 except that it accepts any number  

           of a’s and then checks for unequal numbers of b’s and c’s 

 

 

 

This last example is significant for two reasons: 

 

• It illustrates the power of nondeterminism. 

• It proves that the class of languages acceptable by PDAs is not closed under complement.  We’ll have more to say 

about that in Section 13.4. 

 

An important fact about the context-free languages, in contrast to the regular ones, is that nondeterminism is more 

than a convenient design tool.  In Section 13.5 we will define the deterministic context-free languages to be those 

that can be accepted by some deterministic PDA that may exploit an end-of-string marker.  Then we will prove that 

there are context-free languages that are not deterministic in this sense.  Thus there exists, for the context-free 

languages, no equivalent of the regular language algorithm ndfsmtodfsm.  There are, however, some techniques that 

can be used to reduce nondeterminism in many of the kinds of cases that often occur.  We’ll sketch two of them in the 

next section. 

12.2.3 Techniques for Reducing Nondeterminism  
In Example 12.7, we saw nondeterminism arising from two very specific circumstances: 

 

• A transition that should be taken only if the stack is empty competes against one or more moves that require a 

match of some string on the stack, and 

• A transition that should be taken only if the input stream is empty competes against one or more moves that require 

a match against a specific input character. 
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Both of these circumstances are common, so we would like to find a way to reduce or eliminate the nondeterminism 

that they cause. 

 

We first consider the case in which the nondeterminism could be eliminated if it were possible to check for an empty 

stack.  Although our PDA model does not provide a way to do that directly, it is easy to simulate.  Any PDA M that 

would like to be able to check for empty stack can simply, before it does anything else, push a special character onto 

the stack.  The stack is then logically empty iff that special character is at the top of the stack.  The only thing we must 

be careful about is that, before M can accept a string, its stack must be completely empty.  So the special character 

must be popped whenever M reaches an accepting state. 

Example 12.9 Using a Bottom of Stack Marker 

We can use the special, bottom-of-stack marker technique to reduce the nondeterminism in the PDA that we showed 

in Example 12.7.  We’ll use # as the marker.  When we do that, we get the following PDA M:  
 

 

                                       a//a                                       b/a/                                  /a/ 

                        //#                                        b/a/                                   /a/ 

            0                                       1                                             2                                          3                   /#/ 

 

                   

                                                           b/#/ 

                                            4                    b// 

 

 

 

Now the transition back to state 2 no longer competes with the transition to state 4, which can only be taken when the 

# is the only symbol left on the stack.  M is still nondeterministic though, because the transition back to state 2 

competes with the transition to state 3.  We still don’t have a way to specify that M should go to state 3 only if it has 

run out of input.  

 

Next we consider the “out of input” problem.  To solve that one, we will make a change to the input language.  Instead 

of building a machine to accept a language L, we’ll build one to accept L$, where $ is a special end-of-string marker.  

In any practical system, we would probably choose <newline> or <cr> or <enter>, rather than $, but we’ll use $ here 

because it is easy to see. 

Example 12.10 Using an End-of-String Marker 

We can use the end-of-string marker technique to eliminate the remaining nondeterminism in the PDAs that we 

showed in Example 12.7 and Example 12.9.  When we do that, we get the following PDA M: 
 

 

                                        a//a                                        b/a/                                   /a/ 

                        //#                                        b/a/                                   $/a/ 

            0                                       1                                             2                                          3                   /#/ 

 

                   

                                                           b/#/ 

                                            4                    b// 

            $// 

 

 

Now the transition back to state 2 no longer competes with the transition to state 3, since the latter can only be taken 

when the $ is read.  Notice that we must be careful to read the $ on all paths, not just the one where we needed it. 
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Adding an end-of-string marker to the language to be accepted is a powerful tool for reducing nondeterminism.  In 

Section 13.5, we’ll define the class of deterministic context-free languages to be exactly the set of context-free 

languages L such that L$ can be accepted by some deterministic PDA.  We’ll do that because, for practical reasons, 

we would like the class of deterministic context-free languages to be as large as possible. 

12.3 Equivalence of Context-Free Grammars and PDAs 
So far, we have shown PDAs to accept several of the context-free languages for which we wrote grammars in Chapter 

11.  This is no accident.  In this section we’ll prove, as usual by construction, that context-free grammars and pushdown 

automata describe exactly the same class of languages. 

12.3.1 Building a PDA from a Grammar 

Theorem 12.1  For Every CFG There Exists an Equivalent PDA 

Theorem: Given a context-free grammar G = (V, , R, S), there exists a PDA M such that L(M) = L(G). 

 

Proof: The proof is by construction.  There are two equally straightforward ways to do this construction, so we will 

describe both of them.  Either of them can be converted to a practical parser (a recognizer that returns a parse tree if 

it accepts) by adding simple tree-building operations associated with each stack operation.  We’ll see how in Chapter 

15. 

 

Top-down parsing:  A top-down parser answers the question, “Could G generate w?” by starting with S, applying the 

rules of R, and seeing whether w can be derived.  We can build a PDA that does exactly that.  We will define the 

algorithm cfgtoPDAtopdown(G), which, from a grammar G, builds a corresponding PDA M that, on input w, simulates 

G attempting to produce a leftmost derivation of w.  M will have two states.  The only purpose of the first state is to 

push S onto the stack and then go to the second state.  M’s stack will actually do all the work by keeping track of what 

G is trying derive.  Initially, of course, that is S, which is why M begins by pushing S onto the stack.  But suppose that 

R contains a rule of the form S → 12…n.  Then M can replace its goal of generating an S by the goal of generating 

a 1, followed by a 2, and so forth.  So M can pop S off the stack and replace it by the sequence of symbols 12…n 

(with 1 on top).  As long as the symbol on the top of the stack is a nonterminal in G, this process continues, effectively 

applying the rules of G to the top of the stack (thus producing a left-most derivation).   

 

The appearance of a terminal symbol c on the top of the stack means that G is attempting to generate c.  M only wants 

to pursue paths that generate its input string w.  So, at that point, it pops the top symbol off the stack, reads its next 

input character, and compares the two.  If they match, the derivation that M is pursuing is consistent with generating 

w and the process continues.  If they don’t match, the path that M is currently following ends without accepting.  So, 

at each step, M either applies a grammar rule, without consuming any input, or it reads an input character and pops 

one terminal symbol off the stack. 

 

When M has finished generating each of the constituents of the S it pushed initially, its stack will become empty. If 

that happens at the same time that M has read all the characters of w, G can generate w, so M accepts.  It will do so 

since its second state will be an accepting state.  Parsers with a structure like M’s are called top-down parsers.  We’ll 

have more to say about them in Section 15.2. 

 

As an example, suppose that R contains the rules A → a, B → b and S → AAB.  Assume that the input to M is aab.  

Then M first shifts S onto the stack.  Next it applies its third rule, pops S off, and replaces it by AAB.  Then it applies 

its first rule, pops off A, and replaces it by a.  The stack is then aAB.  At that point, it reads the first character of its 

input, pops a, compares the two characters, sees that they match, and continues.  The stack is then AB.  Again M 

applies its first rule, pops off A, and replaces it by a.  The stack then is aB.  Then it reads the next character of its 

input, pops a, compares the two characters, sees that they match, and continues.  The stack is then B.  M applies its 

second rule, pops off B, and replaces it by b.  It reads the last input character, pops off b, compares the two characters, 

and sees that they match.  At that point, M is in an accepting state and both the stack and the input stream are empty, 

so M accepts.  The outline of M is shown in Figure 12.2. 
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Figure 12.2  A PDA that parses top-down 

 

 

Formally, M = ({p, q}, , V, , p, {q}), where  contains: 

 

• The start-up transition ((p, , ), (q, S)), which pushes the start symbol onto the stack and goes to state q. 

• For each rule X → 12…n. in R, the transition ((q, , X), (q, 12…n)), which replaces X by 12…n.  If n = 0 (i.e., 

the right-hand side of the rule is ), then the transition is ((q, , X), (q, )) . 

• For each character c  , the transition ((q, c, c), (q, )), which compares an expected character from the stack 

against the next input character and continues if they match. 

 

So we can define: 

 

     cfgtoPDAtopdown(G: CFG) =  

              From G, construct M as defined above. 

 

Bottom-up parsing:  A bottom-up parser answers the question, “Could G generate w?” by starting with w, applying 

the rules of R backwards, and seeing whether S can be reached.  We can build a PDA that does exactly that.  We will 

define the algorithm cfgtoPDAbottomup(G), which, from a grammar G, builds a corresponding PDA M that, on input 

w, simulates the construction, backwards, of a rightmost derivation of w in G.  Again, M will have two states, but this 

time all the work will happen in the first one.  In the top-down approach that we described above, the entries in the 

stack corresponded to expectations: to constituents that G was trying to derive.  In the bottom-up approach that we are 

describing now, the objects in the stack will correspond to constituents that have actually been found in the input.  If 

M ever finds a complete S that covers its entire input, then it should accept.  So if, when M runs out of input, the stack 

contains a single S, it will accept.  

 

M will be able to perform two kinds of actions: 

 

• M can read an input symbol and shift it onto the stack. 

• Whenever a sequence of elements at the top of the stack matches, in reverse, the right-hand side of some rule r in 

R, M can pop that sequence off and replace it by the left-hand side of r.  When this happens, we say that M has 

reduced by rule r.   

 

Because of the two actions that it can perform, a parser based on a PDA like M is called a shift-reduce parser.  We’ll 

have more to say about how such parsers work in Section 15.3.  For now, we just observe that they simulate, 

backwards, a right-most derivation. 

 

To see how M might work, suppose that R contains the rules A → a, B → b and S → AAB.  Assume that the input to 

M is aab.  Then M first shifts a onto the stack.  The top of the stack matches the right-hand side of the first rule.  So 

M can apply the rule, pop off a, and replace it with A.  Then it shifts the next a, so the stack is aA.  It reduces by the 

first rule again, so the stack is AA.  It shifts the b, applies the second rule, and leaves the stack as BAA.  At that point, 

the top of the stack matches, in reverse, the right-hand side of the third rule.  The string is reversed because the leftmost 

symbol was read first and so is at the bottom of the stack.  M will pop off BAA and replace it by S.   

 

To accept, M must pop S off the stack, leave the stack empty, and go to its second state, which will accept.  The outline 

of M is shown in Figure 12.3. 
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      Figure 12.3  A PDA that parses bottom-up 

 

 

 

Formally, M = ({p, q}, , V, , p, {q}), where  contains: 

 

• The shift transitions: ((p, c, ), (p, c)), for each c  . 

• The reduce transitions: ((p, , (12…n)R), (p, X)), for each rule X → 12…n. in R. 

• The finish up transition: ((p, , S), (q, )). 

 

So we can define: 

 

     cfgtoPDAbottomup(G: CFG) =  

              From G, construct M as defined above. 
◼ 

Example 12.11 Using cfgtoPDAtopdown and cfgtoPDAbottomup 

Consider Expr, our simple expression language, defined by G = {{E, T, F, id, +, , (, )}, {id, +, , (, )}, R, E}, where: 

              R =  E → E + T 

  E → T 

  T → T  F 

  T → F 

  F → (E)  

  F → id }. 

 

We show two PDAs, Ma and Mb, that accept Expr.  We can use cfgtoPDAtopdown(G) to build Ma: 

 

                                         //E 

       p    q 

      

             

  

(1)   (q, , E), (q, E+T) 

(2)   (q, , E), (q, T)  

(3)   (q, , T), (q, TF) 

(4)   (q, , T), (q, F) 

(5)   (q, , F), (q, (E) ) 

(6)   (q, , F), (q, id)  

(7)   (q, id, id), (q, ) 

(8)   (q, (, (  ), (q, ) 

(9)   (q, ), )  ), (q, ) 

(10) (q, +, +), (q, ) 

(11) (q, , ), (q, ) 

 

 

 

We can use cfgtoPDAbottomup(G) to build Mb =  

                                         /E/ 

       p    q 
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(1)   (p, id, ), (p, id)  

(2)   (p, (, ), (p, ()  

(3)   (p, ), ), (p, ))  

(4)   (p, +, ), (p, +)  

(5)   (p, , ), (p, )  

(6)   (p, , T + E), (p, E) 

(7)   (p, , T), (p, E) 

(8)   (p, , F  T), (p, T) 

(9)   (p, , F), (p, T) 

(10) (p, , )E( ), (p, F) 

(11) (p, , id), (p, F) 

 

The theorem that we just proved is important for two very different kinds of reasons: 

 

• It is theoretically important because we will use it to prove one direction of the claim that context-free grammars 

and PDAs describe the same class of languages.  For this purpose, all we care about is the truth of the theorem. 

 

• It is of great practical significance.  The languages we use to communicate with programs are, in the main, context-

free.  Before an application can assign meaning to our programs, our queries, and our marked up documents, it 

must parse the statements that we have written.  Consider either of the PDAs that we built in our proof of this 

theorem.  Each stack operation of either of them corresponds to the building of a piece of the parse tree that 

corresponds to the derivation that the PDA found.  So we can go a long way toward building a parser by simply 

augmenting one of the PDAs that we just built with a mechanism that associates a tree-building operation with 

each stack action.  Because the PDAs follow the structure of the grammar, we can guarantee that we get the parses 

we want by writing appropriate grammars.  In truth, building efficient parsers is more complicated than this.  We’ll 

have more to say about the issues in Chapter 15. 

12.3.2 Building a Grammar from a PDA   
We next show that it is possible to go the other way, from a PDA to a grammar.  Unfortunately, the process is not as 

straightforward as the grammar-to-PDA process.  Fortunately, for applications, it is rarely (if ever) necessary to go in 

this direction. 

Restricted Normal Form 

The grammar-creation algorithm that we are about to define must make some assumptions about the structure of the 

PDA to which it is applied.  So, before we present that algorithm, we will define what we’ll call restricted normal 

form for PDAs.  A PDA M is in restricted normal form iff: 

 

1) M has a start state s that does nothing except push a special symbol onto the stack and then transfer to a state s 

from which the rest of the computation begins.  There must be no transitions back to s.  The special symbol must 

not be an element of .  We will use # to stand for such a symbol. 

2) M has a single accepting state a.  All transitions into a pop # and read no input. 

3) Every transition in M, except the one from s, pops exactly one symbol from the stack. 

 

As with other normal forms, in order for restricted normal form to be useful, we must define an algorithm that converts 

an arbitrary PDA M = (K, , , , s, A) into it.  Given M, convertpdatorestricted builds a new PDA M such that L(M) 

= L(M) and M is in restricted normal form. 

 

        convertpdatorestricted(M: PDA) =  

1. Initially, let M = M.   

 

/* Establish property 1: 

2. Create a new start state s. 

3. Add the transition ((s, , ), (s, #)). 

 

/* Establish property 2: 

4. Create a new accepting state a.   

5. For each accepting state q in M do: 

5.1. Create the transition ((q, , #), (a, )). 
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5.2. Remove q from the set of accepting states  (making a the only accepting state in M). 
 

/* Establish property 3: 

/* Assure that no more than one symbol is popped at each transition: 

6. For every transition t that pops k symbols, where k > 1 do: 

6.1. Replace t with k transitions, each of which pops a single symbol.  Create additional states as 

necessary to do this.  Only if the last of the k symbols can be popped should any input be read or 

any new symbols pushed.  Specifically, let qq1, qq2, …, qqk-1 be new state names.  Then: 

 

Replace ((q1, c, 1 2 … n), (q2, P)) with:  

 

((q1, , 1), (qq1, )),  ((qq1, , 2), (qq2, )), …, ((qqk-1, c, n), (q2, P)). 

 

/* Assure that exactly one symbol is popped at each transition.  We already know that no more than one will 

be.  But perhaps none were.  In that case, what M needs to do instead is to pop whatever was on the top of 

the stack and then just push it right back.  So we’ll need one new transition for every symbol that might be 

on the top of the stack.  Note that, because of existence of the bottom of stack marker #, we are guaranteed 

that the stack will not be empty so there will always be a symbol that can be popped.   

7. For every transition t = ((q1, c, ), (q2, )) do: 

7.1. Replace t with |M| transitions, each of which pops a single symbol and then pushes it back on.  

Specifically, for each symbol  in M  {#}, add the transition ((q1, c, ), (q2, )).    

8. Return M. 

Example 12.12 Converting to Restricted Normal Form 

Let WcWR = {wcwR: w  {a, b}*}.  A straightforward PDA M that accepts WcWR is the one we showed in Example 

12.3: 

 

                                   a//a                                     a/a/ 

                                                              c// 

                                                 s                                            f 

 

                                  b//b                                     b/b/ 

 

 

M is not in restricted normal form.  To create an equivalent PDA M, we first create new start and accepting states and 

connect them to M: 

 

 

                                             a//a             a/a/ 

                         //#                   c//                                 /#/ 

                  s'                   s                                      f                            a 

 

                         b//b                               b/b/ 

 

 

M contains no transitions that pop more than one symbol.  And it contains no transitions that push more than one 

symbol.  But it does contain transitions that pop nothing.  Since M = {a, b, #}, the three transitions from state s must 

be replaced by the following nine transitions: 

 

  ((s, a, #), (s, a#)),((s, a, a), (s, aa)), ((s, a, b), (s, ab)),  

  ((s, b, #), (s, b#)),((s, b, a), (s, ba)), ((s, b, b), (s, bb)),  

  ((s, c, #), (f, #)), ((s, c, a), (f, a)), ((s, c, b), (f, b)).    
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Building the Grammar 

Since we have now shown that any PDA can be converted into an equivalent one in restricted normal form, we can 

show that, for any PDA M, there exists a context-free grammar that generates L(M) by first converting M to restricted 

normal form and then constructing a grammar. 

Theorem 12.2  For Every PDA There Exists an Equivalent CFG 

Theorem: Given a PDA M = (K, , , , s, A), there exists a CFG G = (V, , R, S) such that L(G) = L(M). 

 

Proof:  The proof is by construction.  In the proof of Theorem 12.1, we showed how to use a PDA to simulate a 

grammar.  Now we show how to use a grammar to simulate a PDA.  The basic idea is simple: the productions of the 

grammar will simulate the moves of the PDA.  Unfortunately, the details get messy.   

 

The first step of the construction of G will be to build from M, using the algorithm convertpdatorestricted that we just 

defined, an equivalent PDA M, where M is in restricted normal form.  So every machine that the grammar-

construction algorithm must deal with will look like this (with the part in the middle that actually does the work 

indicated with …): 

 

                                                       

                         //#                                                           /#/ 

                  s'                   s                        ….                 f                            a 

 

                                                       

 

G, the grammar that we will build, will exploit a collection of nonterminal symbols to which we will give names of 

the following form: 

 

<qi, , qj>. 

 

The job of a nonterminal <qi, , qj> is to generate all and only the strings that can drive M from state qi with the symbol 

 on the stack to state qj, having popped off the stack  and anything else that got pushed on top of it in the process of 

going from qi to qj.  So, for example, in the machine M that we described above in Example 12.12, the job of <s, #, 

a> is to generate all the strings that could take M from s with # on the top of the stack to a, having popped the # (and 

anything else that got pushed along the way) off the stack.  But notice that that is exactly the set of strings that M will 

accept.  So G will contain the rule:  

 

S → <s, #, a>. 

 

Now we need to describe the rules that will have <s, #, a> on their left-hand sides.  They will make use of additional 

nonterminals.  For example, M from Example 12.12 must go through state f on its way to a.  So there will be the 

nonterminal <f, #, a>, which describes the set of strings that can drive M from f to a, popping #.  That set is, of course, 

{}. 

 

How can an arbitrary machine M get from one state to another?  Because M is in restricted normal form, we must 

consider only the following three kinds of transitions, all of which pop exactly one symbol: 

 

• Transitions that push no symbols:  Suppose that there is a such a transition ((q, a, ), (r, )), where a    {}.  

We consider how such a transition can participate in a computation of M: 

 

 

q a//  r   w 

 

 

If this transition is taken, then M reads a, pops , and then moves to r.  After doing that, it may follow any available 

paths from r to any next state w, where w may be q or r or any other state.  So consider the nonterminal <q, , w>, 
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for any state w.  Its job is to generate all strings that drive M from q to w while popping off .  We now know how 

to describe at least some of those strings: They are the ones that start with a and are followed by any string that 

could drive M from r to w without popping anything (since the only thing we need to pop, , has already been 

popped).  So we can write the rule: 

 

 <q, , w> → a<r, , w>. 

 

Read this rule to say that M can go from q to w, leaving the stack just as it was except that a  on the top has been 

popped, by reading a, popping , going to r, and then somehow getting from r to w, leaving the stack just as it 

was.  Since M reads a, G must generate it. 

 

Every transition in M of the form ((q, a, ), (r, )) generates one grammar rule, like the one above, for every state 

w in M, except s'. 

 

• Transitions that push one symbol:  This situation is similar to the case where M pushes no symbols except that 

whatever computation follows must pop the symbol that this transition pushes.  So, suppose that M contains: 

 

 

q a//  r   w 

 

 

If this transition is taken, then M reads the character a, pops , pushes , and then moves to r.  After doing that, it 

may follow any available paths from r to any next state w, where w may be q or r or any other state.  So consider 

the nonterminal <q, , w>, for any state w.  Its job is to generate all strings that drive M from q to w while popping 

off .  We now know how to describe at least some of those strings: They are the ones that start with a and are 

followed by any string that could drive M from r to w while popping the  that just got pushed.  So we can write 

the rule: 

 

 <q, , w> → a<r, , w>. 

 

Read this rule to say that M can go from q to w, leaving the stack just as it was except that a  on the top has been 

popped, by reading a, popping , pushing , going to r, and then somehow getting from r to w, leaving the stack 

just as it was except that a  on the top has been popped. 

 

Every transition in M of the form ((q, a, ), (r, )) generates one grammar rule, like the one above, for every state 

w in M, except s'. 

 

• Transitions that push two symbols:  This situation is a bit more complicated since two symbols are pushed and 

must then be popped. 

 

 

q a//  r   v   w 

 

 

If this transition is taken, then M reads a, pops , pushes two characters , and then moves to r.  Now suppose 

that we again want to consider strings that drive M from q to w, where the only change to the stack is to pop the  

that gets popped on the way from q to r.  This time, two symbols have been pushed, so both must subsequently be 

popped.  Since M is in restricted normal form, it can pop only a single symbol on each transition.  So the only way 

to go from r to w and pop both symbols is to visit another state in between the two.  Call it v, as shown in the 

figure.  We now know how to describe at least some of the strings that drive M from q to w, popping : They are 

the ones that start with a and are followed first by any string that could drive M from r to v while popping  and 

then by any string that could drive M from v to w while popping .  So we can write the rule: 

 

 <q, , w> → a<r, , v><v, , w> 



  

Chapter 12                                       197                             Pushdown Automata 

 

Every transition in M of the form ((q, a, X), (r, )) generates one grammar rule, like the one above, for every pair 

of states v and w in M, except s'.  Note that v and w may be the same and either or both of them could be q or r. 

 

• Transitions that push more than two symbols:  These transitions can be treated by extending the technique for two 

symbols, adding one additional state for each additional symbol. 

 

The last situation that we need to consider is how to stop.  So far, every rule we have created has some nonterminal 

on its right-hand side.  If G is going to generate strings composed solely of terminal symbols, it must have a way to 

eliminate the final nonterminals once all the terminal symbols have been generated.  It can do this with one rule for 

every state q in M: 

 

 <q, , q> → . 

 

Read these rules to say that M can start in q, remain in q, having popped nothing, without consuming any input. 

 

We can now define buildgrammar(M), which assumes that M is in restricted normal form: 

 

    buildgrammar(M: PDA in restricted normal form) =  

1. Set G to M. 

2. Set the start symbol of G to S. 

3. Build R as follows: 

3.1. Insert the rule S → <s, # a>. 

3.2. For every transition ((q, a, ), (r, )) (i.e., every transition that pushes no symbols), except the one from 

s, and every state w, except s, in M  do: 

Insert the rule <q, , w> → a<r, , w>. 

3.3. For every transition ((q, a, ), (r, )) (i.e., every transition that pushes one symbol), except the one from 

s, and every state w, except s, in M do: 

Insert the rule <q, , w> → a<r, , w>. 

3.4. For every transition ((q, a, ), (r, )) (i.e., every transition that pushes two symbols), except the one 

from s, and every pair of states v and w, except s, in M do: 

Insert the rule <q, , w> → a<r, , v><v, , w>. 

3.5. In a similar way, create rules for transitions that push more than two symbols. 

3.6. For every state q, except s, in M do: 

Insert the rule <q, , q> → . 

4. Set VG to M  {nonterminal symbols mentioned in the rules inserted into R}. 

 

The algorithm buildgrammar creates all the nonterminals and all the rules required for G to generate exactly the strings 

in L(M).  We should note, however, that it generally also creates many nonterminals that are useless because they are 

either unreachable or unproductive (or both).  For example, suppose that, in M, there is a transition ((q6, a, ), (q7, )) 

from state q6 to state q7, but no path from state q7 to state q8.  Nevertheless, in step 3.3, buildgrammar will insert the 

rule <q6, , q8> → a<q7, , q8>.  <q7, , q8> is unproductive since there are no strings that drive M from q7 to q8. 

 

Finally, for an arbitrary PDA M, we define PDAtoCFG: 

 

    PDAtoCFG(M: PDA) =  

1. Return buildgrammar(convertpdatorestricted(M)). 
◼ 

Example 12.13 Building a Grammar from a PDA 

In Example 12.12, we showed a simple PDA for WcWR = {wcwR: w  {a, b}*}.  Then we converted that PDA to 

restricted normal form and got M: 
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                                             [*]                a/a/ 

                         //#                   [***]                                /#/ 

                  s'                   s                                      f                            a 

 

                           [**]                               b/b/ 

 

 

Each of the bracket-labeled arcs corresponds to: 

 

[*] ((s, a, #), (s, a#)), ((s, a, a), (s, aa)), ((s, a, b), (s, ab)),  

[**] ((s, b, #), (s, b#)), ((s, b, a), (s, ba)), ((s, b, b), (s, bb)),  

[***] ((s, c, #), (f, #)), ((s, c, a), (f, a)), ((s, c, b), (f, b)).    

 

Buildgrammar constructs a grammar G from M .  To see how G works, consider the parse tree that it builds for the 

input string abcba.  The numbers in brackets at each node indicate the rule that is applied to the nonterminal at the 

node. 

 

                                                     S [1] 

 

                                               <s, #, a> [2] 

 

a                         <s, a, f> [4]                                                          <f, #, a> [6] 

 

      b                  <s, b, f> [5]                   <f, a, f> [7]                                 <a, , a> [10] 

 

                    c           <f, b, f> [8]           a        <f, , f> [9]                                  

 

                              b     <f, , f> [9]                      

 

                                              

 

Here are some of the rules in G.  On the left are the transitions of M.  The middle column contains the rules derived 

from each transition.  The ones marked [x] in the right column contain useless nonterminals and so cannot be part of 

any derivation of a string in L(G).  Because there are so many useless rules, we have omitted the ones generated from 

all transitions after the first.   

 

    S → <s, #, a>    [1] 

       ((s, , ), (s, #))  no rules based on the transition from s 

[*]  ((s, a, #), (s, a#))  <s, #, s> → a <s, a, s> <s, #, s>  [x] 

    <s, #, s> → a <s, a, f> <f, #, s>   [x] 

    <s, #, s> → a <s, a, a> <a, #, s>   [x] 

    <s, #, f> → a <s, a, s> <s, #, f>  [x] 

    <s, #, f> → a <s, a, f> <f, #, f>  [x] 

    <s, #, f> → a <s, a, a> <a, #, f>  [x] 

   <s, #, a> → a <s, a, s> <s, #, a>  [x] 

   <s, #, a> → a <s, a, f> <f, #, a>  [2] 

   <s, #, a> → a <s, a, a> <a, #, a>  [x] 

((s, a, a), (s, aa))  <s, a, f> → a <s, a, f> <f, a, f>   [3] 

((s, a, b), (s, ab))  <s, b, f> → a <s, a, f> <f, b, f>   [14] 

[**] ((s, b, #), (s, b#))  <s, #, f> → b <s, b, f> <f, #, f>   [15] 

((s, b, a), (s, ba))  <s, a, f> → b <s, b, f> <f, a, f>   [4] 

((s, b, b), (s, bb))  <s, b, f> → b <s, b, f> <f, b, f>   [16] 
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[***]  ((s, c, #), (f, #))  <s, #, f> → c <f, #, f>   [17] 

((s, c, a), (f, a))   <s, a, f> → c <f, a, f>   [18] 

((s, c, b), (f, b))   <s, b, f> → c <f, b, f>   [5] 

((f, , #), (a, ))  <f, #, a> →  <a, , a>   [6] 

((f, a, a), (f, ))  <f, a, f> → a <f, , f>   [7] 

((f, b, b), (f, ))  <f, b, f> → b <f, , f>   [8] 

    <s, , s> →     [19] 

    <f, , f> →     [9] 

    <a, , a> →     [10] 

 

12.3.3 The Equivalence of Context-free Grammars and PDAs 

Theorem 12.3  PDAs and CFGs Describe the Same Class of Languages 

Theorem: A language is context-free iff it is accepted by some PDA. 

 

Proof: Theorem 12.1 proves the only if part.  Theorem 12.2 proves the if part.   
◼ 

12.4 Nondeterminism and Halting 
Recall that a computation C of a PDA M = (K, , , , s, A) on a string w is an accepting computation iff: 

 

C = (s, w, ) |-M* (q, , ), for some q  A.   

 

We’ll say that a computation C of M halts iff at least one of the following conditions holds: 

 

• C is an accepting computation, or 

• C ends in a configuration from which there is no transition in  that can be taken. 

 

We’ll say that M halts on w iff every computation of M on w halts.  If M halts on w and does not accept, then we say 

that M rejects w. 

  

For every context-free language L, we’ve proven that there exists a PDA M such that L(M) = L.  Suppose that we 

would like to be able to: 

 

• Examine a string and decide whether or not it is in L. 

• Examine a string that is in L and create a parse tree for it. 

• Examine a string that is in L and create a parse tree for it in time that is linear in the length of the string. 

• Examine a string and decide whether or not it is in the complement of L. 

 

Do PDAs provide the tools we need to do those things?  When we were at a similar point in our discussion of regular 

languages, the answer to that question was yes.  For every regular language L, there exists a minimal deterministic 

FSM that accepts it.  That minimal DFSM halts on all inputs, accepts all strings that are in L, and rejects all strings 

that are not in L. 

 

Unfortunately, the facts about context-free languages and PDAs are different from the facts about regular languages 

and FSMs.  Now we must face the following: 

 

1) There are context-free languages for which no deterministic PDA exists.  We’ll prove this as Theorem 13.13. 

 

2) It is possible that a PDA may 

• not halt, or 

• not ever finish reading its input.    
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So, let M be a PDA that accepts some language L.  Then, on input w, if w  L then M will halt and accept.  But if w  

L, while M will not accept w, it is possible that it will not reject it either.  To see how this could happen, let  = {a} 

and consider the PDA M, shown in Figure 12.4.  L(M) = {a}.  The computation (1, a, ) |- (2, a, a) |- (3, , ) will 

cause M to accept a.  But consider any other input except a.  Observe that: 

 

• M will never halt.  There is no accepting configuration, but there is always at least one computation that has not 

yet halted.  For example, on input aa, one computation is: 

             (1, aa, ) |- (2, aa, a) |- (1, aa, aa) |- (2, aa, aaa) |- (1, aa, aaaa) |- (2, aa, aaaaa) |- … 

• M will never finish reading its input unless its input is .  On input aa, for example, there is no computation that 

will read the second a. 

 

3) There exists no algorithm to minimize a PDA.  In fact, it is undecidable whether a PDA is already minimal. 

 

 

 

 

 

Figure 12.4  A PDA that might neither accept nor reject 

 

 

Problem 2 is especially critical.  Of course, the same problem also arose with NDFSMs.  But there we had a choice of 

two solutions: 

 

• Use ndfsmtodfsm to convert the NDFSM to an equivalent deterministic one.  A DFSM halts on input w in |w| steps. 

 

• Simulate the NDFSM using ndfsmsimulate, which ran all computational paths in parallel and handled -transitions 

in a way that guaranteed that the simulation of an NDFSM M on input w halted in |w| steps. 

 

Neither of those approaches works for PDAs.  There may not be an equivalent deterministic PDA.  And it is not 

possible to simulate all paths in parallel on a single PDA because each path would need its own stack.  So what can 

we do?  Solutions to these problems fall into two classes: 

• formal ones that do not restrict the class of languages that are being considered.  Unfortunately, these approaches 

generally do restrict the form of the grammars and PDAs that can be used.  For example, they may require that 

grammars be in Chomsky or Greibach normal form.  As a result, parse trees may not make much sense.  We’ll see 

some of these techniques in Chapter 14. 

• practical ones that work only on a subclass of the context-free languages.  But the subset is large enough to be 

useful and the techniques can use grammars in their natural forms.  We’ll see some of these techniques in Chapters 

13 and 15.  

12.5 Alternative Equivalent Definitions of a PDA  
We could have defined a PDA somewhat differently.  We list here a few reasonable alternative definitions.  In all of 

them a PDA M is a sixtuple (K, , , , s, A): 

 

• We allow M to pop and to push any string in *.  In some definitions, M may pop only a single symbol but it may 

push any number of them.  In some definitions, M may pop and push only a single symbol.   

 

• In our definition, M accepts its input w only if, when it finishes reading w, it is in an accepting state and its stack 

is empty.  There are two alternatives to this: 

• Accept if, when the input has been consumed, M lands in an accepting state, regardless of the contents of the 

stack. 

• Accept if, when the input has been consumed, the stack is empty, regardless of the state M is in. 
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All of these definitions are equivalent in the sense that, if some language L is accepted by a PDA using one definition, 

it can be accepted by some PDA using each of the other definitions. 

 

We can prove this claim for any pair of definitions by construction.  To do so, we show an algorithm that transforms 

a PDA of one sort into an equivalent PDA of the other sort.   

Example 12.14 Accepting by Final State Alone 

Define a PDA M = (K, , , , s, A) in exactly the way we have except that it will accept iff it lands in an accepting 

state, regardless of the contents of the stack.  In other words, if (s, w, ) |-M* (q, , ) and q  A, then M accepts. 

 

To show that this model is equivalent to ours, we must show two things: for each of our machines, there exists an 

equivalent one of these, and, for each of these, there exists an equivalent one of ours.  We’ll do the first part to show 

how such a construction can be done.  We leave the second as an exercise. 

 

Given a PDA M that accepts by accepting state and empty stack, construct a new PDA M that accepts by accepting 

state alone, where L(M) = L(M).  M will have a single accepting state qa.  The only way for M to get to qa will be to 

land in an accepting state of M when the stack is logically empty.  But there is no way to check that the stack is empty.  

So M will begin by pushing a bottom-of-stack marker #, onto the stack.  Whenever # is the top symbol on the stack, 

the stack is logically empty.   

 

So the construction proceeds as follows: 

 

1. Initially, let M = M. 

2. Create a new start state s.  Add the transition ((s, , ), (s, #)). 

3. Create a new accepting state qa.   

4. For each accepting state a in M do: 

  Add the transition ((a, , #), (qa, )). 

5. Make qa the only accepting state in M. 
 

It is easy to see that M lands in its only accepting state (qa) iff M lands in some accepting state with an empty stack.  

Thus M and M accept the same strings. 

 

As an example, we apply this algorithm to the PDA we built for the balanced parentheses language Bal: 

 

 

                                                               (//(                                           //#                              (//( 

                                             s                                                  s                             s  

                       )/(/                                                                                )/(/ 

                    

     becomes    /#/  

 

                      qa 

 

 

Notice, by the way, that while M is deterministic, M is not. 

12.6 Alternatives that are Not Equivalent to the PDA  
We defined a PDA to be a finite state machine to which we add a single stack.  We mention here two variants of that 

definition, each of which turns out to define a more powerful class of machine.  In both cases, we’ll still start with an 

FSM.   

 

For the first variation, we add a first-in, first-out (FIFO) queue in place of the stack.  Such machines are called tag 

systems or Post machines.  As we’ll see in Section 18.2.3, tag systems are equivalent to Turing machines in 

computational power.   
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For the second variation, we add two stacks instead of one.  Again, the resulting machines are equivalent in 

computational power to Turing machines, as we’ll see in Section 17.5.2. 

12.7 Exercises 
1) Build a PDA to accept each of the following languages L: 

a) BalDelim = {w : where w is a string of delimiters: (, ), [, ], {, }, that are properly balanced}. 

b) {aibj : 2i = 3j + 1}. 

c) {w  {a, b}* : #a(w) = 2#b(w)}. 

d) {anbm : m  n  2m}. 

e) {w  {a, b}* : w = wR}. 

f) {aibjck : i, j, k  0 and (i  j or j  k)}. 

g) {w  {a, b}* : every prefix of w has at least as many a’s as b’s}. 

h) {anbman : n, m  0 and m is even}. 

i) {xcn : x  {a, b}*, #a(x) = n or #b(x) = n}. 

j) {anbm : m  n, m-n is even}. 

k) {ambncpdq : m, n, p, q  0 and m + n = p + q}. 

l) {bi#bi+1
R : bi is the binary representation of some integer i, i  0, without leading zeros}. (For example 

101#011  L.) 

m) {xR#y : x, y  {0, 1}* and x is a substring of y}. 

n) L1*, where L1 = {xxR: x  {a,b}*}. 

 

2) Complete the PDA that we sketched, in Example 12.8, for AnBnCn, where AnBnCn = {anbncn : n  0}. 

 

3) Let L = {bam1bam2bam1=3… bamn : n  2, m1, m2, …, mn  0, and mi  mj for at least one i, j pair}. 

a) Show a PDA that accepts L . 

b) Show a context-free grammar that generates L. 

c) Prove that L is not regular. 

 

4) Consider the language L = L1  L2, where L1 = {wwR : w  {a, b}* and L2 = {anb*an: n  0}. 

a) List the first four strings in the lexicographic enumeration of L? 

b) Write a context-free grammar to generate L. 

c) Show a natural PDA for L.  (In other words, don’t just build it from the grammar using one of the two-state 

constructions presented in this chapter.) 

d) Prove that L is not regular. 

 

5) Build a deterministic PDA to accept each of the following languages: 

a) L$, where L = {w$  {a, b}* : #a(w) = #b(w)}. 

b) L$, where L = {anb+am : n  0 and k0 (m = 2k+n)}. 

 

6) Complete the proof that we started in Example 12.14.  Specifically, show that if, M is a PDA that accepts by 

accepting state alone, then there exists a PDA M that accepts by accepting state and empty stack (our definition) 

where L(M) = L(M). 
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13 Context-Free and Noncontext-Free Languages 

The language AnBn = {anbn : n 0}is context-free.  The language AnBnCn  = {anbncn : n  0} is not context free 

(intuitively because a PDA’s stack cannot count all three of the letter regions and compare them).  PalEven = {wwR : 

w  {a, b}*} is context-free.  The similar language WW = {ww : w  {a, b}*} is not context-free (again, intuitively, 

because a stack cannot pop the characters of w off in the same order in which they were pushed). 

 

Given a new language L, how can we know whether or not it is context-free?  In this chapter, we present a collection 

of techniques that can be used to answer that question. 

13.1 Where Do the Context-Free Languages Fit in the Big Picture? 
First, we consider the relationship between the regular languages and the context-free languages. 

Theorem 13.1  The Context-free Languages Properly Contain the Regular Languages 

Theorem: The regular languages are a proper subset of the context-free languages. 

 

Proof:  We first show that every regular language is context-free.  We then show that there exists at least one context-

free language that is not regular. 

 

We show that every regular language is context-free by construction.  If L is regular, then it is accepted by some 

DFSM M = (K, , , s, A).  From M we construct a PDA M = (K, , , , s, A) to accept L.  In essence, M will 

simply be M and will ignore the stack.  Let M  be (K, , , , s, A), where  is constructed as follows:  For every 

transition (qi, c, qj) in , add to  the transition ((qi, c, ), (qj, )).  M  behaves identically to M, so L(M) = L(M).  So 

the regular languages are a subset of the context-free languages. 

 

The regular languages are a proper subset of the context-free languages because there exists at least one language, 

AnBn, that is context-free but not regular.   
◼ 

 

Next, we observe that there are many more noncontext-free languages than there are context-free ones:   

Theorem 13.2  How Many Context-free Languages are There? 

Theorem: There is a countably infinite number of context-free languages. 

 

Proof: Every context-free language is generated by some context-free grammar G = (V, , R, S).  We can encode the 

elements of V as binary strings, so we can lexicographically enumerate all the syntactically legal context-free 

grammars.  There cannot be more context-free languages than there are context-free grammars, so there are at most a 

countably infinite number of context-free languages.  There is not a one-to-one relationship between context-free 

languages and context-free grammars since there is an infinite number of grammars that generate any given language.  

But, by Theorem 13.1, every regular language is context-free.  And, by Theorem 8.1, there is a countably infinite 

number of regular languages.  So there is at least and at most a countably infinite number of context-free languages.   
◼ 

 

But, by Theorem 2.3, there is an uncountably infinite number of languages over any nonempty alphabet .  So there 

are many more noncontext-free languages than there are regular ones. 

13.2 Showing That a Language is Context-Free 
We have so far seen two techniques that can be used to show that a language L is context-free: 

 

• Exhibit a context-free grammar for it. 

• Exhibit a (possibly nondeterministic) PDA for it. 
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There are also closure theorems for context-free languages and they can be used to show that a language is context-

free if it can be described in terms of other languages whose status is already known.  Unfortunately, there are fewer 

closure theorems for the context-free languages than there are for the regular languages.  In order to be able to discuss 

both the closure theorems that exist, as well as the ones we’d like but don’t have, we will wait and consider the issue 

of closure theorems in Section 13.4, after we have developed a technique for showing that a language is not context-

free. 

13.3 The Pumping Theorem for Context-Free Languages 
Suppose we are given a language and we want to prove that it is not context-free.  Just as with regular languages, it is 

not sufficient simply to claim that we tried to build a grammar or a PDA and we failed.  That doesn’t show that there 

isn’t some other way to approach the problem.   

 

Instead, we will again approach this problem from the other direction.  We will articulate a property that is provably 

true of all context-free languages.  Then, if we can show that a language L does not possess this property, then we 

know that L is not context-free.  So, just as we did when we used the Pumping Theorem for regular languages, we will 

construct proofs by contradiction.  We will say, “If L were context-free, then it would possess certain properties.  But 

it does not possess those properties.  Therefore, it is not context-free.” 

 

This time we exploit the fact that every context-free language is generated by some context-free grammar.  The 

argument we are about to make is based on the structure of parse trees.  Recall that a parse tree, derived by a grammar 

G = (V, , R, S), is a rooted, ordered tree in which: 

 

• Every leaf node is labeled with an element of   {},  

• The root node is labeled S,  

• Every other node is labeled with some element of V - , and 

• If m is a nonleaf node labeled X and the children of m are labeled x1, x2, …, xn, then the rule X → x1 x2 …, xn is in 

R. 

 

Consider an arbitrary parse tree, as shown in Figure 13.1  The height of a tree is the length of the longest path from 

the root to any leaf.  The branching factor of a tree is the largest number of daughters of any node in the tree.  The 

yield of a tree is the ordered sequence of its leaf nodes. 

 

 

 

 

                                      root 

 

 

                                                  

              height 

 

 

          

 

                                                                      yield 

 

Figure 13.1  The structure of a parse tree 

 

  

Theorem 13.3  The Height of a Tree and its Branching Factor Put a Bound on its Yield 

Theorem: The length of the yield of any tree T with height h and branching factor b is  bh. 
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Proof:  The proof is by induction on h.  If h is 1, then just a single rule applies.  So the longest yield is of length less 

than or equal to b.  Assume the claim is true for h = n.  We show that it is true for h = n + 1.  Consider any tree with h 

= n + 1.  It consists of a root, and some number of subtrees, each of which is of height  n.  By the induction hypothesis, 

the length of the yield of each of those subtrees is  bn.  The number of subtrees of the root is  b.  So the length of 

the yield must be  b(bn) = bn+1 = bh.   
◼ 

  

Let G = (V, , R, S) be context-free grammar.  Let n = |V - | be the number of nonterminal symbols in G.  Let b be 

the branching factor of G, defined to be the length of the longest right-hand side of any rule in R.    

 

Now consider any parse tree T generated by G.  Suppose that no nonterminal appears more than once on any path 

from the root of T to a nonterminal.  Then the height of T is  n.  So the longest string that could correspond to the 

yield of T has length  bn.   

 

Now suppose that w is a string in L(G) and |w| > bn.  Then any parse tree that G generates for w must contain at least 

one path that contains at least one repeated nonterminal.  Another way to think of this is that, to derive w, G must have 

used at least one recursive rule.  So any parse tree for w must look like the one shown in Figure 13.2, where X is some 

repeated nonterminal.  We use dotted lines to make it clear that the derivation may not be direct but may, instead, 

require several steps.  So, for example, it is possible that the tree shown here was derived using a grammar that 

contained the rules X → aYb, Y → bXa, and X → ab.  

 

 

 

               S 

 

 

 

                                       X  [1] 

 

 

                                                  X  [2] 

 

 

             u          v                       x                  y                z 

 

 

            w 

 

Figure 13.2 A parse tree whose height is greater than n 

 

 

Of course, it is possible that w has more than one parse tree.  For the rest of this discussion we will pick some tree 

such that G generates no other parse tree for w that has fewer nodes.  Within that tree it is possible that there are many 

repeated nonterminals and that some of them are repeated more than once.  We will assume only that we have chosen 

point [1] in the tree such that X is the first repeated nonterminal on any path, coming up from the bottom, in the subtree 

rooted at [1].  We’ll call the rule that was applied at [1] rule1 and the rule that was applied at [2] rule2.   

 

We can sketch the derivation that produced this tree as:  

 

S * uXz * uvXyz * uvxyz.  

 

In the diagram, we have carved w up into five pieces: u, v, x, y, and z.  We observe that: 

 

• There is another derivation in G, S * uXz * uxz, in which, at the point labeled [1], the nonrecursive rule2 is 

used.  So uxz is also in L(G). 
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• There are infinitely many derivations in G, such as S * uXz * uvXyz * uvvXyyz * uvvxyyz, in which the 

recursive rule1 is applied one or more additional times before the nonrecursive rule2 is used.  Those derivations 

produce the strings, uv2xy2z, uv3xy3z, etc.  So all of those strings are also in L(G). 

 

• It is possible that v = , as it would be, for example if rule1 were X → Xa.  It is also possible that y = , as it would 

be, for example if rule1 were X → aX.  But it is not possible that both v and y are .  If they were, then the derivation 

S * uXz * uxz would also yield w and it would create a parse tree with fewer nodes.  But that contradicts the 

assumption that we started with a tree with the smallest possible number of nodes.  

 

• The height of the subtree rooted at [1] is at most n + 1 (since there is one repeated nonterminal and every other 

nonterminal can occur no more than once).  So |vxy|  bn + 1. 

 

These observations are the basis for the context-free Pumping Theorem, which we state next.   

Theorem 13.4   The Pumping Theorem for Context-Free Languages 

Theorem: If L is a context-free language, then: 

 

         k  1 ( strings w  L, where |w|  k (u, v, x, y, z  (w = uvxyz, 

        vy  , 

        |vxy|  k, and  

        q  0 (uvqxyqz is in L)))). 

 

Proof: The proof is the argument that we gave above:  If L is context-free, then it is generated by some context-free 

grammar G = (V, , R, S) with n nonterminal symbols and branching factor b.  Let k be bn + 1.  Any string that can be 

generated by G and whose parse tree contains no paths with repeated nonterminals must have length less than or equal 

to bn.  Assuming that b  2, it must be the case that bn + 1 > bn.  So let w be any string in L(G) where |w|  k.  Let T be 

any smallest parse tree for w (i.e., a parse tree such that no other parse tree for w has fewer nodes).  T must have height 

at least n + 1.  Choose some path in T of length at least n + 1.  Let X be the bottom-most repeated nonterminal along 

that path.  Then w can be rewritten as uvxyz as shown in the tree diagram above.  The tree rooted at [1] has height at 

most n + 1.  Thus its yield, vxy, has length less than or equal to bn + 1, which is k.  Further, vy   since if vy were  

then there would be a smaller parse tree for w and we chose T so that that wasn’t so.  Finally, v and y can be pumped: 

uxz must be in L because rule2 could have been used immediately at [1].  And, for any q  1, uvqxyqz must be in L 

because rule1 could have been used q times before finally using rule2.    
◼ 

 

So, if L is a context-free language, every “long” string in L must be pumpable.  Just as with the Pumping Theorem for 

regular languages, the pumped region can be pumped out once or pumped in any number of times, in all cases resulting 

in another string that is also in L.  So, if there is even one “long” string in L that is not pumpable, then L is not context-

free. 

 

Note that the value k plays two roles in the Pumping Theorem.  It defines what we mean by a “long” string and it 

imposes an upper bound on |vxy|.  When we set k to bn + 1, we guaranteed that it was large enough so that we could 

prove that it served both of those purposes.  But we should point out that a smaller value would have sufficed as the 

definition for a “long” string, since any string of length greater than bn must be pumpable.  

 

There are a few important ways in which the context-free Pumping Theorem differs from the regular one: 

 

• The most obvious is that two regions, v and y, must be pumped in tandem. 

• We don’t know anything about where the strings v and y will fall.  All we know is that they are reasonably “close 

together”, i.e., |vxy|  k. 

• Either v or y could be empty, although not both.    
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Example 13.1 AnBnCn is Not Context-Free 

Let L = AnBnCn = {anbncn : n 0}.  We can use the Pumping Theorem to show that L is not context-free.  If it were, 

then there would exist some k such that any string w, where |w|  k, must satisfy the conditions of the theorem.  We 

show one string w that does not.  Let w = akbkck, where k is the constant from the Pumping Theorem.  For w to satisfy 

the conditions of the Pumping Theorem, there must be some u, v, x, y, and z such that w = uvxyz, vy  , |vxy|  k, and 

q  0 (uvqxyqz is in L).  We show that no such u, v, x, y, and z exist.  If either v or y contains two or more different 

characters, then set q to 2 (i.e., pump in once) and the resulting string will have letters out of order and thus not be in 

AnBnCn.  (For example, if v is aabb and y is cc, then the string that results from pumping will look like 

aaa…aaabbaabbccc…ccc.)  If both v and y each contain at most one distinct character then set q to 2.  Additional 

copies of at most two different characters are added, leaving the third unchanged.  There are no longer equal numbers 

of the three letters, so the resulting string is not in AnBnCn.  There is no way to divide w into uvxyz such that all the 

conditions of the Pumping Theorem are met.  So AnBnCn is not context-free.  

 

As with the Pumping Theorem for regular languages, it requires some skill to design simple and effective proofs using 

the context-free Pumping Theorem.  As before, the choices that we can make, when trying to show that a language L 

is not context-free are: 

 

• We choose w, the string to be pumped.  It is important to choose w so that it is in the part of L that captures the 

essence of why L is not context-free. 

• We choose a value for q that shows that w isn’t pumpable. 

• We may apply closure theorems before we start, so that we show that L is not context-free by showing that some 

other language L isn’t.  We’ll have more to say about this technique later. 

Example 13.2 The Language of Strings with n2 a’s is Not Context-Free 

Let L = { a n2

, n  0}.  We can use the Pumping Theorem to show that L is not context-free.  If it were, then there 

would exist some k such that any string w, where |w|  k, must satisfy the conditions of the theorem.  We show one 

string w that does not.  Let n (in the definition of L) be k2.  So n2 = k4 and w = 
4ka .  For w to satisfy the conditions of 

the Pumping Theorem, there must be some u, v, x, y, and z, such that w = uvxyz, vy  , |vxy|  k, and q  0 (uvqxyqz 

is in L).  We show that no such u, v, x, y, and z exist.  Since w contains only a’s, vy = ap, for some nonzero p.  Set q 

to 2.  The resulting string, which we’ll call s, is 
pka +4

, which must be in L.  But it isn’t because it is too short.  If 
4ka

, which contains (k2)2 a’s, is in L, then the next longer element of L contains (k2 + 1)2 a’s.  That’s k4 + 2k2 + 1 a’s.  So 

there are no strings in L with length between k4 and k4 + 2k2 + 1.  But |s| = k4 + p.  So, for s to be in L, p = |vy| would 

have to be at least 2k2 + 1.  But |vxy|  k, so p can’t be that large.  Thus s is not in L.  There is no way to divide w into 

uvxyz such that all the conditions of the Pumping Theorem are met.  So L is not context-free.  

 

When using the Pumping Theorem, we focus on v and y.  Once they are specified, so are u, x, and z.   

 

To show that there exists no v, y pair that satisfies all of the conditions of the Pumping Theorem, it is sometimes 

necessary to enumerate a set of cases and rule them out one at a time.  Sometimes the easiest way to do this is to 

imagine the string to be pumped as divided into a set of regions.  Then we can consider all the ways in which v and y 

can fall across those regions. 

Example 13.3 Dividing the String w Into Regions 

Let L = {anbman : n, m  0 and n  m}.  We can use the Pumping Theorem to show that L is not context-free.   If it 

were, then there would exist some k such that any string w, where |w|  k, must satisfy the conditions of the theorem.  

We show one string w that does not.  Let w = akbkak, where k is the constant from the Pumping Theorem.  For w to 

satisfy the conditions of the Pumping Theorem, there must be some u, v, x, y, and z, such that w = uvxyz, vy  , |vxy| 

 k, and q  0 (uvqxyqz is in L).  We show that no such u, v, x, y, and z exist.  Imagine w divided into three regions as 

follows: 
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   aaa … aaabbb … bbbaaa … aaa 

   |         1        |    2 |         3          | 

 

We consider all the cases for where v and y could fall and show that in none of them are all the conditions of the 

theorem met: 

 

• If either v or y crosses regions, then set q to 2 (thus pumping in once).  The resulting string will have letters out of 

order and so not be in L.  So in all the remaining cases we assume that v and y each falls within a single region. 

• (1, 1): both v and y fall in region 1.  Set q to 2.  In the resulting string, the first group of a’s is longer than the 

second group of a’s.  So the string is not in L. 

• (2, 2): both v and y fall in region 2.  Set q to 2.  In the resulting string, the b region is longer than either of the a 

regions.  So the string is not in L 

• (3, 3): both v and y fall in region 3.  Set q to 0.  The same argument as for (1, 1). 

• (1, 2): nonempty v falls in region 1 and nonempty y falls in region 2.  (If either v or y is empty, it does not matter 

where it falls.  So we can treat it as though it falls in the same region as the nonempty one.  We have already 

considered all of those cases.)  Set q to 2.  In the resulting string, the first group of a’s is longer than the second 

group of a’s.  So the string is not in L. 

• (2, 3): nonempty v falls in region 2 and nonempty y falls in region 3.  Set q to 2.  In the resulting string the second 

group of a’s is longer than the first group of a’s.  So the string is not in L. 

• (1, 3): nonempty v falls in region 1 and nonempty y falls in region 3.  If this were allowed by the other conditions 

of the Pumping Theorem, we could pump in a’s and still produce strings in L.  But if we pumped out, we would 

violate the requirement that the a regions be at least as long as the b region.  More importantly, this case violates 

the requirement that |vxy|  k.  So it need not be considered. 

 

There is no way to divide w into uvxyz such that all the conditions of the Pumping Theorem are met.  So L is not 

context-free.  

 

Consider the language PalEven = {wwR : w  {a, b}*}, the language of even-length palindromes of a’s and b’s, 

which we introduced in Example 11.3.  Let w be any string in PalEven.  Then substrings of w are related to each other 

in a perfectly nested way, as shown in Figure 13.3 (a).  Nested relationships of this sort can naturally be described 

with a context-free grammar, so languages whose strings are structured in this way are typically context-free. 

 

But now consider the case in which the relationships are not properly nested but instead cross.  For example, consider 

the language WcW = {wcw : w  {a, b}*}.  Now let w be any string in WcW.  Then substrings of w are related to 

each other as shown in Figure 13.3 (b).  We call such dependencies, where lines cross each other, cross-serial 

dependencies.  Languages whose strings are characterized by cross serial dependencies are typically not context-free. 

 

 

 

 

 

 

 

 

Figure 13.3  Nested versus cross-serial dependencies 

 

 

Example 13.4 WcW is Not Context-Free 

Let WcW = {wcw : w  {a, b}*}.  WcW is not context-free because its strings contain cross-serial dependencies.  

 

We can use the Pumping Theorem to show that.  If it were, then there would exist some k such that any string w, where 

|w|  k, must satisfy the conditions of the theorem.  We show one string w that does not.  Let w = akbkcakbk, where k 

is the constant from the Pumping Theorem.  For w to satisfy the conditions of the Pumping Theorem, there must be 
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some u, v, x, y, and z, such that w = uvxyz, vy  , |vxy|  k, and q  0 (uvqxyqz is in WcW).  We show that no such 

u, v, x, y, and z exist.  Imagine w divided into five regions as follows: 

 
   aaa … aaabbb … bbbcaaa … aaabbb … bbb 

   |         1        |    2 |3|         4         |           5         | 

 

Call the part before the c the left side and the part after the c the right side.  We consider all the cases for where v and 

y could fall and show that in none of them are all the conditions of the theorem met: 

 

• If either v or y overlaps region 3, set q to 0.  The resulting string will no longer contain a c and so is not in WcW. 

• If both v and y occur before region 3 or they both occur after region 3, then set q to 2.   One side will be longer 

than the other and so the resulting string is not in WcW. 

• If either v or y overlaps region 1, then set q to 2.  In order to make the right side match, something would have to 

be pumped into region 4.  But any v, y pair that did that would violate the requirement that |vxy|  k.  

• If either v or y overlaps region 2, then set q to 2.  In order to make the right side match, something would have to 

be pumped into region 5.  But any v, y pair that did that would violate the requirement that |vxy|  k.  

 

There is no way to divide w into uvxyz such that all the conditions of the Pumping Theorem are met.  So WcW is not 

context-free.  

 

Are programming languages like C++ and Java context-free?  C 666. 

 

The language WcW, which we just showed is not context-free, is important because of its similarity to the structure 

of many common programming languages.  Consider a programming language that requires that variables be declared 

before they are used.  If we consider just a single variable w, then a program that declares w and then uses it has a 

structure very similar to the strings in the language WcW, since the string w must occur in exactly the same form in 

both the declaration section and the body of the program.    

13.4 Some Important Closure Properties of Context-Free Languages 
It helps to be able to analyze a complex language by decomposing it into simpler pieces.  Closure theorems, when 

they exist, enable us to do that.  We’ll see in this section that, while the context-free languages are closed under some 

common operations, we cannot prove as strong a set of closure theorems as we were able to prove for the regular 

languages. 

13.4.1 The Closure Theorems 

Theorem 13.5  Closure under Union, Concatenation, Kleene Star, Reverse, and Letter Substitution 

Theorem: The context-free languages are closed under union, concatenation, Kleene star, reverse, and letter 

substitution. 

 

Proof:  We prove each of the claims separately by construction: 

 

• The context-free languages are closed under union: if L1 and L2 are context-free languages, then there exist context-

free grammars G1 = (V1, 1, R1, S1) and G2 = (V2, 2, R2, S2) such that L1 = L(G1) and L2 = L(G2).  If necessary, 

rename the nonterminals of G1 and G2 so that the two sets are disjoint and so that neither includes the symbol S.  

We will build a new grammar G such that L(G) = L(G1)  L(G2).  G will contain all the rules of both G1 and G2.  

We add to G a new start symbol, S, and two new rules, S → S1 and S → S2. The two new rules allow G to generate 

a string iff at least one of G1 or G2 generates it.  So G = (V1  V2  {S}, 1  2, R1  R2  {S → S1, S → S2}, S).  

 

• The context-free languages are closed under concatenation: if L1 and L2 are context-free languages, then there exist 

context-free grammars G1 = (V1, 1, R1, S1) and G2 = (V2, 2, R2, S2) such that L1 = L(G1) and L2 = L(G2).  If 

necessary, rename the nonterminals of G1 and G2 so that the two sets are disjoint and so that neither includes the 

symbol S.  We will build a new grammar G such that L(G) = L(G1) L(G2).  G will contain all the rules of both G1 
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and G2.  We add to G a new start symbol, S, and one new rule, S → S1 S2.  So G = (V1  V2  {S}, 1  2, R1  

R2  {S → S1 S2}, S).  

 

• The context-free languages are closed under Kleene star: if L1 is a context-free language, then there exists a context-

free grammar G1 = (V1, 1, R1, S1) such that L1 = L(G1).  If necessary, rename the nonterminals of G1 so that V1 does 

not include the symbol S.  We will build a new grammar G such that L(G) = L(G1)*.  G will contain all the rules of 

G1.  We add to G a new start symbol, S, and two new rules, S →  and S → S S1.  So G = (V1  {S}, 1, R1  {S → 

, S → S S1}, S).  

 

• The context-free languages are closed under reverse: recall that LR= {w  * : w = xR for some x  L}.  If L is a 

context-free language, then it is generated by some Chomsky normal form grammar G = (V, , R, S).  Every rule 

in G is of the form X → BC or X → a, where X, B, and C are elements of V -  and a  .  In the latter case L(X) = 

{a}.  {a}R = {a}.  In the former case, L(X) = L(B)L(C).  By Theorem 2.4, (L(B)L(C))R = L(C)RL(B)R.  So we 

construct, from G, a new grammar G, such that L(G) = LR.  G = (VG, G, R, SG), where R is constructed as 

follows: 

• For every rule in G of the form X → BC, add to R the rule X → CB. 

• For every rule in G of the form X → a, add to R the rule X → a. 

 

• The context-free languages are closed under letter substitution, defined as follows: consider any two alphabets, 1 

and 2.  Let sub be any function from 1 to 2*.  Then letsub is a letter substitution function from L1 to L2 iff 

letsub(L1) = {w  2* : y  L1 (w = y except that every character c of y has been replaced by sub(c))}.  We leave 

the proof of this as an exercise.      
◼ 

 

As with regular languages, we can use these closure theorems as a way to prove that a more complex language is 

context-free if it can be shown to be built from simpler ones using operations under which the context-free languages 

are closed. 

Theorem 13.6  Nonclosure under Intersection, Complement, and Difference 

Theorem: The context-free languages are not closed under intersection, complement, or difference. 

 

Proof:   

• The context-free languages are not closed under intersection: the proof is by counterexample.  Let: 

 

                    L1 = {anbncm : n, m  0}.     /* equal a’s and b’s. 

                    L2 = {ambncn : n, m  0}.    /* equal b’s and c’s. 

 

Both L1 and L2 are context-free’, since there exist straightforward context-free grammars for them. 

 

But now consider: 

 

                    L = L1  L2 

  = {anbncn : n  0}. 

 

If the context-free languages were closed under intersection, L would have to be context-free.  But we proved, in 

Example 13.1, that it isn’t. 

 

• The context-free languages are not closed under complement: given any sets L1 and L2,  

 

           L1  L2 = (L1  L2). 

 

The context-free languages are closed under union.  So, if they were also closed under complement, they would 

necessarily be closed under intersection.  But we just showed that they are not.  Thus they are not closed under 

complement either. 



  

Chapter 13                                             211                Context-Free and Noncontext-Free Languages 

 

We’ve also seen an example that proves this claim directly.  AnBnCn is context-free.  We showed a PDA that 

accepts it in Example 12.8.  But (AnBnCn) = AnBnCn is not context-free.   

   

• The context-free languages are not closed under difference (subtraction): given any language L,  

 

         L = * - L. 

 

* is context-free.  So, if the context-free languages were closed under difference, the complement of any context-

free language would necessarily be context-free.  But we just showed that that is not so.   
◼ 

 

Recall that, in using the regular Pumping Theorem to show that some language L was not regular, we sometimes found 

it useful to begin by intersecting L with another regular language to create a new language L.  Since the regular 

languages are closed under intersection, L would necessarily be regular if L were.  We then showed that L, designed 

to be simpler to work with, was not regular.  And so neither was L. 

 

It would be very useful to be able to exploit this technique when using the context-free Pumping Theorem.  

Unfortunately, as we have just shown, the context-free languages are not closed under intersection.  Fortunately, 

however, they are closed under intersection with the regular languages.  We’ll prove this result next and then, in 

Section 13.4.2, we’ll show how it can be exploited in a proof that a language is not context-free. 

Theorem 13.7  Closure under Intersection with the Regular Languages 

Theorem: The context-free languages are closed under intersection with the regular languages. 

 

Proof: The proof is by construction.  If L1 is context-free, then there exists some PDA M1 = (K1, , 1, 1, s1, A1) that 

accepts it.  If L2 is regular then there exists a DFSM M2 = (K2, , , s2, A2) that accepts it.  We construct a new PDA, 

M3 that accepts L1  L2.  M3 will work by simulating the parallel execution of M1 and M2.  The states of M3 will be 

ordered pairs of states of M1 and M2.  As each input character is read, M3 will simulate both M1 and M2 moving 

appropriately to a new state.  M3 will have a single stack, which will be controlled by M1.  The only slightly tricky 

thing is that M1 may contain -transitions.  So M3 will have to allow M1 to follow them while M2 just stays in the same 

state and waits until the next input symbol is read. 

 

            M3 = (K1  K2, , 1, 3, (s1, s2), A1  A2), where 3 is built as follows: 

 

• For each transition  ((q1,         a, ),    (p1,       ))  in 1,  

and each transition   (q2,         a)           p2)              in , add to 3 the transition: 

                              (((q1, q2),   a, ),  ((p1, p2), )). 

 

• For each transition   ((q1,       , ),   (p1,        ) in 1, 

and each state             q2                                     in K2, add to 3 the transition: 

                                (((q1, q2), , ),   ((p1, q2), )). 
◼ 

 

We define intersectPDAandFSM as follows: 

 

     intersectPDAandFSM(M1: PDA, M2: FSM) = 

   Build M3 as defined in the proof of Theorem 13.7. 

Theorem 13.8  Closure under Difference with the Regular Languages 

Theorem: The difference (L1 – L2) between a context-free language L1 and a regular language L2 is context-free. 
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Proof:  L1 – L2 = L1  L2.  If L2 is regular, then, since the regular languages are closed under complement, L2 is 

also regular.  Since L1 is context-free, by Theorem 13.7, L1  L2 is context-free.   
◼ 

 

The last two theorems are important tools, both for showing that a language is context-free and for showing that a 

language is not context-free.   

Example 13.5 Using Closure Theorems to Prove a Language Context-Free 

Consider the perhaps contrived language L = {anbn: n  0 and n  1776}.  Another way to describe L is that it is {anbn: 

n  0} – {a1776b1776}.  AnBn = {anbn: n  0} is context-free.  We have shown both a simple grammar that generates it 

and a simple PDA that accepts it.  {a1776b1776} is finite and thus regular.  So, by Theorem 13.8, L is context free.   

 

Generalizing that example a bit, from Theorem 13.8 it follows that any language that can be described as the result of 

subtracting a finite number of elements from some language known to be context-free must also be context-free. 

13.4.2 Using the Pumping Theorem in Conjunction with the Closure 
Properties 

Languages that impose no specific order constraints on the symbols contained in their strings are not always context-

free.  But it may be hard to prove that one isn’t just by using the Pumping Theorem.  In such a case, it is often useful 

to exploit Theorem 13.7, which tells us that the context-free languages are closed under intersection with the regular 

languages. 

 

Recall our notational convention from Section 13.3: (n, n) means that all nonempty substrings of vy occur in region n.  

This may happen either because v and y are both nonempty and they both occur in region n.  Or it may happen because 

one or the other is empty and the nonempty one occurs in region n. 

 

Are natural languages like English or Chinese or German context-free?  C 747. 

Example 13.6 WW is Not Context-Free 

Let WW = {ww : w  {a, b}*}.  WW is similar to WcW = {wcw : w  {a, b}*}, except that there is no longer a 

middle marker.  Because, like WcW, it contains cross-serial dependencies, it is not context-free.  We could try proving 

that by using the Pumping Theorem alone.  Here are some attempts, using various choices for w: 

 

• Let w = (ab)2k.  If v =  and y = ab, pumping works fine. 

• Let w = akbakb.  If v = a and is in the first group of a’s and y = a and is in the second group of a’s, pumping 

works fine. 

• Let w = akbkakbk.  Now the constraint that |vxy|  k prevents v and y from both being in the two a regions or the 

two b regions.  This choice of w will lead to a successful Pumping Theorem proof.  But there are four regions in 

w and we must consider all the ways in which v and y could overlap those regions, including all those in which 

either or both of v and y occur on a region boundary.  While it is possible to write out all those possibilities and 

show, one at a time, that every one of them violates at least one condition of the Pumping Theorem, there is an 

easier way.   

 

If WW were context-free, then L = WW  a*b*a*b* would also be context-free.  But it isn’t, which we can show 

using the Pumping Theorem.   If it were, then there would exist some k such that any string w, where |w|  k, must 

satisfy the conditions of the theorem.  We show one string w that does not.  Let w = akbkakbk, where k is the constant 

from the Pumping Theorem.  For w to satisfy the conditions of the Pumping Theorem, there must be some u, v, x, y, 

and z, such that w = uvxyz, vy  , |vxy|  k, and q  0 (uvqxyqz is in L).  We show that no such u, v, x, y, and z exist.  

Imagine w divided into four regions as follows: 
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   aaa … aaabbb … bbbaaa … aaabbb … bbb 

   |         1        |    2 |         3          |          4         | 

 

We consider all the cases for where v and y could fall and show that in none of them are all the conditions of the 

theorem met: 

 

• If either v or y overlaps more than one region, set q to 2.  The resulting string will not be in a*b*a*b* and so is 

not in L. 

• If |vy| is not even then set q to 2.  The resulting string will have odd length and so not be in L.  We assume in all 

the other cases that |vy| is even. 

• (1, 1), (2, 2), (1, 2): set q to 2.  The boundary between the first half and the second half will shift into the first b 

region.  So the second half will start with a b, while the first half still starts with an a.  So the resulting string is 

not in L. 

• (3, 3), (4, 4), (3, 4): set q to 2.  This time the boundary shifts into the second a region.  The first half will end with 

an a while the second half still ends with a b.  So the resulting string is not in L. 

• (2, 3): set q to 2.  If |v|  |y| then the boundary moves and, as argued above, the resulting string is not in L.  If |v| = 

|y| then the first half contains more b’s and the second half contains more a’s.  Since they are no longer the same, 

the resulting string is not in L.  

• (1, 3), (1, 4), and (2, 4) violate the requirement that |vxy|  k.  

 

There is no way to divide w into uvxyz such that all the conditions of the Pumping Theorem are met.  So L is not 

context-free.  So neither is WW. 

 

One reason that context-free grammars are typically too weak to describe musical structures is that 

they cannot describe constraints such as the one that defines WW.  C 778. 

 

Example 13.7 A Simple Arithmetic Language is Not Context-Free 

Let L = {x # y = z : x, y, z  {0, 1}* and, if x, y and z are viewed as positive binary numbers without leading zeros, 

then xy = zR}. For example, 100#111=00111  L.  (We do this example instead of the more natural one in which 

we require that xy = z because it seems as though it might be more likely to be context-free.  As we’ll see, however, 

even this simpler variant is not.)   

 

If L were context-free, then L = L  10*#1*=0*1* would also be context-free.  But it isn’t, which we can show 

using the Pumping Theorem.  If it were, then there would exist some k such that any string w, where |w|  k, must 

satisfy the conditions of the theorem.  We show one string w that does not.  Let w = 10k#1k=0k1k, where k is the 

constant from the Pumping Theorem.  Note that w  L because 10k1k=1k0k.  For w to satisfy the conditions of the 

Pumping Theorem, there must be some u, v, x, y, and z, such that w = uvxyz, vy  , |vxy|  M, and q  0 (uvqxyqz is 

in L).  We show that no such u, v, x, y, and z exist.  Imagine w divided into seven regions as follows: 

 

    1 000 … 000 # 111 … 111 = 000 … 000111 …111 

   |1|           2          |3|         4          |5|          6         |        7        | 

 

We consider all the cases for where v and y could fall and show that in none of them are all the conditions of the 

theorem met: 

 

• If either v or y overlaps region 1, 3, or 5 then set q to 0. The resulting string will not be in 10*#1*=0*1* and so 

is not in L. 

• If either v or y contains the boundary between 6 and 7, set q to 2.  The resulting string will not be in 10*#1*=0*1* 

and so is not in L.  So the only cases left to consider are those where v and y each occur within a single region. 

• (2, 2), (4.4), (2, 4): set q to 2.  Because there are no leading zeros, changing the left side of the string changes its 

value.  But the right side doesn’t change to match.  So the resulting string is not in L. 
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• (6, 6), (7, 7), (6, 7): set q to 2.  The right side of the equality statement changes value but the left side doesn’t.  So 

the resulting string is not in L. 

• (4, 6): note that, because of the first argument to the multiplication, the number of 1’s in the second argument must 

equal the number of 1’s after the =. Set q to 2.  The number of 1’s in the second argument changed but the number 

of 1’s in the result did not.  So the resulting string is not in L.  

• (2, 6), (2, 7), and (4, 7) violate the requirement that |vxy|  k.  

 

There is no way to divide w into uvxyz such that all the conditions of the Pumping Theorem are met.  So L is not 

context-free.  

 

Sometimes the closure theorems can be used to reduce the proof that a new language L is not context-free to the proof 

that some other language L is not context-free, where we have already proven the case for L. 

Example 13.8 Using Intersection to Force Order Constraints 

Let L = {w  {a, b, c}* : w has an equal number of a's, b's, and c's}.  If L were context-free, then L = L  a*b*c* 

would also be context-free.  But L = AnBnCn, which is not context-free, so neither is L. 

 

13.5 Deterministic Context-Free Languages  
The regular languages are closed under complement, intersection, and difference.  Why are the context-free languages 

different?  In a nutshell, because the machines that accept them may necessarily be nondeterministic.  Recall the 

technique that we used, in the proof of Theorem 8.4, to show that the regular languages are closed under complement:  

Given a (possibly nondeterministic) FSM M1, we used the following procedure to construct a new FSM M2 such that 

L(M2) = L(M1): 

 

1. From M1, construct an equivalent DFSM M, using the algorithm ndfsmtodfsm, presented in the proof of Theorem 

5.3.  (If M1 is already deterministic, M = M1.)   

2. M must be stated completely, so if it is described with an implied dead state, add the dead state and all required 

transitions to it.   

3. Begin building M2 by setting it equal to M.  Then swap the accepting and the nonaccepting states.  So M2 = (KM, 

, M, sM, KM - AM).  

 

We have no PDA equivalent of ndfsmtodfsm, so we cannot simply adapt this construction for PDAs.  Our proofs that 

the regular languages are closed under intersection and difference relied on the fact that they were closed under 

complement, so we cannot adapt those proofs here either. 

 

We have no PDA equivalent of ndfsmtodfsm because there provably isn’t one, as we will show shortly.  Recall that, 

in Section 12.2, we defined a PDA M to be deterministic iff: 

 

• M contains no pairs of transitions that compete with each other, and   

• if q is an accepting state of M, then there is no transition ((q, , ), (p, a)) for any p or a.   

 

In other words, M never has a choice between two or more moves, nor does it have a choice between moving and 

accepting.   There exist context-free languages that cannot be accepted by any deterministic PDA.  But suppose that 

we restrict our attention to the ones that can.   

What is a Deterministic Context-Free Language? 

We are about to define the class of deterministic context-free languages.  Because this class is useful, we would like 

it to be as large as possible.  So let $ be an end-of-string marker.  We could use any symbol that is not in L (for 

example <line feed> or <cr>), but $ is easier to read.  A language L is deterministic context-free iff L$ can be accepted 

by some deterministic PDA.   
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To see why we have defined the deterministic context-free languages to exploit an end-of-string marker, consider the 

following example of a straightforward language for which no deterministic PDA exists unless an end-of-string marker 

is used. 

Example 13.9 Why an End-of-String Marker is Useful 

Let L = a*  {anbn : n > 0}.  Consider any PDA M that accepts L.  When it begins reading a’s, M must push them 

onto the stack in case there are going to be b’s.  But, if it runs out of input without seeing b’s, it needs a way to pop 

those a’s from the stack before it can accept.  Without an end-of-string marker, there is no way to allow that popping 

to happen only when all the input has been read.  So, for example, the following PDA accepts L, but it is 

nondeterministic because the transition to state 3 (where the a’s will be popped) can compete with both of the other 

transitions from state 1. 

 

    a//a                                       b/a/                                 

                                  b/a/                                         

                 1                                             2                        

                                                                             

                   

                           // 

                          

           3                    /a/ 

 

 

 

With an end-of-string marker, we can build the following deterministic PDA, which can only take the transition to 

state 3, the a-popping state, when it sees the $: 

 

 

    a//a                                      b/a/                                 

                                  b/a/                                        $// 

                 1                                             2                                          4 

                                                                             

                   

                           $// 

                          

           3                    /a/ 

 

 

 

Before we go any farther, we have to be sure of one thing.  We introduced the end-of-string marker to make it easier 

to build PDAs that are deterministic.  We need to make sure that it doesn’t make it possible to build a PDA for a 

language L that was not already context-free.   In other words, adding the end-of-string marker cannot convert a 

language that was not context-free into one that is.  We do that next. 

Theorem 13.9  CFLs and Deterministic CFLs 

Theorem: Every deterministic context-free language (as just defined) is context-free.  

 

Proof:  If L is deterministic context-free, then L$ is accepted by some deterministic PDA M = (K, , , , s, A).  From 

M, we construct M such that L(M) = L.  The idea is that, whatever M can do on reading $, M can do on reading  

(i.e., by simply guessing that it is at the end of the input).  But, as soon as M makes that guess, it cannot read any 

more input.  It may perform the rest of its computation (such as popping its stack), but any path that pretends it has 

seen the $ before it has read all of its input will fail to accept.  To enable M to perform whatever stack operations M 

could have performed, but not to read any input, M will be composed of two copies of M: the first copy will be 

identical to M, and M will operate in that part of itself until it guesses that it is at the end of the input; the second copy 
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will be identical to M except that it contains only the transitions that do not consume any input.  The states in the first 

copy will be labeled as in M.  Those in the second copy will have the prime symbol appended to their names.  So, if 

M contains the transition ((q, , 1), (p, 2)), M will contain the transition ((q, , 1), (p, 2)).  The two copies will be 

connected by finding, in the first copy of M, every $-transition from some state q to some state p.  We replace each 

such transition with an -transition into the second copy.  So the new transition goes from q to p. 

 

We can define the following procedure to construct M : 
 

     without$(M: PDA) = 

1. Initially, set M to M. 

/* Make the copy that does not read any input. 

2. For every state q in M, add to M a new state q. 

3. For every transition ((q, , 1), (p, 2)) in M do: 

     3.1 Add to M  the transition ((q, , 1), (p, 2)). 

 /* Link up the two copies. 

 4. For every transition ((q, $, 1), (p, 2)) in M do: 

     4.1 Add to M  the transition ((q, , 1), (p, 2)). 

     4.2 Remove ((q, $, 1), (p, 2)) from M. 

 /* Set the accepting states of M. 

 5. AM  = {q: q  A}.  
◼ 

Closure Properties of the Deterministic Context-Free Languages 

The deterministic context-free languages are practically very significant because it is possible to build deterministic, 

linear time parsers for them.  They also possess additional formal properties that are important, among other reasons, 

because they enable us to prove that not all context-free languages are deterministic context-free.  The most important 

of these is that the deterministic context-free languages, unlike the larger class of context-free languages, are closed 

under complement.   

Theorem 13.10  Closure under Complement 

Theorem: The deterministic context-free languages are closed under complement. 

 

Proof: The proof is by construction.  If L is a deterministic context-free language over the alphabet , then L$ is 

accepted by some deterministic PDA M = (K,   {$}, , , s, A).  We need to describe an algorithm that constructs 

a new deterministic PDA that accepts (L)$.  To prove Theorem 8.4 (that the regular languages are closed under 

complement), we defined a construction that proceeded in two steps: given an arbitrary FSM, convert it to an 

equivalent DFSM, and then swap accepting and nonaccepting states.  We can skip the first step here, but we must 

solve a new problem.  A deterministic PDA may fail to accept an input string w for any one of several reasons: 

 

1. Its computation ends before it finishes reading w. 

2. Its computation ends in an accepting state but the stack is not empty. 

3. Its computation loops forever, following -transitions, without ever halting in either an accepting or a 

nonaccepting state. 

4. Its computation ends in a nonaccepting state. 

 

If we simply swap accepting and nonaccepting states we will correctly fail to accept every string that M would have 

accepted (i.e., every string in L$).  But we will not necessarily accept every string in (L)$.  To do that, we must also 

address issues 1 – 3 above. 

 

An additional problem is that we don’t want to accept L(M).  That includes strings that do not end in $.  We must 

accept only strings that do end in $ and that are in (L)$. 

 

A construction that solves these problems is given in B 635. 
◼ 
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What else can we say about the deterministic context-free languages?  We know that they are closed under 

complement.  What about union and intersection?  We observe that L1  L2 = (L1  L2).  So, if the deterministic 

context-free languages were closed under union, they would necessarily be closed under intersection also.  But they 

are not closed under union.  The context-free languages are closed under union, so the union of two deterministic 

context-free languages must be context-free.  It may, however not be deterministic.  The deterministic context-free 

languages are also not closed under intersection.  In fact, when two deterministic context-free languages are 

intersected, the result may not even be context-free. 

Theorem 13.11  Nonclosure under Union 

Theorem: The deterministic context-free languages are not closed under union.  

 

Proof:  We show a counterexample to the claim that they are closed: 

  

  Let L1  = {aibjck : i, j, k  0 and i  j}. 

  Let L2 = {aibjck : i, j, k  0 and j  k}. 

 

  Let L  = L1  L2. 

 = {aibjck : i, j, k  0 and (i  j) or (j  k)}. 

  Let L = L. 

 = {aibjck : i, j, k  0 and i = j = k}  {w  {a, b, c}* : the letters are out of order}. 

  Let L = L  a*b*c*. 

 = {anbncn : n 0}. 

 

L1 and L2 are deterministic context-free.  Deterministic PDAs that accept L1$ and L2$ can be constructed using the 

same approach we used to build a deterministic PDA for L = {ambn : m  n; m, n > 0} in  Example 12.7.  Their union 

L is context-free but it cannot be deterministic context-free.  If it were, then its complement L would also be 

deterministic context-free and thus context-free.  But it isn’t.  If it were context-free, then L, the intersection of L 

with a*b*c*, would also be context-free since the context-free languages are closed under intersection with the 

regular languages.  But L is AnBnCn = {anbncn : n 0}, which we have shown is not context-free.   

◼ 

Theorem 13.12  Nonclosure under Intersection 

Theorem: The deterministic context-free languages are not closed under intersection. 

 

Proof:  We show a counterexample: 

  

      Let L1  = {aibjck : i, j, k  0 and i = j}. 

      Let L2  = {aibjck : i, j, k  0 and j = k}. 

 

      Let L  = L1  L2. 

   = {anbncn : n 0}. 

 

L1 and L2 are deterministic context-free.  The deterministic PDA shown in Figure 13.4 accepts L1$.  A similar one 

accepts L2.  But we have shown that their intersection L is not context-free, much less deterministic context-free.  
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                                   a//a                                      b/a/                c// 

                                                              b/a/    c// 

                                                 a                                            b                                             c 

 

     

                                                      $//                         $//                                $// 

 

 

              f 

 

 

Figure 13.4  A deterministic PDA that accepts {aibjck : i, j, k  0 and i = j 

◼ 

A Hierarchy within the Class of Context-Free Languages 

The most important result of this section is the following theorem.  There are context-free languages that are not 

deterministic context-free.  Since there are context-free languages for which no deterministic PDA exists, there can 

exist no equivalent of ndfsmtodfsm for PDAs.  Nondeterminism is a fact of life when working with PDAs unless we 

are willing to work only with languages that have been designed to be deterministic. 

 

The fact that there are context-free languages that are not deterministic poses a problem for the 

design of efficient parsing algorithms.  The best parsing algorithms we have sacrifice either 

generality (i.e., they cannot correctly parse all context-free languages) or efficiency (i.e., they do 

not run in time that is linear in the length of the input).  In Chapter 15, we will describe some of 

these algorithms. 

 

Theorem 13.13 Some CFLs are not Deterministic 

Theorem: The class of deterministic context-free languages is a proper subset of the class of context-free languages.  

Thus there exist nondeterministic PDAs for which no equivalent deterministic PDA exists. 

 

Proof: By Theorem 13.9, every deterministic context-free language is context-free.  So all that remains is to show that 

there exists at least one context-free language that is not deterministic context-free.   

 

Consider L = {aibjck : i, j, k  0 and (i  j) or (j  k)}.  L is context-free.  The construction of a grammar for it was an 

exercise in Chapter 11.  But we can show that L is not deterministic context-free by the same argument that we used 

in the proof of Theorem 13.11.  If L were deterministic context-free, then, by Theorem 13.10, its complement L = 

{aibjck : i, j, k  0 and i = j = k}  {w  {a, b, c}* : the letters are out of order} would also be deterministic context-

free and thus context-free.  If L were context-free, then L = L  a*b*c* would also be context-free (since the 

context-free languages are closed under intersection with the regular languages).  But L = AnBnCn = {anbncn : n  

0}, which is not context-free.  So L is context-free but not deterministic context-free.   

 

Since L is context-free, it is accepted by some (nondeterministic) PDA M.  M is an example of a nondeterministic 

PDA for which no equivalent deterministic PDA exists.  If such a deterministic PDA did exist and accept L, it could 

be converted into a deterministic PDA that accepted L$.  But, if that machine existed, L would be deterministic context-

free and we just showed that it is not. 
◼ 

 

We get the class of deterministic context-free languages when we think about the context-free languages from the 

perspective of PDAs that accept them.  Recall from Section 11.7.3 that, when we think about the context-free 

languages from the perspective of the grammars that generate them, we also get a subclass of languages that are, in 

some sense, “easier” than others: there are context-free languages for which unambiguous grammars exist and there 

are others that are inherently ambiguous, by which we mean that every corresponding grammar is ambiguous.   
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Example 13.10 Inherent Ambiguity versus Nondeterminism 

Recall the language L1 ={aibjck : i, j, k  0 and (i = j) or (j = k)}, which can also be described as {anbncm : n, m  0} 

 {anbmcm : n, m  0}.  L1 is inherently ambiguous because every string that is also in AnBnCn = {anbncn : n  0} is 

an element of both sublanguages and so has at least two derivations in any grammar for L1. 

 

Now consider the slightly different language L2 = {anbncmd : n, m  0}  {anbmcme : n, m  0}.  L2 is not inherently 

ambiguous.  It is straightforward to write an unambiguous grammar for each of the two sublanguages and any string 

in L2 is an element of only one of the sublanguages (since each such string must end in d or e but not both).  L2 is not, 

however, deterministic.  There exists no PDA that can decide which of the two sublanguages a particular string is in 

until it has consumed the entire string. 

 

What is the relationship between the deterministic context-free languages and the languages that are not inherently 

ambiguous?  The answer is shown in Figure 13.5. 

 

 

 

      Context-free 

        Languages 

         

 

      Not inherently 

      Ambiguous CFLs 

                 

 

      Deterministic 

             CFLs 

                        

 

      Regular  

      Languages 

 

 

 

 

Figure 13.5  A hierarchy within the class of context-free languages 

 

 

The subset relations shown in the figure are proper: 

 

• There exist deterministic context-free languages that are not regular.  These languages are in the innermost donut 

in the figure.  One example is AnBn = {anbn : n  0}. 

 

• There exist languages that are not in the inner donut, i.e., they are not deterministic.  But they are context-free and 

not inherently ambiguous.  Two examples of languages in this second donut are: 

• PalEven = {wwR : w  {a,b}*}.  The grammar we showed for it in Example 11.3 is unambiguous. 

• {anbncmd : n, m  0}  {anbmcme: n, m  0}. 

 

• There exist languages that are in the outer donut because they are inherently ambiguous.  Two examples are: 

• {aibjck : i, j, k  0 and (i = j) or (j = k)}. 

• {aibjck : i, j, k  0 and (i  j) or (j  k)}. 

  

To prove that the figure is properly drawn requires two additional results: 
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Theorem 13.14  Every Regular Language is Deterministic Context-Free 

Theorem: Every regular language is deterministic context-free. 

 

Proof:  The proof is by construction.  {$} is regular.  So, if L is regular, then so is L$ (since the regular languages are 

closed under concatenation).  So there is a DFSM M that accepts it.  Using the construction that we used in the proof 

of Theorem 13.1 to show that every regular language is context-free, construct, from M a PDA P that accepts L$.  P 

will be deterministic.  
◼ 

Theorem 13.15  Every Deterministic CFL has an Unambiguous Grammar 

Theorem: For every deterministic context-free language there exists an unambiguous grammar. 

 

Proof:  If a language L is deterministic context-free, then there exists a deterministic PDA M that accepts L$.  We 

prove the theorem by construction of an unambiguous grammar G such that L(M) = L(G).  We construct G using 

approximately the same technique that we used to build a grammar from a PDA in the proof of Theorem 12.2.  The 

algorithm PDAtoCFG that we presented there proceeded in two steps: 

 

1. Invoke convertpdatorestricted(M) to build M, an equivalent PDA in restricted normal form. 

2. Invoke buildgrammar(M), to build an equivalent grammar G.  

 

It is straightforward to show that, if M is deterministic, then the grammar G that buildgrammar constructs will be 

unambiguous: G produces derivations that mimic the operation of M.  Since M is deterministic, on any input w it can 

follow only one path.  So G will be able to produce only one leftmost derivation for w.  Thus w has only one parse 

tree.  If every string in L(G) has a single parse tree, then G is unambiguous.  Since M accepts L$, G will generate L$.  

But we can build, from G, a grammar G that generates L by substituting  for $ in each rule in which $ occurs. 

 

So it remains to show that, from any deterministic PDA M, it is possible to build an equivalent PDA M that is in 

restricted normal form and is still deterministic.  This can be done using the algorithm convertPDAtodetnormalform, 

which is described in the proof, presented on B 635, of Theorem 13.10 (that the deterministic context-free languages 

are closed under complement).  If M is deterministic, then the PDA that is returned by 

convertPDAtodetnormalform(M) will be both deterministic and in restricted normal form.   

 

So the construction that proves the theorem is: 

 

     buildunambiggrammar(M: deterministic PDA) =  

1. Let G = buildgrammar(convertPDAtodetnormalform(M)). 

2. Let G be the result of substituting  for $ in each rule in which $ occurs. 

3. Return G. 
◼ 

13.6  Ogden’s Lemma  
The context-free Pumping Theorem is a useful tool for showing that a language is not context-free.  However, there 

are many languages that are not context-free but that cannot be proven so just with the Pumping Theorem.  In this 

section we consider a more powerful technique that may be useful in those cases. 

 

Recall that the Pumping Theorem for regular languages imposed the constraint that the pumpable region y had to fall 

within the first k characters of any “long” string w.  We exploited that fact in many of our proofs.  But notice that the 

Pumping Theorem for context-free languages imposes no similar constraint.  The two pumpable regions, v and y must 

be reasonably close together, but, as a group, they can fall anywhere in w.  Sometimes there is a region that is 

pumpable, even though other regions aren’t, and this can happen even in the case of long strings drawn from languages 

that are not context-free.   
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Example 13.11 Sometimes Pumping Isn’t Strong Enough 

Let L = {aibicj : i, j  0, i  j}.  We could attempt to use the context-free Pumping Theorem to show that L is not 

context-free.  Let w = akbkck+k!.  (The reason for this choice will be clear soon.)  Divide w into three regions, the a’s, 

the b’s, and the c’s, which we’ll call regions 1, 2, and 3, respectively.  If either v or y contains two or more distinct 

symbols, then set q to 2.  The resulting string will have letters out of order and thus not be in L.  We consider the 

remaining possibilities: 

 

• (1, 1), (2, 2), (1, 3), (2, 3): set q to 2.  The number of a’s will no longer equal the number of b’s, so the resulting 

string is not in L. 

• (1, 2): if |v|  |y| then set q to 2.  The number of a’s will no longer equal the number of b’s, so the resulting string 

is not in L.  If |v| = |y| then set q to (k!/|v|) + 1.  Note that (k!/|v|) must be an integer since |v|  k.  The string that 

results from pumping is aXbXck+k!, where X = k + (q – 1)|v| = k + (k!/|v|)|v| = k + k!.  So the number of a’s and of 

b’s equals the number of c’s.  This string is not in L.  So far, the proof is going well.  But now we must consider: 

• (3, 3): pumping in will result in even more c’s than a’s and b’s, so it will produce a string that is still in L.  And, 

while pumping out can reduce the number of c’s, it can’t reduce it all the way down to k because |vxy|  k.  So the 

maximum number of c’s that can be pumped out is k, which would result in a string with k! c’s.  But, as long as 

k  3, k! > k.  So the resulting string is in L and we have failed to show that L is not context-free. 

 

What we need is a way to prevent v and y from falling in the c region of w. 

 

Ogden’s Lemma is a generalization of the Pumping Theorem.  It lets us mark some number of symbols in our chosen 

string w as distinguished.  Then at least one of v and y must contain at least one distinguished symbol.  So, for example, 

we could complete the proof that we started in Example 13.11 if we could force at least one of v or y to contain at least 

one a.   

Theorem 13.16   Ogden’s Lemma 

Theorem: If L is a context-free language, then: 

 

        k  1 ( strings w  L, where |w|  k, if we mark at least k symbols of w as distinguished then: 

             (u, v, x, y, z (w = uvxyz, 

          vy contains at least one distinguished symbol, 

          vxy contains at most k distinguished symbols, and  

          q  0 (uvqxyqz is in L)))). 

 

Proof:  The proof is analogous to the one we did for the context-free Pumping Theorem except that we consider only 

paths that generate the distinguished symbols.  If L is context-free, then it is generated by some context-free grammar 

G = (V, , R, S) with n nonterminal symbols and branching factor b.  Let k be bn + 1.  Let w be any string in L(G) such 

that |w|  k.  A parse tree T for w might look like the one shown in Figure 13.6.  
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 A    X1  (M)      G 

 

      X2  (N)   H 

 

       X3 

 

  B  C         E            F 

 
a     b                  b  c j            e         e    f         f     h         g     g 

         ✓   ✓             ✓ 

 

    u           v              x            y            z 

 

Figure 13.6  A parse tree with some symbols marked as distinguished 

 

 

Suppose that we mark at least bn + 1 symbols as distinguished.  The distinguished symbols are marked with a ✓.  (Ignore 

the fact that there aren’t enough of them in the picture.  Its only role is to make it easier to visualize the process.)  Call 

the sequence of distinguished nodes the distinguished subsequence of w.  In this example, that is bje.  Note that the 

distinguished subsequence is not necessarily a substring.  The characters in it need not be contiguous.  The length of 

the distinguished subsequence is at least bn + 1.  We can now mark the nonleaf nodes that branched in a way that enabled 

the distinguished subsequence to grow to at least length bn + 1.  Mark every nonleaf node that has at least two daughters 

that contain a distinguished leaf.  In this example, we mark X2, and X1, as indicated by the symbol .  It is 

straightforward to prove by induction that T must contain at least one path that contains at least n + 1 marked nonleaf 

nodes since its yield contains bn + 1 distinguished symbols.  Choose one such path such that there is no longer one.  

That path must contain at least two nodes labeled with the same nonterminal symbol.  Choose the two nodes that are 

labeled with the bottom-most pair of repeated marked nonterminals.  Call the lower one N and the higher one M.   In 

the example, M is X1 and N is X2.  As shown in the diagram, divide w into uvxyz, such that x is the yield of N and vxy 

is the yield of M.  Now observe that:  

 

• vy contains at least one distinguished symbol because the root of the subtree with yield vxy has at least two 

daughters that contain distinguished symbols.  One of them may be in the subtree whose yield is x, but that leaves 

at least one that must be in either v or y.  There may be distinguished symbols in both, although, as in our example 

T, that is not necessary. 

• vxy contains at most k (bn + 1) distinguished symbols because there are at most n + 1 marked internal nodes on a 

longest path in the subtree that dominates it.  Only marked internal nodes create branches that lead to more than 

one distinguished symbol, and no internal node can create more than b branches. 

• q  0 (uvqxyqz is in L), by the same argument that we used in the proof of the context-free Pumping Theorem. 
◼ 

 

Notice that the context-free Pumping Theorem describes the special case in which all symbols of the string w are 

marked. 

 

Ogden’s Lemma is the tool that we need to complete the proof that we started in Example 13.11: 

Example 13.12 Ogden’s Lemma May Work When Pumping Doesn’t 

Now we can use Ogden’s Lemma to complete the proof that L = {aibicj : i, j  0, i  j} is not context-free.  Let w = 

akbkck+k!.  Mark all the a’s in w as distinguished.  If either v or y contains two or more distinct symbols, then set q to 

2.  The resulting string will have letters out of order and thus not be in L.  We consider the remaining possibilities: 
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• (1, 1), (1, 3): set q to 2.  The number of a’s will no longer equal the number of b’s, so the resulting string is not in 

L. 

• (1, 2): if |v|  |y| then set q to 2.  The number of a’s will no longer equal the number of b’s, so the resulting string 

is not in L.  If |v| = |y| then set q to (k!/|v|) + 1.  Note that (k!/|v|) must be an integer since |v|  k.  The string that 

results from pumping is ak + (q – 1)|v| bk + (q – 1)|v| ck+k! = ak + (k!/|v|)|v| bk + (k!/|v|)|v| ck+k! = ak+k! bk+k! ck+k!.  So the number of 

a’s and of b’s equals the number of c’s.  This string is not in L.     

• (2, 2), (2, 3), (3, 3): fails to satisfy the requirement that at least one symbol in vy be marked as distinguished. 

 

There is no way to divide w into vxy such that all the conditions of Ogden’s Lemma are met.  So L is not context-free.  

13.7 Parikh’s Theorem  
Suppose that we consider a language L not from the point of view of the exact strings it contains but instead by simply 

counting, for each string w in L, how many instances of each character in  w contains.  So, from this perspective, the 

strings aaabbba and abababa are the same.  If  is {a, b}, then both strings can be described with the pair (4, 3) 

since they contain 4 a’s and 3 b’s.  We can build such descriptions by defining a family of functions , with domain 

* and range {(i1, i2, … ik)}, where k = ||:   

 

(w) = (i1, i2, … ik) where, for all j, ij = the number of occurrences in w of the jth element of .   

 

So, if  = {a, b, c, d}, then (aabbbbddd) = (2, 4, 0, 3). 

 

Now consider some language L, which is a set of strings over some alphabet .  Instead of considering L as a set of 

strings, we can consider it as the set of vectors that are produced by applying  to the strings it contains.  To do this, 

we define another family of functions , with domain P(*) and range P{(i1, i2, … ik)}:   

 

(L) = {(i1, i2, … ik) : w  L ((w) = (i1, i2, … ik))}. 

 

If  is fixed, then there is a single function  and a single function .  In that case, we will omit  and refer to the 

functions just as  and . 

 

We will say that two languages L1 and L2, over the alphabet *, are letter-equivalent iff (L1) = (L2).  In other 

words, L1 and L2 contain the same strings if we disregard the order in which the symbols occur in the strings. 

Example 13.13 Letter Equivalence 

Let  = {a, b}.  So, for example, (a) = (1, 0).  (b) = (0, 1).  (ab) = (1, 1).  (aaabbbb) = (3, 4).   

 

Now consider : 

 

• Let L1 = AnBn = {anbn : n  0}.   Then (L1) = {(i, i) : 0  i}. 

• Let L2 = (ab)*.     Then (L2) = {(i, i) : 0  i}. 

• Let L3 = {anbnan : n  0}.    Then (L3) = {(2i, i) : 0  i}. 

• Let L4 = {a2nbn : n  0}.    Then (L4) = {(2i, i) : 0  i}. 

• Let L5 = (aba)*.     Then (L5) = {(2i, i) : 0  i}. 

 

L1 and L2 are letter-equivalent.  So are L3, L4 and L5. 

 

Just looking at the five languages we considered in Example 13.13, we can observe that it is possible for two languages 

with different formal properties (for example a regular language and a context-free but not regular one) to be letter 

equivalent to each other.  L3 is not context-free.  L4 is context-free but not regular.  L5 is regular.  But the three of them 

are letter equivalent to each other. 

 



  

Chapter 13                                             224                Context-Free and Noncontext-Free Languages 

Parikh’s Theorem, which we are about to state formally and then prove, tells us that that example is far from unique.  

In fact, given any context-free language L, there exists some regular language L such that L and L are letter-equivalent 

to each other.  So AnBn is letter equivalent to (ab)*.  The language {a2nbn : n  0} is letter equivalent to (aba)* and 

to (aab)*.  And PalEven = {wwR : w  {a, b}*} is letter equivalent to (aa  bb)* since (PalEven) = ((aa  

bb)*) = {(2i, 2j) : 0  i  0  j}.  The proof of Parikh’s Theorem is similar to the proofs we have already given for the 

Context-free Pumping Theorem and for Ogden’s Lemma.  It is based on the fact that, if L is context-free, then all the 

strings in L can be formed by starting with one of a finite set of “short” strings in L and then pumping in some finite 

number of strings (v, y pairs), all of which are chosen from a finite library of possible values for v and y.   

 

An interesting application of Parikh’s Theorem is in the proof of a corollary that tells us that every context-free 

language over a single character alphabet must also be regular.  We will add that corollary to our kit of tools for 

proving that a language is not context-free (by showing that, if it were, then it would also be regular but we know that 

it isn’t). 

 

Notice, by the way, that while we are about to prove that if L is context-free then it is letter-equivalent to some regular 

language, the converse of that claim is false.  A language can be letter-equivalent to some regular language and not be 

context-free.  We prove this by considering two of the languages from Example 13.13: L3 = {anbnan : n  0} is not 

context-free, but it is letter-equivalent to L5 = (aba)*, which is regular. 

Theorem 13.17   Parikh’s Theorem 

Theorem: Every context-free language is letter-equivalent to some regular language. 

 

Proof:  The proof follows an argument similar to the one we used to prove the context-free Pumping Theorem.  It is 

given in B 639.  
◼ 

 

An algebraic approach to thinking about what  and  are doing is the following: we can describe the standard way 

of looking at strings as starting with a set S of primitive strings ( and all the one-character strings drawn from ) and 

the single operation of concatenation, which is associative and has  as an identity.  * is then the closure of S under 

concatenation.   maps elements of * to elements of  {(i1, i2, … ik)}, on which is defined the operation of pair wise 

addition, which is associative and has (0, 0, … 0) as an identity.  But addition is also commutative, while concatenation 

is not.  So, while, if we concatenate strings, it matters what order we do it in, if we consider the images of strings 

under , the order in which we combine them doesn’t matter.  Parikh’s Theorem can be described as a special case of 

more general properties of commutative systems. 

 

When  contains just a single character, the order of the characters in a string is irrelevant.  So we have the following 

result: 

Theorem 13.18  Every CFL Over a Single-Character Alphabet is Regular 

Theorem: Any context-free language over a single-character alphabet is regular. 

 

Proof: By Parikh’s Theorem, if L is context-free then L is letter-equivalent to some regular language L.  Since the 

order of characters has no effect on strings when all characters are the same, L = L.  Since L is regular, so is L. 
◼ 

Example 13.14 AnAn is Regular 

Let  = {a, b} and consider L = AnBn = {anbn : n  0}.  AnBn is context-free but not regular.  

 

Now let:     = {a} and L  = {anan, n  0}.    

   = {a2n : n  0}. 

   = {w  {a}* : |w| is even}.  L is regular. 
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Example 13.15 PalEven is Regular if  = {a} 

Let  = {a, b} and consider L = PalEven = {wwR : w  {a, b}*}.  PalEven is context-free but not regular.  

 

Now let:     = {a} and L  = {wwR : w  {a}*}    

   = {w  {a}* : |w| is even}.  L is regular. 

 

When we are considering only a single letter alphabet, we can use Theorem 13.18 to show that a language that we 

already know not to be regular cannot be context-free either. 

Example 13.16 The Prime Number of a’s Language is Not Context-Free 

Consider again Primea = {an : n is prime}.  Primea is not context-free.  If it were, then, by Theorem 13.18, it would 

also be regular.  But we showed in Example 8.13 that it is not regular.  So it is not context-free either. 

 

13.8 Functions on Context-Free Languages  
In Section 13.4, we saw that the context-free languages are closed under some important functions, including 

concatenation, union, and Kleene star.  But their closure properties are substantially weaker than are the closure 

properties of the regular languages.  In this section, we consider some other functions that can be applied to languages 

and we ask whether the context-free languages are closed under them.  The proof strategies we will use are the same 

as the ones we used for the regular languages and for the results we have already obtained for the context-free 

languages: 

 

• To show that the context-free languages are closed under some function f, we will show an algorithm that 

constructs, given any context-free language L, either a grammar or a PDA that describes f(L). 

• To show that the context-free languages are not closed under some function f, we will exhibit a counterexample, 

i.e., a language L where L is context-free but f(L) is not. 

Example 13.17 Firstchars 

Consider again the function firstchars(L) = {w : yL (y = cx  c  L  x  L*  w  c*)}.  The context-free 

languages are closed under firstchars(L).  In fact, if L is context-free then firstchars(L) is regular.  We know that this 

must be true by an argument similar to the one we used in Example 8.20 to show that the regular languages are closed 

under firstchars.  There must be some finite set of characters {c1, c2, …, cn} that can begin strings in L (since L is 

finite).  So there exists some regular expression of the following form that describes firstchars(L): 

 

 c1*  c2*  …  cn*. 

 

We can also show a constructive proof that firstchars(L) is context-free if L is.  If L is a context-free language, then 

there is some context-free grammar G = (V, , R, S) that generates it.  We construct a context-free grammar G = (V, 

, R, S) that generates firstchars(L): 

 

1. Convert G to Greibach normal form using the procedure converttoGreibach, defined in B 630. 

2. Remove from G all unreachable nonterminals and all rules that mention them. 

3. Remove from G all unproductive nonterminals and all rules that mention them. 

4. Initialize V to {S},  to {}, and R to {}. 

5. For each remaining rule of the form S → c  do: 

       5.1. Add to R the rules S → Cc, Cc → c Cc and Cc → . 

       5.2. Add to  the symbol c. 

       5.3. Add to V the symbol Cc. 

6. Return G. 
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The idea behind this construction is that, if G is in Greibach normal form, then, each time a rule is applied, the next 

terminal symbol is generated.  So, if we look at G’s start symbol S and ask what terminals any of its rules can generate, 

we’ll know exactly what terminals strings in L(G) can start with. 

 

Example 13.18 Maxstring 

Consider again the function maxstring(L) = {w: w  L and z * (z   → wz  L)}.  The context-free languages 

are not closed under maxstring(L).  The proof is by counterexample.  Consider the language L = {aibjck : k  i or 

k  j}.  L is context-free but maxstring(L) is not.  We leave the proof of this as an exercise.  

13.9 Exercises 
1) For each of the following languages L, state whether L is regular, context-free but not regular, or not context-free 

and prove your answer. 

a) {xy : x, y  {a, b}* and |x| = |y|}. 

b) {(ab)nanbn : n > 0}. 

c) {x#y : x, y  {0, 1}* and x  y}. 

d) {aibn : i, n > 0 and i = n or i = 2n}. 

e) {wx : |w| = 2|x| and w  a+b+ and x  a+b+}. 

f) {anbmck: m  min(n, k)}. 

g) {xyxR : x  {0, 1}+ and y  {0, 1}*}. 

h) {xwxR : x, w  {a, b}+ and |x| = |w|}. 

i) {wwRw : w  {a, b}*}. 

j) {wxw: |w| = 2|x| and w  {a, b}* and x  {c}*}. 

k) {ai: i  0} {bi: i  0} {ai: i  0}. 

l) {x  {a, b}* : |x| is even and the first half of x has one more a than does the second half}. 

m) {w  {a, b}* : #a(w) = #b(w) and w does not contain either the substring aaa or abab}. 

n) {anb2ncm}  {anbmc2m}. 

o) {x c y : x, y  {0, 1}* and y is a prefix of x}. 

p) {w : w =uuR or w = uan : n = |u|, u  {a, b}*}. 

q) L(G), where G = S → aSa 

        S → SS 

        S →  

r) {w  (A-Z, a-z, ., blank)+ : there exists at least one duplicated, capitalized word in w).  For example, the sentence, 

“The history of China can be viewed from the perspective of an outsider or of someone living in China,”  L. 

s) L0, where L0 = {ww : w  {a, b}*}. 

t) L*, where L = {0*1i0*1i0*}. 

u) AnBn.  

v) {bajb: j = n2 for some n  0}.  For example, baaaab  L.   

w) {w  {a, b, c, d}*: #b(w)  #c(w) #d(w)  0}. 

 

2) Let L = {w  {a, b}* : the first, middle, and last characters of w are identical}. 

a) Show a context-free grammar for L. 

b) Show a natural PDA that accepts L. 

c) Prove that L is not regular. 

 

3) Let L = {anbmcndm : n, m  1}.  L is interesting because of its similarity to a useful fragment of a typical 

programming language in which one must declare procedures before they can be invoked.  The procedure 

declarations include a list of the formal parameters.  So now imagine that the characters in an correspond to the 

formal parameter list in the declaration of procedure 1.  The characters in bm correspond to the formal parameter 

list in the declaration of procedure 2.  Then the characters in cn and dm correspond to the parameter lists in an 
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invocation of procedure 1 and procedure 2 respectively, with the requirement that the number of parameters in 

the invocations match the number of parameters in the declarations.  Show that L is not context-free.   

 

4) Without using the Pumping Theorem, prove that L = {w  {a, b, c}* : #a(w) = #b(w) = #c(w) and #a(w) > 50} is 

not context-free. 

 

5) Give an example of a context-free language L ( *) that contains a subset L1 that is not context-free.  Prove that 

L is context free.  Describe L1 and prove that it is not context-free. 

 

6) Let L1 = L2  L3. 

a) Show values for L1, L2, and L3, such that L1 is context-free but neither L2 nor L3 is. 

b) Show values for L1, L2, and L3, such that L2 is context-free but neither L1 nor L3 is. 

 

7) Give an example of a context-free language L, other than one of the ones in the book, where L is not context-

free. 

 

8) Theorem 13.7 tells us that the context-free languages are closed under intersection with the regular languages.  

Prove that the context-free languages are also closed under union with the regular languages. 

 

9) Complete the proof that the context-free languages are not closed under maxstring by showing that L = {aibjck : 

k  i or k  j} is context-free but maxstring(L) is not context-free. 

 

10) Use the Pumping Theorem to complete the proof, started in C 748, that English is not context-free if we make the 

assumption that subjects and verbs must match in a “respectively” construction. 

 

11) In C 778, we give an example of a simple musical structure that cannot be described with a context-free grammar.  

Describe another one, based on some musical genre with which you are familiar.  Define a sublanguage that 

captures exactly that phenomenon.  In other words, ignore everything else about the music you are considering 

and describe a set of strings that meets the one requirement you are studying.  Prove that your language is not 

context-free.   

 

12) Define the leftmost maximal P subsequence m of a string w as follows: 

• P must be a nonempty set of characters. 

• A string s is a P subsequence of w iff s is a substring of w and s is composed entirely of characters in P.  

For example 1, 0, 10, 01, 11, 011, 101, 111, 1111, and 1011 are {0, 1} subsequences of 

2312101121111. 

• Let S be the set of all P subsequences of w such that, for each element t of S, there is no P subsequence 

of w longer than t.  In the example above, S = {1111, 1011}. 

• Then m is the leftmost (within w) element of S.  In the example above, m = 1011. 

a) Let L = {w  {0-9}* : if y is the leftmost maximal {0, 1} subsequence of w then |y| is even}.  Is L regular, 

context free (but not regular) or neither?  Prove your answer. 

b) Let L = {w  {a, b, c}* : the leftmost maximal {a, b} subsequence of w starts with a}.  Is L regular (but 

not context free), context free or neither?  Prove your answer. 

 

13) Are the context-free languages closed under each of the following functions?  Prove your answer. 

a) chop(L) = {w : xL (x = x1cx2  x1  L*  x2  L*  c  L  |x1| = |x2|  w = x1x2)}. 

b) mix(L) = {w: x, y, z: (x  L, x = yz, |y| = |z|, w = yzR)}. 

c) pref(L) = {w: x  * (wx  L)}.  

d) middle(L) = {x: y, z  * (yxz  L)}. 

e) letter substitution. 

f) shuffle(L) = {w : x  L (w is some permutation of x)}.   

g) copyreverse(L) = {w : x  L (w = xxR)}.  
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14) Let alt(L) = {x: y, n (y  L , |y| = n, n > 0, y = a1…an,i  n (ai  ), and x = a1a3a5…ak, where k = (if n is even 

then n-1 else n))}. 

a) Consider L = anbn.  Clearly describe L1 = alt(L ). 

b) Are the context free languages closed under the function alt?  Prove your answer. 

 

15) Let L1 = {anbm : n  m}.  Let R1 = {(a  b)* : there is an odd number of a's and an even number of b's}.  Use 

the construction that is described in the proof of Theorem 13.7 to build a PDA that accepts L1  R1.   

 

16) Let T be a set of languages defined as follows: 

 

 T = {L : L is a context-free language over the alphabet {a, b, c} and, if x  L, then |x| 3 0}.   

 

       Let P be the following function on languages: 

 

 P(L) = {w : x  {a, b, c} and y  L and y = xw}. 

 

       Is the set T closed under P?  Prove your answer. 

 

17) Show that the following languages are deterministic context-free: 

a) {w : w  {a, b}* and each prefix of w has at least as many a’s as b’s}. 

b) {anbn, n  0}  {ancn, n  0}. 

 

18) Show that L = {anbn, n  0}  {anb2n, n  0} is not deterministic context-free. 

 

19) Are the deterministic context-free languages closed under reverse?  Prove your answer. 

 

20) Prove that each of the following languages is not context-free.  (Hint: use Ogden’s Lemma.) 

a) {aibjck : i  0, j  0, k  0, and i  j  k}. 

b) {aibjckdn : i  0, j  0, k  0, n  0, and (i = 0 or j = k = n}. 

 

21) Let (L) be as defined in Section 13.7, in our discussion of Parikh’s Theorem.  For each of the following 

languages L, first state what (L) is.  Then give a regular language that is letter-equivalent to L. 

a) Bal = {w  {), (}* : the parentheses are balanced}. 

b) Pal = {w  {a, b}* : w is a palindrome}. 

c) {xR#y : x, y  {0, 1}* and x is a substring of y}. 

 

22) For each of the following claims, state whether it is True or False.  Prove your answer. 

a) If L1 and L2 are two context-free languages, L1 – L2 must also be context-free. 

b) If L1 and L2 are two context-free languages and L1 = L2L3, then L3 must also be context-free. 

c) If L is context free and R is regular, R - L must be context-free.  

d) If L1 and L2 are context-free languages and L1  L  L2, then L must be context-free. 

e) If L1 is a context-free language and L2  L1, then L2 must be context-free. 

f) If L1 is a context-free language and L2  L1, it is possible that L2 is regular. 

g) A context-free grammar in Chomsky normal form is always unambiguous. 
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14 Algorithms and Decision Procedures for Context-Free 
Languages 

Many questions that we could answer when asked about regular languages are unanswerable for context-free ones.  

But a few important questions can be answered and we have already presented a useful collection of algorithms that 

can operate on context-free grammars and PDAs.  We’ll present a few more here. 

14.1 The Decidable Questions 
Fortunately, the most important questions (i.e., the ones that must be answerable if context-free grammars are to be of 

any practical use) are decidable. 

14.1.1 Membership 
We begin with the most fundamental question, “Given a language L and a string w, is w in L?”.  Fortunately this 

question can be answered for every context-free language.  By Theorem 12.1, for every context-free language L, there 

exists a PDA M such that M accepts L.  But we must be careful.  As we showed in Section 12.4, PDAs are not 

guaranteed to halt.  So the mere existence of a PDA that accepts L does not guarantee the existence of a procedure that 

decides it (i.e., always halts and says yes or no appropriately).   

 

It turns out that there are two alternative approaches to solving this problem, both of which work: 

 

• Use a grammar: using facts about every derivation that is produced by a grammar in Chomsky normal form, we 

can construct an algorithm that explores a finite number of derivation paths and finds one that derives a particular 

string w iff such a path exists. 

• Use a PDA: while not all PDAs halt, it is possible, for any context-free language L, to craft a PDA M that is 

guaranteed to halt on all inputs and that accepts all strings in L and rejects all strings that are not in L. 

Using a Grammar to Decide 

We begin by considering the first alternative.  We show a straightforward, algorithm for deciding whether a string w 

is in a language L: 

 

     decideCFLusingGrammar(L: CFL, w: string) = 

1. If L is specified as a PDA, use PDAtoCFG, presented in the proof of Theorem 12.2, to construct a grammar 

G such that L(G) = L(M). 

2. If L is specified as a grammar G, simply use G. 

3. If w =  then if SG is nullable (as defined in the description of removeEps in Section 11.7.4) then accept, 

otherwise reject. 

4. If w   then: 

4.1. From G, construct G such that L(G) = L(G) – {}and G is in Chomsky normal form. 

4.2. If G derives w, it does so in 2|w| - 1 steps.  Try all derivations in G of that number of steps.  If one 

of them derives w, accept.  Otherwise reject. 

 

The running time of decideCFLusingGrammar can be analyzed as follows:  We assume that the time required to build 

G is constant, since it does not depend on w.  Let n = |w|.  Let g be the search-branching factor of G, defined to be 

the maximum number of rules that share a left-hand side.  Then the number of derivations of length 2n-1 is bounded 

by g2n–1, and it takes at most 2n-1 steps to check each one.  So the worst-case running time of 

decideCFLusingGrammar is O(ng2n-1).  In Section 15.3.1, we will present techniques that are substantially more 

efficient.  We will describe the CKY algorithm, which, given a grammar G in Chomsky normal form, decides the 

membership question for G in time that is O(n3).  We will then describe an algorithm that can decide the question in 

time that is linear in n if the grammar that is provided meets certain requirements. 
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Theorem 14.1  Decidability of Context-Free Languages 

Theorem: Given a context-free language L (represented as either a context-free grammar or a PDA) and a string w, 

there exists a decision procedure that answers the question, “Is w  L?” 

 

Proof: The following algorithm, decideCFL, uses decideCFLusingGrammar to answer the question: 

 

     decideCFL(L: CFL, w: string) = 

1. If decideCFLusingGrammar(L, w) accepts, return True else return False. 
◼ 

Using a PDA to Decide  

It is also possible to solve the membership problem using PDAs.  We take a two-step approach.  We first show that, 

for every context-free language L, it is possible to build a PDA that accepts L - {} and that has no -transitions.  Then 

we show that every PDA with no -transitions is guaranteed to halt. 

Theorem 14.2  Elimination of -Transitions 

Theorem: Given any context-free grammar G = (V, , R, S), there exists a PDA M such that L(M) = L(G) - {} and M 

contains no transitions of the form ((q1, , ), (q2, )).  In other words, every transition reads exactly one input 

character. 

 

Proof: The proof is by a construction that begins by converting G to Greibach normal form.  Recall that, in any 

grammar in Greibach normal form, all rules are of the form X → a A, where a   and A  (V - )*.  Now consider 

again the algorithm cfgtoPDAtopdown, which builds, from any context-free grammar G, a PDA M that, on input w, 

simulates G deriving w, starting from S.  M = ({p, q}, , V, , p, {q}), where  contains: 

 

1. The start-up transition ((p, , ), (q, S)), which pushes the start symbol onto the stack and goes to state q. 

2. For each rule X → s1s2…sn in R, the transition ((q, , X), (q, s1s2…sn)), which replaces X by s1s2…sn.  If n = 0 (i.e., 

the right-hand side of the rule is ), then the transition ((q, , X), (q, )). 

3. For each character c  , the transition ((q, c, c), (q, )), which compares an expected character from the stack 

against the next input character and continues if they match. 

 

The start-up transition, plus all the transitions generated in step 2, are -transitions.  But now suppose that G is in 

Greibach normal form.  If G contains the rule X → cs2…sn (where c   and s2 through sn are elements of V - ), it is 

not necessary to push c onto the stack, only to pop it with a rule from step 3.  Instead, we collapse the push and the 

pop into a single transition.  So we create a transition that can be taken only if the next input character is c.  In that 

case, the string s2…sn is pushed onto the stack.   

 

Now we need only find a way to get rid of the start-up transition, whose job is to push S onto the stack so that the 

derivation process can begin.  Since G is in Greibach normal form, any rules with S on the left-hand side must have 

the form S → cs2…sn.  So instead of reading no input and just pushing S, M will skip pushing S and instead, if the first 

input character is c, read it and push the string s2…sn. 

 

Since terminal symbols are no longer pushed onto the stack, we no longer need the transitions created in step 3 of the 

original algorithm.   

 

So M = ({p, q}, , V, , p, {q}), where  contains: 

1. The start-up transitions:  For each rule S → cs2…sn, the transition ((p, c, ), (q, s2…sn)). 

2. For each rule X → cs2…sn (where c   and s2 through sn are elements of V - ), the transition ((q, c, X), (q, 

s2…sn)). 

3. For each character c  , the transition ((q, c, c), (q, )), which compares an expected character from the stack 

against the next input character and continues if they match.  
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The start-up transition, plus all the transitions generated in step 2, are -transitions.  But now suppose that G is in 

Greibach normal form.  If G contains the rule X → cs2…sn (where c   and s2 through sn are elements of V - ), it is 

not necessary to push c onto the stack, only to pop it with a rule from step 3.  Instead, we collapse the push and the 

pop into a single transition.  So we create a transition that can be taken only if the next input character is c.  In that 

case, the string s2…sn is pushed onto the stack.   

 

Now we need only find a way to get rid of the start-up transition, whose job is to push S onto the stack so that the 

derivation process can begin.  Since G is in Greibach normal form, any rules with S on the left-hand side must have 

the form S → cs2…sn.  So instead of reading no input and just pushing S, M will skip pushing S and instead, if the first 

input character is c, read it and push the string s2…sn. 

 

Since terminal symbols are no longer pushed onto the stack, we no longer need the transitions created in step 3 of the 

original algorithm.   

 

So M = ({p, q}, , V, , p, {q}), where  contains: 

1. The start-up transitions:  For each rule S → cs2…sn, the transition ((p, c, ), (q, s2…sn)). 

2. For each rule X → cs2…sn (where c   and s2 through sn are elements of V - ), the transition ((q, c, X), (q, 

s2…sn)). 

 

The following algorithm builds the required PDA: 

 

     cfgtoPDAnoeps(G: context-free grammar) = 

1. Convert G to Greibach normal form, producing G.   

2. From G build the PDA M described above. 
◼ 

Theorem 14.3  Halting Behavior of PDAs without -Transitions 

Theorem: Let M be a PDA that contains no transitions of the form ((q1, , s1), (q2, s2)), i.e., no -transitions.  Consider 

the operation of M on input w  *.  M must halt and either accept or reject w.  Let n = |w|.  We make three additional 

claims: 

a) Each individual computation of M must halt within n steps.   

b) The total number of computations pursued by M must be less than or equal to bn, where b is the maximum number 

of competing transitions from any state in M. 

c) The total number of steps that will be executed by all computations of M is bounded by nbn. 

 

Proof:  

a) Since each computation of M must consume one character of w at each step and M will halt when it runs out of 

input, each computation must halt within n steps.   

b) M may split into at most b branches at each step in a computation.  The number of steps in a computation is less 

than or equal to n.  So the total number of computations must be less than or equal to bn.  

c) Since the maximum number of computations is bn and the maximum length of each is n, the maximum number 

of steps that can be executed before all computations of M halt is nbn. 
◼ 

 

So a second way to answer the question, “Given a context-free language L and a string w, is w in L?” is to execute the 

following algorithm: 

 

     decideCFLusingPDA(L: CFL, w: string) = 

1. If L is specified as a PDA, use PDAtoCFG, as presented in the proof of Theorem 12.2, to construct a grammar 

G such that L(G) = L(M). 

2. If L is specified as a grammar G, simply use G. 

3. If w =  then if SG is nullable (as defined in the description of removeEps in Section 11.7.4) then accept, 

otherwise reject. 

4. If w   then: 

4.1. From G, construct G such that L(G) = L(G) – {} and G is in Greibach normal form. 
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4.2. From G construct, using cfgtoPDAnoeps, the algorithm described in the proof of Theorem 14.2, a PDA 

M such that L(M) = L(G) and M has no -transitions. 

4.3. By Theorem 14.3, all paths of M are guaranteed to halt within a finite number of steps.  So run M on 

w.  Accept if M accepts and reject otherwise. 

 

The running time of decideCFLusingPDA can be analyzed as follows:  We will take as a constant the time required to 

build M, since that can be done once.  It need not be repeated for each string that is to be analyzed.  Given M, the 

time required to analyze a string w is then the time required to simulate all paths of M on w.  Let n = |w|.  From 

Theorem 14.3, we know that the total number of steps that will be executed by all paths of M is bounded by nbn, where 

b is the maximum number of competing transitions from any state in M.  But is that number of steps required?  If one 

state has a large number of competing transitions but the others do not, then the average branching factor will be less 

than b, so fewer steps will be necessary.  But if b is greater than 1, the number of steps still grows exponentially with 

n.  The exact number of steps also depends on how the simulation is done.  A straightforward depth-first search of the 

tree of possibilities will explore bn steps, which is less than nbn because it does not start each path over at the beginning.  

But it still requires time that is O(bn).  In Section 15.2.3, we present an alternative approach to top-down parsing that 

runs in time that is linear in n if the grammar that is provided meets certain requirements. 

14.1.2 Emptiness and Finiteness 
While many interesting questions are not decidable for context-free languages, two others, in addition to membership 

are: emptiness and finiteness.   

Theorem 14.4  Decidability of Emptiness and Finiteness 

Theorem: Given a context-free language L, there exists a decision procedure that answers each of the following 

questions: 

 

1. Given a context-free language L, is L = ? 

2. Given a context-free language L, is L infinite? 

 

Since we have proven that there exists a grammar that generates L iff there exists a PDA that accepts it, these questions 

will have the same answers whether we ask them about grammars or about PDAs. 

 

Proof:   

(1) Let G = (V, , R, S) be a context-free grammar that generates L.  L(G) =  iff S is unproductive (i.e., not able to 

generate any terminal strings).  The following algorithm exploits the procedure removeunproductive, defined in 

Section 11.4, to remove all unproductive nonterminals from G.  It answers the question, “Given a context-free 

language L, is L = ?”.  

 

     decideCFLempty(G: context-free grammar) = 

1. Let G = removeunproductive(G). 

2. If S is not present in G then return True else return False. 

 

(2) Let G = (V, , R, S) be a context-free grammar that generates L.  We use an argument similar to the one that we 

used to prove the context-free Pumping Theorem.  Let n be the number of nonterminals in G.  Let b be the 

branching factor of G.  The longest string that G can generate without creating a parse tree with repeated 

nonterminals along some path is of length bn.  If G generates no strings of length greater than bn, then L(G) is 

finite.  If G generates even one string w of length greater than bn, then, by the same argument we used to prove 

the Pumping Theorem, it generates an infinite number of strings since w = uvxyz, |vy| > 0, and q  0 (uvqxyqz is 

in L).  So we could try to test to see whether L is infinite by invoking decideCFL(L, w) on all strings in * of 

length greater than bn.  If it returns True for any such string, then L is infinite.  If it returns False on all such 

strings, then L is finite. 

 

But, assuming  is not empty, there is an infinite number of such strings.  Fortunately, it is necessary to try only 

a finite number of them.  Suppose that G generates even one string of length greater than bn+1 + bn.  Let t be the 

shortest such string.  By the Pumping Theorem, t = uvxyz, |vy| > 0, and uxz (the result of pumping vy out once)  
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L.  Note that |uxz| < |t| since some nonempty vy was pumped out of t to create it.  Since, by assumption, t is the 

shortest string in L of length greater than bn+1 + bn, |uxz| must be less than or equal to bn+1 + bn.  But the Pumping 

Theorem also tells us that |vxy|  k (i.e., bn+1), so no more than bn+1 strings could have been pumped out of t.  Thus 

we have that bn < |uxz|  bn+1 + bn.  So, if L contains any strings of length greater than bn, it must contain at least 

one string of length less than or equal to bn+1 + bn.  We can now define decideCFLinfinite to answer the question, 

“Given a context-free language L, is L infinite?”: 

 

     decideCFLinfinite(G: context-free grammar) = 

1. Lexicographically enumerate all strings in * of length greater than bn and less than or equal to 

bn+1 + bn.   

2. If, for any such string w, decideCFL(L, w) returns True then return True.  L is infinite. 

3. If, for all such strings w, decideCFL(L, w) returns False then return False.  L is not infinite. 
◼ 

14.1.3 Equality of Deterministic Context-Free languages 

Theorem 14.5  Decidability of Equivalence for Deterministic Context-Free Languages 

Theorem: Given two deterministic context-free languages L1 and L2, there exists a decision procedure to determine 

whether L1 = L2. 

 

Proof: This claim was not proved until 1997 and the proof [Sénizergues 2001] is beyond the scope of this book, but 

see .   
◼ 

 

14.2 The Undecidable Questions 
Unfortunately, we will prove in Chapter 18 that there exists no decision procedure for many other questions that we 

might like to be able to ask about context-free languages, including: 

 

• Given a context-free language L, is L = *? 

• Given a context-free language L, is the complement of L context-free? 

• Given a context-free language L, is L regular? 

• Given two context-free languages L1 and L2, is L1 = L2?  (Theorem 14.5 tells us that this question is decidable for 

the restricted case of two deterministic context-free languages.  But it is undecidable in the more general case.) 

• Given two context-free languages L1 and L2, is L1  L2 ? 

• Given two context-free languages L1 and L2, is L1  L2 =  ? 

• Given a context-free language L, is L inherently ambiguous? 

• Given a context-free grammar G, is G ambiguous? 

14.3 Summary of Algorithms and Decision Procedures for Context-
Free Languages 

Although we have presented fewer algorithms and decision procedures for context-free languages than we did for 

regular languages, there are many important ones, which we summarize here: 

 

• Algorithms that transform grammars: 

• removeunproductive(G: context-free grammar): Construct a grammar G that contains no unproductive 

nonterminals and such that L(G) = L(G). 

• removeunreachable(G: context-free grammar): Construct a grammar G that contains no unreachable 

nonterminals and such that L(G) = L(G). 

• removeEps(G: context-free grammar): Construct a grammar G that contains no rules of the form X →  and 

such that L(G) = L(G) – {}. 
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• atmostoneEps(G: context-free grammar): Construct a grammar G that contains no rules of the form X →  

except possibly S* → , in which case there are no rules whose right-hand side contains S*, and such that L(G) 

= L(G). 

• converttoChomsky(G: context-free grammar): Construct a grammar G in Chomsky normal form, where L(G) 

= L(G) – {}. 

• removeUnits(G: context-free grammar): Construct a grammar G that contains no unit productions, where L(G) 

= L(G) – {}. 

 

• Algorithms that convert between context-free grammars and PDAs: 

• cfgtoPDAtopdown(G: context-free grammar): Construct a PDA M such that L(M) = L(G) and M operates top-

down to simulate a left-most derivation in G. 

• cfgtoPDAbottomup(G: context-free grammar): Construct a PDA M such that L(M) = L(G) and M operates 

bottom up to simulate, backwards, a right-most derivation in G. 

• cfgtoPDAnoeps(G: context-free grammar): Construct a PDA M such that M contains no transitions of the form 

((q1, , s1), (q2, s2)) and L(M) = L(G) - {}. 

 

• Algorithms that transform PDAs: 

• convertpdatorestricted(M: PDA): Construct a PDA M in restricted normal form where L(M) = L(M). 

 

• Algorithms that compute functions of languages defined as context-free grammars: 

• Given two grammars G1 and G2, construct a new grammar G3 such that L(G3) = L(G1)  L(G2). 

• Given two grammars G1 and G2, construct a new grammar G3 such that L(G3) = L(G1) L(G2). 

• Given a grammar G, construct a new grammar G such that L(G) = (L(G))*. 

• Given a grammar G, construct a new grammar G such that L(G) = (L(G))R. 

• Given a grammar G, construct a new grammar G that accepts letsub(L(G)), where letsub is a letter substitution 

function. 

 

• Miscellaneous algorithms for PDAs: 

• intersectPDAandFSM(M1: PDA, M2: FSM): Construct a PDA M3 such that L(M3) = L(M1)  L(M2). 

• without$(M: PDA): If M accepts L$, construct a PDA M such that L(M) = L. 

• complementdetPDA(M: DPDA): If M accepts L$, construct a PDA M such that L(M) = (L)$. 

 

• Decision procedures that answer questions about context-free languages: 

• decideCFLusingPDA(L: CFL, w: string): Decide whether w is in L. 

• decideCFLusingGrammar(L: CFL, w: string): Decide whether w is in L. 

• decideCFL(L: CFL, w: string): Decide whether w is in L. 

• decideCFLempty(G: context-free grammar, w: string): Decide whether L(G) = . 

• decideCFLinfinite(G: context-free grammar, w: string): Decide whether L(G) is infinite. 

14.4 Exercises 
1) Give a decision procedure to answer each of the following questions: 

a) Given a regular expression  and a PDA M, is the language accepted by M a subset of the language generated 

by ? 

b) Given a context-free grammar G and two strings s1 and s2, does G generate s1s2? 

c) Given a context-free grammar G, does G generate at least three strings? 

d) Given a context-free grammar G, does G generate any even length strings? 

e) Given a regular grammar G, is L(G) context-free? 
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15 Context-Free Parsing  

Programming languages are (mostly) context-free.  Query languages are usually context-free.  English can, in large 

part, be considered context-free.  Strings in these languages need to be analyzed and interpreted by compilers, query 

engines, and various other kinds of application programs.  So we need an algorithm that can, given a context-free 

grammar G: 

 

1. Examine a string and decide whether or not it is a syntactically well-formed member of L(G), and 

2. If it is, assign to it a parse tree that describes its structure and thus can be used as the basis for further interpretation. 

 

Are programming languages really context-free?  C 666. 

 

In Section 14.1.1, we described two techniques that can be used to construct, from a grammar G, a decision procedure 

that answers the question, “Given a string w, is w in L(G)?”  But we aren’t done.  We must still deal with the following 

issues: 

 

• The first procedure, decideCFLusingGrammar, requires a grammar that is in Chomsky normal form.  The second 

procedure, decideCFLusingPDA, requires a grammar that is in Greibach normal form.  We would like to use a 

natural grammar so that the parsing process can produce a natural parse tree. 

 

• Both procedures require search and take time that grows exponentially in the length of the input string.  But we 

need efficient parsers, preferably ones that run in time that is linear in the length of the input string. 

 

• All either procedure does is to determine membership in L(G).  It does not produce parse trees.   

 

Query languages are context-free.  C 805. 

 

In this chapter we will sketch solutions to all of these problems.  The discussion will be organized as follows: 

 

• Easy issues: 

• Actually building parse trees: All of the parsers we will discuss work by applying grammar rules.  So, to build 

a parse tree, it suffices to augment the parser with a function that builds a chunk of tree every time a rule is 

applied. 

• Using lookahead to reduce nondeterminism: It is often possible to reduce (or even eliminate) nondeterminism 

by allowing the parser to look ahead at the next one or more input symbols before it makes a decision about 

what to do.   

 

• Lexical analysis: a preprocessing step in which strings of individual input characters are divided into strings of 

larger units, called tokens, that can be input to a parser. 

 

• Top-down parsers: 

• A simple but inefficient recursive descent parser. 

• Modifying a grammar for top-down parsing. 

• LL parsing. 

 

• Bottom-up parsers: 

• The simple but not efficient enough Cocke-Kasami-Younger (CKY) algorithm. 

• LR parsing. 

 

• Parsers for English and other natural languages. 

 

As we’ll see, the bottom line on the efficiency of context-free parsing is the following.  Let n be the length of the 

string to be parsed.  Then: 
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• There exists a straightforward algorithm (CKY) that can parse any context-free language in O(n3) time.  While 

this is substantially better than the exponential time required to simulate the kind of nondeterministic PDAs that 

we built in Section 12.3, it isn’t good enough for many practical applications.  In addition, CKY requires its 

grammar to be in Chomsky normal form.  There exists a much less straightforward version of CKY that can parse 

any context-free language in close to O(n2) time. 

 

• There exist algorithms that can parse large subclasses of context-free languages (including many of the ones we 

care about, like most programming languages and query languages) in O(n) time.  There are reasonably 

straightforward top-down algorithms that can be built by hand.  There are more efficient, more complicated 

bottom-up ones.  But there exist tools that make building practical bottom-up parsers very easy. 

 

• Parsing English, or any other natural language, is harder than parsing most artificial languages, which can be 

designed with parsing efficiency in mind. 

 

15.1 Lexical Analysis 
Consider the input string shown in Figure 15.1 (a).  It contains 32 characters, including blanks.  The job of lexical 

analysis is to convert it into a sequence of symbols like the one shown in Figure 15.1 (b). 

 

 

 

 level  =  observation -  17.5;  (a) 

 

 

 

 id    =    id     -   id  (b)  Figure 15.1  Lexical analysis 

 

 

 

We call each of the symbols that the lexical analyzer produces a token.  So, in this simple example, there are 5 tokens.  

In addition to creating a token stream, the lexical analyzer must be able to associate, with each token, some information 

about how it was formed.  That information will matter when it comes time to assign meaning to the input string (for 

example by generating code).   

 

In principle, we could skip lexical analysis.  We could instead extend every grammar to include the rules by which 

simple constituents like identifiers and numbers are formed.   

Example 15.1 Specifying id with a Grammar 

We could change our arithmetic expression grammar (from Example 11.19) so that id is a nonterminal rather than a 

terminal.  We’d then have to add rules such as: 

 

 id → identifier | integer | float  

 identifier → letter alphanum     /* a letter followed by zero or more alphanumerics. 

    alphanum → letter alphnum | digit alphnum |   

 integer → - unsignedint | unsignedint     /* an optional minus sign followed by an unsigned integer. 

 unsignedint → digit | digit  unsignedint  

 digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  

 …. 

 

But there is an easier way to handle this early part of the parsing problem.  We can write regular expressions that 

define legal identifiers and numbers.  Those regular expressions can then be compiled into deterministic finite state 

machines, which can run in time that is linear in the length of the input.   
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Useful tools for building lexical analyzers, also called lexers,  are widely available.  Lex  is a good example of 

such a tool.  The input to Lex is a set of rules.  The left-hand side of each rule is a regular expression that describes 

the input strings to which the rule should apply.  The right-hand side of each rule (enclosed in curly brackets) describes 

the output that should be created whenever the rule matches.  The output of Lex is a lexical analyzer.  When the 

analyzer runs, it matches its rules against an input stream.  Any text that is not matched by any rule is simply echoed 

back into the output stream.  Any text that is matched is replaced in the output stream by the right-hand side of the 

matching rule.  The analyzer assumes a specific pattern of run-time communication between itself and a context-free 

parser to which it will be streaming tokens.  In particular, it assumes the existence of a few shared variables, including 

one called yylval, into which the value that corresponds to the current token can be placed. 

Example 15.2 Some Simple Lex Rules 

Here are some simple Lex rules: 

 

(1) [ \t]+;             /* get rid of blanks and tabs. 

 

(2) [A-Za-z][A-Za-z0-9]*   {return(ID);  }     /* find identifiers. 

 

(3) [0-9]+      {sscanf(yytext, "%d",  &yylval); 

       return (INTEGER);   }    /* return INTEGER and put the  

               value in yylval. 

 

• Rule 1 has just a left-hand side, which matches any string composed of just blanks and tabs.  Since it has an empty 

right-hand side, the string it matches will be replaced by the empty string.  So it could be used to get rid of blanks 

and tabs in the input if their only role is as delimiters.  In this case, they will not correspond to any symbols in the 

grammar that the parser will use. 

• Rule 2 has a left-hand side that can match any alphanumeric string that starts with a letter.  Any substring it matches 

will be replaced by the value of its right-hand side, namely the token id.  So this rule could be used to find 

identifiers.  But since no information about what identifier was found is recorded, this rule is too simple for most 

applications. 

• Rule 3 could be used to find integers.  It returns the token INTEGER.  But it also places the specific value that it 

matched into the shared variable yylval. 

 

If two Lex rules match against a single piece of input text, the analyzer chooses between them as follows: 

 

• A longer match is preferred over a shorter one. 

• Among rules that match the same number of input characters, the one that was written first in the input to Lex is 

preferred. 

Example 15.3 How Lex Chooses Which Rule to Apply 

Suppose that Lex has been give the following two rules: 

(1) integer        {action 1} 

(2) [a-z]+         {action 2} 

 

Now consider what the analyzer it builds will do on the following input sequences: 

 

 integers        take action 2 because rule (2) matches the entire string integers, while rule (1) matches 

    only the first 7 characters. 

 

 integer take action 1 because both patterns match all 7 characters and rule (1) comes first. 

 

Lex was specifically designed as a tool for building lexical analyzers to work with parsers generated with the parser-

building tool Yacc, which we will describe in Section 15.3. 
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15.2 Top-Down Parsing 
A top-down parser for a language defined by a grammar G works by creating a parse tree with a root labeled SG.  It 

then builds the rest of the tree, working downward from the root, using the rules in RG.  Whenever it creates a node 

that is labeled with a terminal symbol, it checks to see that it matches the next input symbol.  If it does, the parser 

continues until it has built a tree that spans the entire input string.  If the match fails, the parser terminates that path 

and tries an alternative way of applying the rules.  If it runs out of alternatives, it reports failure.  For some languages, 

described with certain kinds of grammars, it is possible to do all of this without ever having to consider more than one 

path, generally by looking one character ahead in the input stream before a decision about what to do next is made.  

We’ll begin by describing a very general parser that conducts a depth-first search and typically requires backtracking.  

Then we’ll consider grammar restrictions that may make deterministic top-down parsing possible. 

15.2.1 Depth-First Search 
We begin by describing a simple top-down parser that works in essentially the same way that the top-down PDAs that 

we built in Section 12.3.1 did.  It attempts to reconstruct a left-most derivation of its input string.  The only real 

difference is that it is now necessary to describe how nondeterminism will be handled.  We’ll use depth-first search 

with backtracking.  The algorithm that we are about to present is similar to decideCFLusingPDA.  They are both 

nondeterministic, top-down algorithms.  But the one we present here, in contrast to decideCFLusingPDA, does not 

require a grammar in any particular form. 

Example 15.4 Top-Down, Depth-First Parsing 

To see how a how a depth-first, top-down parser works, let’s consider an English grammar that is even simpler than 

the one we used in Example 11.6.  This time, we will require that every sentence end with the end-of-string marker $: 

 

 S → NP VP $ 

  NP → the N | N | ProperNoun 

 N → cat | dogs | bear |girl | chocolate | rifle  

 ProperNoun → Chris | Fluffy 

 VP → V | V NP 

 V → like | likes | thinks | shot | smells 

 

On input  the cat likes chocolate $, the parser, given these rules, will behave as follows: 

 

• Build an S using the only rule available 

 

    S 

 

   NP  VP  $ 

 

• Build an NP.  Start with the first alternative, which successfully matches the first input symbol: 

 

    S 

 

   NP  VP   $ 

 

         the       N 
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• Build an N.  Start with the first alternative, which successfully matches the next input symbol: 

 

    S 

 

   NP  VP  $ 

 

         the       N 

 
         cat 

 

• Build a VP.  Start with the first alternative: 

 

    S 

 

   NP  VP  $ 

 

         the       N   V 

 
         cat 

 

• Build a V.  The first alternative, like, fails to match the input.  The second, likes, matches: 

 

    S 

 

   NP  VP  $ 

 

         the       N   V 

 
         cat          likes 

 

• Match $.  This fails, since the word chocolate remains in the input.  So the process undoes decisions, in order, 

until it has backtracked to: 

 

    S 

 

   NP  VP  $ 

 

         the       N 

 
         cat 

 

• Build a VP.  This time, try the second alternative: 

 

    S 

 

   NP  VP  $ 

 

         the       N         V          NP 

 
         cat 
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• Continue until a tree that spans the entire input has been built: 

 

    S 

 

   NP  VP  $ 

 

         the       N         V          NP 

 

         cat  likes        N 

 
        chocolate 

 

While parsers such as this are simple to define, there are two problems with using them in practical situations: 

 

• It is possible to get into an infinite loop, even when there is a correct parse for the input.  

 

• Backtracking is expensive.  Some constituents may be built and unbuilt many times.  For example, the constituent 

V – likes was built twice in the simple sentence shown in Example 15.4.  We’ll illustrate this problem on a 

larger scale in the next example. 

Example 15.5 Subtrees May Be Built and Discarded Many Times 

Suppose we have the following rules for noun phrases:  

 

NP → the Nominal | Nominal | ProperNoun | NP PP  

Nominal → N | Adjs N 

Adjs → Adv Adjs | Adjs and Adjs | Adj Adjs | Adj  

 N → student | raincoat  

Adj → tall | self-possessed | green 

Adv → strikingly 

PP → Prep NP 

Prep → with 

 

Now consider the noun phrase the strikingly tall and self-possessed student with the 

green raincoat.  In an attempt to parse this phrase as an NP, a depth-first, top-down parser will first try to use 

the rule NP → the Nominal.  In doing so, it will build the tree: 

 

     NP  

 

    the     Nominal  

 

      Adjs      N 

 

    Adv     Adjs          student 

 

        strikingly   Adjs       and       Adjs 

 

        Adj                       Adj 

 
       tall           self-possessed 

 

Then it will notice that four symbols, with the green raincoat, remain.  At that point, it will have to back 

all the way up to the top NP and start over, this time using the rule NP → NP PP.  It will eventually build an NP that 
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spans the entire phrase6.  But that NP will have, as a constituent, the one we just built and threw away.  So the entire 

tree we showed above will have to be rebuilt from scratch.  

 

Because constituents may be built and rebuilt many times, the depth-first algorithm that we just sketched may take 

time that is O(gn), where g is the maximum number of alternatives for rewriting any nonterminal in the grammar and 

n is the number of input symbols.   

 

Both the problem of infinite loops and the problem of inefficient rebuilding of constituents during backtracking can 

sometimes be fixed by rearranging the grammar and/or by looking ahead one or more characters before making a 

decision.  In the next two sections we’ll see how this may be done. 

15.2.2 Modifying a Grammar for Top-Down Parsing 
Some grammars are better than others for top-down parsing.  In this section we consider two issues: preventing the 

parser from getting into an infinite loop and using lookahead to reduce nondeterminism.   

Left-Recursive Rules and Infinite Loops 

A top-down parser can get into an infinite loop and fail to find a complete parse tree, even when there is one.   

Example 15.6 Backtracking Gets Stuck on Left-Recursive Rules 

We consider again the term/factor grammar for arithmetic expressions of Example 11.19: 

 

            E → E + T 

 E → T 

T → T  F 

T → F 

F → (E)  

F → id  

 

On input id + id + id, a top-down parser will behave as follows: 

 

• Build an E, using the first alternative: 

 

    E 

 

   E  +  T 

 

• Build an E, using the first alternative: 

 

    E 

 

   E  +  T 

 

  E +  T 

 

• Build an E, using the first alternative, and so forth, forever, expanding the leftmost E as E + T.  

 

The problem is the existence in the grammar of left-recursive rules like E → E + T and T → T  F.  Paralleling the 

definition we gave in Section 11.2 for a recursive rule, we say that a grammar rule is left-recursive iff it is of the form 

X → Y w2 and Y G* X w4, where w2 and w4 may be any element of V*.  If the rules were rewritten so that the recursive 

                                                           
6 A separate issue is that this phrase is ambiguous.  We’ve shown the parse that corresponds to the bracketing 

strikingly (tall and self-possessed).  An alternative parse corresponds to the bracketing 

(strikingly tall) and self-possessed.   
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symbols were on the right of the right-hand side rather than on the left of it, the parser would be able to make progress 

and consume the input symbols.   

 

We first consider direct recursion, i.e., rules of the form X → X w2.  This case includes the rules E → E + T and 

T → T  F.  Suppose that such a rule is used to derive a string in L(G).  For example, let’s use the rule E → E + T.  

Then there is a derivation that looks like: 

 

 E  E + T  E + T + T   ….   T + T  …. +  T   ….   

 

In other words, the left-recursive rule is applied some number of times but then the recursion stops and some 

nonrecursive rule with the same left-hand side is applied.  In this example, it was the rule E → T.  The left-most 

symbol in the string we just derived came from the nonrecursive rule.  So an alternative way to generate that string 

would be to generate that leftmost T first, by applying once a new rule E → T E.  Then we can generate the rest by 

applying, as many times as necessary, a new recursive (but not left-recursive) rule E → + T E, followed by a clean-

up rule E → , which will stop the recursion.   

 

Applying this idea to our arithmetic expression grammar, we get the new grammar: 

 

E → T E  

 E → + T E  

            E →  

T → F T  

T →  F T  

            T →  

F → (E)  

F → id   

 

We can describe what we just did more generally as follows:  Given any context-free grammar G, if G contains any 

left-recursive rule with left-hand side A, then consider all rules in G with left-hand side A.  Divide them into two 

groups, the left-recursive ones and the others.  Replace all of them with new rules, as shown in Table 15.1. 

 

 

Original left-recursive rules: Replace with: 

     A → A1      A' → 1A' 

     A → A2      A' → 2A' 

        …         …    

     A → An      A' → nA' 

  

      A' →  

  

Original nonleft-recursive rules: Replace with: 

     A → 1      A → 1A' 

     A → 2      A → 2A' 

        …         … 

     A → m      A → mA' 

 

Table 15.1  Eliminating left-recursive rules 

 

 

If, in addition to removing left-recursion, we want to avoid introducing -rules, we can use a variant of this algorithm.  

Instead of always generating A' and then erasing it at the end of the recursive part of a derivation, we create rules that 

allow it not to be generated.  So we replace each original left-recursive rule, A → Ak, with two new rules: A' → kA' 

and A' → k.  Instead of replacing each original nonleft-recursive rule, A → k, we keep it and add the new rule: A → 
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kA'.  We do not add the rule A' → .  Because we will have another use for this variant of the algorithm (in converting 

grammars to Greibach normal form), we will give it the name removeleftrecursion(N: nonterminal symbol).  

 

Unfortunately, the technique that we have just presented, while it does eliminate direct left recursion, does not solve 

the entire problem.  Consider the following grammar G: 

 

 S → Ya 

 Y → Sa  

 Y →  

 

G contains no directly left-recursive rules.  But G does contain left-recursive rules, and a top-down parser that used G 

would get stuck building the infinite left-most derivation S  Ya  Saa  Yaaa  Saaaa  ….  It is possible to 

eliminate this kind of left-recursion as well by using an algorithm that loops through all the nonterminal symbols in G 

and applies the algorithm that we just presented to eliminate direct left-recursion.   

 

So left-recursion can be eliminated and the problem of infinite looping in top-down parsers can be solved.  

Unfortunately, the elimination of left-recursion comes at a price.  Consider the input string id + id + id.  Figure 

15.2 (a) shows the parse trees that will be produced for it using our original expression grammar.  Figure 15.2(b) 

shows the new one, with no left-recursive rules. 

 

              Using the original rules:                   Using the new rules: 

 

   E             E 

 

       E  +  T  T   E 
 

       E         +         T   F         F         T    + T E 
 

       T   F                      F     T       +     T          E 
 

       F                F     T        

 

                    

 
     id   id  id        id              id    id 

 

Figure 15.2  Removing left-recursion leads to different parse trees 

 

 

 

Notice that, in the original parse tree, the + operator associates left, while in the new parse tree it associates right.  

Since the goal of producing a parse tree is to serve as the first step toward assigning meaning to the input string (for 

example, by writing code to correspond to it), this change is significant.  In order to solve our parsing problem, we’ve 

changed the meaning of at least some strings in the language we are trying to parse. 

Using Lookahead and Left Factoring to Reduce Nondeterminism 

As we saw in Example 15.4 (the simple English example), a depth-first, top-down parser may have to explore multiple 

derivations before it finds the one that corresponds to the current input string.  The process we just described for 

getting rid of left-recursive rules does nothing to affect that.  So we would still like to find a technique for reducing or 

eliminating the need for search.  Sometimes it is possible to analyze a grammar in advance and determine that some 

paths will never lead to a complete derivation of a string of terminal symbols.  But the more important case arises, as 

it did even with our very simple grammar of English, when the correct derivation depends on the current input string.  

When that happens, the best source of guidance for the parser is the input string itself and its best strategy is to 
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procrastinate branching as long as possible in order to be able to use the input to inform its decisions.  To implement 

this strategy, we’ll consider doing two things: 

 

• Changing the parsing algorithm so that it exploits the ability to look one symbol ahead in the input before it makes 

a decision about what to do next, and 

• Changing the grammar to help the parser procrastinate decisions. 

 

We can explore both of these issues by considering just a fragment of our arithmetic-expression grammar, which we’ll 

augment with one new rule that describes simple function calls.  So consider just the following set of three rules: 

 

(1) F → (E)  

(2) F → id  

(3) F → id(E)  /* this is a new rule that describes a call to a unary function. 

 

If a top-down parser needs to expand a node labeled F, which rule should it use?  If it can look one symbol ahead in 

the input before deciding, it can choose between rule (1), which it should apply if the next character is (, and rules (2) 

and (3), one of which should be applied if the next symbol is id.   

 

But how can a parser choose between rules (2) and (3) if it can look only one symbol ahead?  The answer is to change 

the grammar so that the decision can be procrastinated.  In particular, we will rewrite the grammar as: 

 

(1) F → (E)  

(1.5) F → id X 

(2) X →  

(3) X → (E)   

 

Now, if the lookahead symbol is id, the parser will apply rule (1.5).  Then it will match the id and set the lookahead 

symbol to the following symbol.  Next it must decide whether to expand X by rule (2) or rule (3).  But it is one symbol 

farther along in the input as it faces this decision.  If the next input symbol is (, it is possible that either rule should be 

chosen (although see below for an additional technique that may resolve this conflict as well).  But if the next input 

symbol is anything else, only rule (2) can possibly lead to a complete parse.  

 

The operation that we just did is called left factoring.  It can be described as follows: 

 

Let G be a context-free grammar that contains two or more rules with the same left-hand side and the same initial 

sequence of symbols on the right-hand side.  Suppose those rules are: 

 

 A → 1 

 A → 2  

    …   

 A → n  

 

where    and n  2.  We remove those rules from G and replace them with the rules: 

 

 A → A'  

 

 A' → 1 

 A' → 2  

    … 

 A' → n 

 

A parser that uses this new grammar will still have to make a decision about what to do after it has read the input 

sequence .  But it will probably be farther along in the input string by the time it has to do that. 
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15.2.3 Deterministic Top-Down Parsing with LL(1) Grammars 
Can we do better?  We know, from Theorem 13.13, that there exist context-free languages for which no deterministic 

PDA exists.  So there will be context-free languages for which the techniques that we have just described will not be 

able to remove all sources of nondeterminism.  But do we care about them?  Could we build a deterministic, linear-

time parser for: 

 

1. A typical programming language like Java or C++ or Haskell? 

2. A typical database query language? 

3. A typical Web search query language? 

4. English or Chinese? 

 

The answer to questions 1-3 is yes.  The answer to question 4 is mostly no, although there have been some partially 

successful attempts to do so.  Using techniques such as the ones we just described, it is sometimes possible to craft a 

grammar for which a deterministic top-down parser exists.  Such parsers are often also called predictive parsers.  To 

simplify the rest of this discussion, assume that every input string ends with the end-of-string marker $.  This means 

that, until after the $ is reached, there is always a next symbol, which we will call the lookahead character. 

 

It will be possible to build a predictive top-down parser for a grammar G precisely in case every string that is generated 

by G has a unique left-most derivation and it is possible to determine each step in that derivation by looking ahead 

some fixed number k of characters in the input stream.  In this case, we say that G is LL(k), so named because an 

LL(k) grammar allows a predictive parser that scans its input left to right (the origin of the first L in the name) to build 

a left-most derivation (the origin of the second L) if it is allowed k lookahead symbols.  Note that every LL(k) grammar 

is unambiguous (because every string it generates has a unique left-most derivation).  It is not the case, however, that 

every unambiguous grammar is LL(k).    

 

Most predictive parsers use a single lookahead symbol.  So we are interested in determining whether or not a grammar 

G is LL(1).  To do so, it is useful to define two functions: 

 

• Given a grammar G and a sequence of symbols , define first() to be the set of all terminal symbols that can 

occur as the first symbol in any string derived from  using RG.  If  derives , then   first(). 

• Given a grammar G and a nonterminal symbol A, define follow(A) to be the set of all terminal symbols that can 

immediately follow whatever A produces in some string in L(G).   

Example 15.7 Computing first and follow 

Consider the following simple grammar G: 

 

 S → AXB$ 

 A → aA |  

 X → c |  

 B → bB |  

 

• first(S) = {a, c, b, $}.   

• first(A) = {a, }.   

• first(AX) = {a, c, }.  

• first(AXB) = {a, c, b, }. 

follow(S) = . 

• follow(A) = {c, b, $}. 

• follow(X) = {b, $}. 

• follow(B) = {$}. 

 

We can now state the conditions under which a grammar G is LL(1).  It is iff, whenever G contains two competing 

rules A →  and A → , all of the following are true: 

 

• There is no terminal symbol that is an element of both first() and first(). 

•  cannot be derived from both of  and . 

• If  can be derived from one of  or , assume it is .  Then there may be two competing derivations: 
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            S   1  A  2   and          S   1  A  2  

 1    2       1    2  

 1       2  

 

Consider the information available to a predictive parser when it has to choose how to expand A.  It has consumed the 

input up through 1.  So, when it looks one character ahead, it will find the first character of 2 (in case A    ) 

or it will find the first character of  (in case A  ).  So we require that there be no terminal symbol that is an element 

of both follow(A) (which describes the possible first terminal symbols in 2) and first(). 

 

We define a language to be LL(k) iff there exists an LL(k) grammar for it.  Not all context-free languages are LL(k) 

for any fixed k.  In particular, no inherently ambiguous one is, since every LL(k) grammar is unambiguous.  There are 

also languages for which there exists an unambiguous grammar but no LL(k) one.  For example, consider {anbncmd : 

n, m  0}  {anbmcme : n, m  0}, which is unambiguous, but not LL(k), for any k, since there is no fixed bound on 

the number of lookahead symbols that must be examined in order to determine whether a given input string belongs 

to the first or the second sublanguage.  There are even deterministic context-free languages that are not LL(k), for any 

k.  One such example is {anbn, n  0}  {ancn, n  0}.  (Intuitively, the problem there is that, given a string w, it is 

not possible to determine the first step in the derivation of w until either a b or a c is read.)  But many practical 

languages are LL(k).  In fact, many are LL(1), so it is worth looking at ways to exploit this property in the design of a 

top-down parser. 

 

There are two reasonably straightforward ways to go about building a predictive parser for a language L that is 

described by an LL(1) grammar G.  We consider each of them briefly here. 

Recursive Descent Parsing 

A recursive-descent parser contains one function for each nonterminal symbol A in G.  The argument of each such 

function is a parse tree node labeled A,  and the function’s job is to create the appropriate parse tree beneath the node 

that it is given.  The function corresponding to the nonterminal A can be thought of as a case statement, with one 

alternative for each of the ways that A can be expanded.  Each such alternative checks whether the next chunk of input 

could have been derived from A using the rule in question.  It checks each terminal symbol directly.  To check each 

nonterminal symbol, it invokes the function that is defined for it.  The name “recursive descent” comes from the fact 

that most context-free grammars contain recursive rules, so the parser will typically exploit recursive function calls.   

Example 15.8 Recursive Descent Parsing 

Let G include the rules: 

 

 A → BA | a 

B → bB | b 

 

The function associated with A will then be (ignoring many details, including how the next lookahead symbol is 

computed, how the parse tree is actually built, and what happens on input strings that are not in L(G)): 

 

      A(n: parse tree node labeled A) = 

      case (lookahead = b :  /* Use the rule A → BA.  

    Invoke B on a new daughter node labeled B. 

    Invoke A on a second new daughter node labeled A. 

  lookahead = a :  /* Use the rule A → a. 

      Create a new daughter node labeled a. 

Table-Driven LL(1) Parsing 

Instead of letting a set of recursive function calls implicitly maintain a stack, we could build a parser that works in 

much the same way that the top-down PDAs of Section 12.3.1 do.  Such a parser would maintain its stack explicitly.  

Consider all of the transitions that such a parser can take.  We can index them in a table called a parse table, which 

contains one row for each nonterminal that could be on the top of the stack and one column for each terminal symbol 
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that could correspond to the lookahead symbol.  Then we can build a straightforward table-driven parser that chooses 

its next move by using the current top-of-stack and lookahead symbols as indices into the table.   

Example 15.9 Building a Parse Table 

Let G be: 

 

 S → AB$ | AC$  

 A → aA | a 

 B → bB | b 

 C → c 

 

The parse table for G would be: 

 

               Lookahead symbol 

 

Top of stack 

a b c $ 

S S → AB$ 

S → AC$ 

   

A A → aA  

A → a 

   

B  B → bB  

B → b 

  

C   C → c  

 

Notice two things about the parse table that we just built: 

 

• Many of the cells are empty.  If the parser looks in the table and finds an empty cell, it knows that it has hit a dead-

end: the path it is currently following will never succeed in parsing the input string. 

• Some of the cells contain more than one rule.  A parser that used that table as the basis for choosing its next move 

would thus be nondeterministic.  Suppose, on the other hand, we could guarantee that the table contained at most 

one rule in each cell.  Then a parser that was driven by it would be deterministic.   

 

Given any LL(1) grammar G, it is possible to build a parse table with at most one rule in each cell.  Thus it is possible 

to build a deterministic (predictive) table-driven parser for G.  The parser simply consults the table at each step and 

applies the rule that is specified. 

 

Note that the grammar of Example 15.9 is not LL(1) because a is an element of both first(AB$) and first(AC$).   Thus 

there are two ways to expand S if the lookahead symbol is a.  There are also two ways to expand A if the lookahead 

symbol is a and two ways to expand B if the lookahead symbol is b.  But the language described by that grammar is 

LL(1).  We leave the construction of an LL(1) grammar for it as an exercise. 

 

LL(1) parsers can be built by hand, but there exist tools  that greatly simplify the process. 

15.3 Bottom-Up Parsing 
Rather than parsing top-down, as we have just described, an alternative is to parse bottom-up, and thus drive the 

process directly by the current string of input symbols.   

 

A bottom-up parser for a language defined by a grammar G works by creating the bottom nodes of a parse tree and 

labeling them with the terminal symbols in the input.  Then it attempts to build a complete parse tree above those 

nodes.  It does this by applying the rules in RG backwards.  In other words, suppose that a sequence of nodes labeled 

x1, x2, … xn has already been built and RG contains the rule: 

 

X → x1, x2, … xn 
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Then the parser can build a node, label it X, and insert the nodes labeled x1, x2, … xn as its children.  If the parser 

succeeds in building a tree that spans the entire input and whose root is labeled SG, then it has succeeded.  If there is 

no path by which it can do that, it fails and reports that the input string is not in L(G). 

 

Since there may be choices for which rule to apply at any point in this process, a bottom-up parser patterned after the 

PDAs that we built in Section 12.3.1 may be nondeterministic and its running time may grow exponentially in the 

length of the input string.  That is clearly unacceptable for a practical parser.  In the next section we describe a 

straightforward bottom-up parsing algorithm with running time that is O(n3).  But even that may not be good enough.  

Fortunately, just as we did for top-down parsing, we can construct a deterministic parser that runs in time that is O(n) 

if we impose some restrictions on the grammars that we use.  

15.3.1 The Cocke-Kasami-Younger Algorithm 
A straightforward, bottom-up parser that handles nondeterminism by backtracking typically wastes a lot of time 

building and rebuilding nodes as it backtracks.  An alternative is a dynamic programming approach in which each 

possible constituent is built (bottom-up) exactly once and then made available to any later rules that want to use it.   

 

The Cocke-Kasami-Younger algorithm (also called CKY or CYK) works by storing such constituents in a two 

dimensional table T that contains one column for each input symbol and one row for each possible substring length.  

Call the input string w and let its length be n.  Then T contains one row and one column for each integer between 1 

and n.  We will number the rows of T starting at the bottom and the columns starting from the left.  For all i and j 

between 1 and n, each cell T[i, j] corresponds to the substring of w that extends for i symbols and starts in position j.  

The value that will eventually fill each such cell will be the set of nonterminal symbols that could derive the string to 

which the cell corresponds.  For example, to parse the string id + id  id, we would need to fill in the cells as shown 

in Table 15.2.  Note that each cell is labeled with the substring to which it corresponds, not with the value it will 

eventually take on. 

 

 

 

Row 5 

    Row 4 

Row 3 

Row 2 

Row 1 

    Input string:      id        +                id                    id 

 

Table 15.2  The table that a CKY parser builds 

 

 

Let G be the grammar that is to be used.  Initially, each cell in T will be blank.  The parser will begin filling in T, 

starting from the bottom, and then moving upward to row n.  When it is complete, each cell in the lower triangle of T 

will contain the set of nonterminal symbols that could have generated the corresponding substring.  If the start symbol 

of G occurs in T[n, 1], then G can generate the substring that starts in position 1 and has length n.  But that is exactly 

w.  So G can generate w. 

 

The CKY algorithm requires that the grammar that it uses be in Chomsky normal form.  Recall that, in a Chomsky 

normal form grammar, all rules have one of the following two forms:  

 

• X → a, where a  ,  or 

• X → BC, where B and C are elements of V - . 

 

So we need two separate techniques for filling in T: 

 

id + id  id     

id + id  + id  id    

id + id + id  id  id   

id + + id id   id  

id + id  id 
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• To fill in row 1, use rules of the form X → a.  In particular, if X → a and a is the symbol associated with column 

j, then add X to T[1, j]. 

• To fill in rows 2 through n, use rules of the form X → BC, since they are the ones that can combine constituents to 

form larger ones.  Suppose the parser is working on some cell in row k.  It wants to determine whether the rule X 

→ BC can be used to generate the corresponding substring s of length k.  If it can, then there must be some way to 

divide s into exactly two constituents, one corresponding to B and the other corresponding to C.  Since both of 

those constituents must be shorter than s, any ways there are of building them must already be represented in cells 

in rows below k.   

 

We can now state the CKY algorithm as follows: 

 

        CKY(G: Chomsky normal form grammar, w = a1a2…an: string) =  

 /* Fill in the first (bottom-most) row of T, checking each symbol in w and finding all the nonterminals  

    that could have generated it. 

1. For j = 1 to n do: 

      If G contains the rule X → aj, then add X to T[1, j]. 

 

/* Fill in the remaining rows, starting with row 2 and going upward.   

2. For i = 2 to n do:   /* For each row after the first 

For j = 1 to n-i+1 do:   /* For each column in the lower triangle of T 

               For k = 1 to i-1 do:  /* For each character after which there could be a split  

                   into two constituents  

            For each rule X → YZ do: 

            If Y  T[k, j] and Z  T[i-k, j+k], then:  /* Y and Z found.          #### 

            Insert X into T[i, j]. 

 

3. If SG  T[n, 1] then accept else reject. 

 

The core matching operation occurs in the step flagged with ####.  The parser must determine whether X could have 

generated the substring that starts in position j and has length i.  It is currently considering splitting that substring after 

the kth symbol.  So it checks whether Y could have generated the first piece, namely the one that starts in position j and 

has length k.  And it checks whether Z could have generated the second piece, namely the one that starts in position j 

+ k and whose length is equal to the length of the original substring minus the part that Y matched.  That is i – k. 

Example 15.10 The CKY Algorithm 

Consider parsing the string aab with the grammar: 

 

  S → A B 

  A → A A 

  A → a 

  B → a 

  B → b 

 

CKY begins by filling in the bottom row of T as follows: 

 

Row 3 

Row 2 

Row 1 

    Input string:            a              a         b 

 

Notice that, at this point, the algorithm has no way of knowing whether the a’s were generated by A or by B.   

 

   

   

A, B A, B B 
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Next, the algorithm moves on to step 2.  Setting i to 2, it fills in the second row, corresponding to substrings of length 

2, as follows:  When i is 2 and j is 1, it is considering ways of generating the initial substring aa.  Setting k to 1, it 

considers splitting it into a and a.  Then, considering the rule S → A B, it finds the A and the B that it needs in row 1, 

so it adds S to T[2, 1].  Similarly for the rule A → A A, so it adds A to T[2, 1].  It then sets j to 2 and looks at ways of 

generating substrings that start in position 2.  Setting k to 1, it considers splitting ab into a and b.  Considering the 

rule S → A B, it finds the A and the B that it needs, so it adds S to T[2, 2].  At this point, T is: 

 

Row 3 

Row 2 

Row 1 

    Input string:            a              a          b 

 

 

Next CKY sets i to 3.  So it is considering strings of length 3.  There is only one, namely the one that starts at position 

1.  So the only value of j that will be considered is 1.  There are now two values of k to consider, since there are two 

ways that the string aba can be split in two.  Setting k to 1, it is considering the constituents a and ab.  Considering 

the rule  S → A B, it looks for an A of length 1 starting in position 1 (which it finds) and a B of length 2 starting in 

position 2 (which it fails to find).  It then considers the other rule, A → A A.  For this rule to succeed there would have 

to be an A of length 1 in position 1 (which it finds) and a second A of length 2 starting in position 2 (which it fails to 

find).  Notice that, since it needs an A of length 2, it must look in row 2.  The A in row 1 doesn’t help.  So it has found 

nothing by breaking the string after position 1.  It sets k to 2 and considers breaking it, after position 2, into aa and b.  

Now it again tries the first rule, S → A B.  It looks in row 2 for an A that generated aa and in row 1 for a B that 

generated b.  It finds both and inserts S into T[3, 1].  So it accepts. 

 

The algorithm that we just presented does not actually build a parse tree.  It simply decides whether the string w is in 

L(G).  It can easily be modified to build parse trees as it applies rules.  Then the final parse tree for w is the one 

associated with the start symbol in T[n, 1].  If G is ambiguous, there may be more than one such tree.   

 

We can analyze the complexity of CKY as follows: we will assume that the size of the grammar G is a constant, so 

any operation whose complexity is dependent only on the size of G takes constant time.  This means that the code 

inside the loop of step 1 and the testing of all grammar rules that is done inside the loop of step 2 each take constant 

time.  Step 1 takes time that is O(n).  Step 2 can be analyzed as follows: 

 

• The outer loop (i) is executed n-1 times. 

• The next loop (j) is executed, on average n/2 times and at most n-1 times.  

• The next loop (k) is also executed, on average n/2 times and at most n-1 times. 

• The inner loop takes constant time. 

 

So step 2 takes time that is O((n-1)(n/2)(n/2)) = O(n3).  Step 3 takes constant time.  So the total time is O(n3).   

 

If we also want to consider the size of G, then let |G| be the number of rules in G.  If G is in Chomsky Normal form, 

CKY takes time that is O(n3|G|).  But if G is not already in Chomsky Normal form, it must first be converted, and 

that process can take time that is O(|G|2).  So we have that the total time required by CKY is O(n3|G|2). 

15.3.2 Context-Free Parsing and Matrix Multiplication 
The CKY algorithm can be described in terms of Boolean matrix multiplication.  Stated that way, its time efficiency 

depends on the efficiency of Boolean matrix multiplication.  In particular, again assuming that the size of the grammar 

is constant, the running time becomes O(M(n)), where M(n) is the time required to multiply two n  n Boolean 

matrices.  Straightforward matrix multiplication algorithms (such as Gaussian elimination) take time that is O(n3), so 

this recasting of the algorithm has no effect on its complexity.  But faster matrix multiplication algorithms exist.  For 

example, Strassen’s algorithm (described in Exercise 27.9)) reduces the time to O(n2.807), but at a price of increased 

complexity and a structure that makes it less efficient for small to medium values of n.  The fastest known technique, 

   

S, A S  

A, B A, B B 
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the Coppersmith-Winograd algorithm , has worst case running time that is O(n2.376), but it is too complex to be 

practical.  

 

More recently, a further result  that links matrix multiplication and context-free parsing has been shown: let P be 

any context-free parser with time complexity O(gn3-), where g is the size of the grammar and n is the length of the 

input string.  Then P can be efficiently converted into an algorithm to multiply two n  n Boolean matrices in time 

O(n3-/3).  So, if there were a fast algorithm for parsing arbitrary context-free languages, there would also be a fast 

matrix multiplication algorithm.  Substantial effort over the years has been expended looking for a fast matrix 

multiplication algorithm, and none has been found.  So it appears relatively unlikely that there is a fast general 

algorithm for context-free parsing. 

15.3.3 Shift-Reduce Parsing 
The CKY algorithm works for any context-free language, but it has two important limitations: 

 

• It is not efficient enough for many applications.  We’d like a deterministic parser that runs in time that is linear in 

the length of the input.   

• It requires that the grammar it uses be stated in Chomsky normal form.  We’d like to be able to use more natural 

grammars and thus to extract more natural parse trees. 

 

We’ll next consider a bottom-up technique that can be made deterministic for a large, practically significant set of  

languages.  

 

The parser that we are about to describe is called a shift-reduce parser.  It will read its input string from left to right 

and can perform two basic operations: 

 

1. Shift an input symbol onto the parser’s stack and build, in the parse tree, a terminal node labeled with that input 

symbol. 

2. Reduce a string of symbols from the top of the stack to a nonterminal symbol, using one of the rules of the 

grammar.  Each time it does this, it also builds the corresponding piece of the parse tree. 

 

We’ll begin by considering a shift-reduce parser that may have to explore more than one path.  Then we’ll look at 

ways to make it deterministic in cases where that is possible. 

 

To see how a shift-reduce parser might work, let’s trace its operation on the string id + id  id, using our original 

term/factor grammar for arithmetic expressions: 

 

 (1) E → E + T 

 (2) E → T 

 (3) T → T * F 

 (4) T → F 

 (5) F → (E) 

 (6) F → id 

 

We’ll number the main steps in this process so that we can refer to them later. 

 

(Step 1) When we start, the parser’s stack is empty, so our only choice is to shift the first input symbol, id, onto the 

stack.   Next, we have a choice.  We can either use rule (6) to reduce id to F, or we can get the next input symbol and 

shift it onto the stack.  It’s clear that we need to apply rule (6) now.  Why?  Because there are no other rules that can 

consume an id directly.  So we have to do this reduction before we can do anything else with id.  But could we wait 

and do it later?  No, because reduction always applies to the symbols at the top of the stack.  If we push anything on 

before we reduce id, we’ll never again get id at the top of the stack.  It will just sit there, unable to participate in any 

rules.  So we reduce id to F, giving us a stack containing just F, and the parse tree (remember we’re building it up 

from the bottom):  
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   F 

 

   id       F 

 

The reasoning we just did is going to be the basis for the design of a “smart” deterministic bottom up parser.  Without 

that reasoning, a dumb, brute force parser would have had to consider both paths at this first choice point: the one we 

took, as well as the one that fails to reduce and instead pushes + onto the stack.  That second path will eventually reach 

a dead end, so even a brute force parser will eventually get the right answer.  But our goal is to eliminate search. 

 

(Step 2) At this point, the parser’s stack contains F and the remaining input is   + id  id.  Again we must choose 

between reducing the top of the stack or shifting on the next input symbol.  Again, by looking ahead and analyzing 

the grammar, we can see that eventually we will need to apply rule (1).  To do so, the first id will have to have been 

reduced to a T and then to an E.  So let’s next reduce by rule (4) and then again by rule (2), giving the parse tree and 

stack: 

 

   E 

 

   T          

 

   F 

 

   id       E 

 

(Step 3) At this point, there are no further reductions to consider, since there are no rules whose right-hand side is just 

E.  So we must consume the next input symbol + and shift it onto the stack.  Having done that, there are again no 

available reductions.  So we shift the next input symbol.  The stack then contains id + E (writing the stack with its 

top to the left).  Again, we need to reduce id before we can do anything else, so we reduce it to F and then to T.  Now 

we’ve got: 

 

   E 

 

   T  T     T 

 

   F  F     + 

 

   id + id     E 

 

Notice that we have three parse tree fragments.  Since we’re working up from the bottom, we don’t know yet how 

they’ll get put together.  We now have three choices: reduce T to E using rule (2), reduce T + E to E using rule (1) or 

shift on the next input symbol.  Note, by the way, that we will always be matching the right-hand sides of the rules in 

reverse because the last symbol we read (and thus the right-most one we’ll match) is at the top of the stack.   

 

(Step 4) In considering whether to reduce or shift at this point, we realize that, for the first time, there isn’t one correct 

answer for all input strings.  When there was just one universally correct answer, we could compute it simply by 

examining the grammar.  Now we can’t do that.  In the example we’re working with, we don’t want to do either of 

the reductions, since the next input symbol is .  We know that the only complete parse tree for this input string will 

correspond to the interpretation in which  is applied before +.  That means that + must be at the top of the tree.  If we 

reduce now, it will be at the bottom.  So we need to shift  onto the stack and do a reduction that will build the 

multiplication piece of the parse tree before we do a reduction involving +.  But if the input string had been id + id 

+ id, we’d want to reduce now in order to cause the first + to be done first, thus producing left associativity.  So we 

appear to have reached a point where we’ll have to branch.  If we choose the wrong path, we’ll eventually hit a dead 

end and have to back up.  We’d like not to waste time exploring dead end paths, however.  We’ll come back later to 

the question of how we can make a parser know how to avoid dead ends.  For now, let’s just forge ahead and do the 

right thing and see what happens. 
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As we said, what we want to do here is not to reduce but instead to shift  onto the stack.  Once we do that, the stack 

will contain  T + E.  At this point, there are no available reductions (since there are no rules whose right-hand side 

contains  as the last symbol), so we shift the next symbol, resulting in the stack  id  T + E.  Clearly we next have 

to reduce id to F (following the same argument that we used above), so we’ve got: 

 

          F 

 

   E        

 

   T  T     T 

 

   F  F  F   + 

 

   id + id  id   E 

 

(Step 5) Next, we need to reduce (since there aren’t any more input symbols to shift), but now we have another decision 

to make: should we reduce the top F to T, using rule (4), or should we reduce the top three symbols to T, using rule 

(3)?  The right answer is to use rule (3), producing: 

 

   E      T    

 

   T  T        T 

 

   F  F  F   + 

 

   id + id     id   E 

 

(Step 6) Finally, we need to apply rule (1), to produce the single symbol E on the top of the stack, and the parse tree:   

 

         E 

 

   E      T    

 

   T  T         

 

   F  F  F    

 

   id      + id     id   E 

 

The job of a shift-reduce parser is complete once it has: 

 

• built a parse tree that spans the entire input string, and  

• produced a stack that contains just the start symbol. 

 

So we are done, although we’ll discuss below extending the input to include an end-of-input symbol $.  In that case, 

we will usually have a final rule that consumes the $ and pops the start symbol from the stack. 

 

Now let’s return to the question of how we can build a parser that makes the right choices at each step of the parsing 

process.  As we walked through the example parse above, there were two kinds of decisions that we had to make: 

 

• whether to shift or reduce (we’ll call these shift-reduce conflicts), and 

• which of several available reductions to perform (we’ll call these reduce-reduce conflicts). 
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Let’s focus first on shift-reduce conflicts.  At least in this example, it was always possible to make the right decision 

on these conflicts if we had two kinds of information: 

 

• The symbol that is currently on the top of the stack, coupled with a good understanding of what is going on in the 

grammar.  For example, we noted that there’s nothing to be done with a raw id that hasn’t been reduced to an F.  

• A peek at the next input symbol (the one that we’re considering shifting), which we call the lookahead symbol.  

For example, when we were trying to decide whether to reduce T + E or shift on the next symbol, we looked 

ahead and saw that the next symbol was .  Since we know that  has higher precedence than +, we knew not to 

reduce +, but rather to wait and deal with  first.  In order to guarantee that there always is a lookahead symbol, 

even after the last real input symbol has been read, we’ll assume from now on that every string ends with $, a 

special end-of-input symbol. 

 

If the decision about whether to shift or to reduce is dependent only on the current top of stack symbol and the current 

lookahead symbol, then we can define a procedure for resolving shift-reduce conflicts by specifying a precedence 

relation P  V  {  $}.  P will contain the pair (s, c) iff, whenever the top of stack symbol is s and the lookahead 

symbol is c, the parser should reduce.  If the current situation is described by a pair that is not in P, then the parser 

will shift the lookahead symbol onto the stack.   

 

An easy way to encode a precedence relation is as a table, which we’ll call a precedence table.  As an example, 

consider the following precedence table for our arithmetic expression grammar, augmented with $: 

 

 ( ) id +  $ 

(       

)  R  R R R 

id  R  R R R 

+       

*       

E       

T  R  R  R 

F  R  R R R 

 

This table should be read as follows:  Compare the left-most column to the top of the stack and find the row that 

matches.  Now compare the symbols along the top of the chart to the lookahead symbol and find the column that 

matches.  If there’s an R in the corresponding square of the table, then reduce.  Otherwise, shift.   

 

Let’s now go back to the problem of parsing our example input string, id + id  id.  Remember that we had a 

shift/reduce conflict at step 4, when the stack’s contents were T + E and the next input symbol was .  We can now 

resolve that conflict by checking the precedence table.  We look at the next to the last row of the table, the one that 

has T as the top of stack symbol.  Then we look at the column headed .  There’s no R, so we don’t reduce.  But notice 

that if the lookahead symbol had been +, we’d have found an R, telling us to reduce, which is exactly what we’d want 

to do.  Thus this table captures the precedence relationships between the operators  and +, plus the fact that we want 

to associate left when faced with operators of equal precedence. 

 

Now consider the problem of resolving reduce-reduce conflicts.  Here’s a simple strategy called the longest-prefix 

heuristic:  Given a choice of right-hand sides that match the current stack, choose the longest one.   

 

Returning to our example parse, we encountered a reduce-reduce conflict at step 5.  The longest-prefix heuristic tells 

us to reduce F  T rather than just F, which is the right thing to do.  

15.3.4 Deterministic, Bottom-UP LR Parsing 
There is a large and very useful class of languages for which it is possible to build a deterministic, bottom-up parser 

by extending the notion of a precedence table so that it includes even more information about paths that will eventually 

succeed versus those that will eventually fail.  We’ll call the resulting table a parse table. 
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We define a grammar G to be LR(k), for any positive integer k, iff it is possible to build a deterministic parser for G 

that scans its input left to right (thus the L in the name) and, for any input string in L(G), builds a rightmost derivation 

(thus the R in the name), looking ahead at most k symbols.  We define a language to be LR(k) iff there exists an LR(k) 

grammar for it.  We’ll state here, without proof, two important facts about the LR(k) languages: 

 

• The class of LR(k) languages is exactly the class of deterministic context-free languages, as defined in Section 

13.5. 

• If a language is LR(k), for some k, then it is also LR(1).     

 

Given an LR(1) grammar, it is possible to build a parse table that can serve as the basis for a deterministic shift-reduce 

parser.  The parse table, like the precedence table we built in the last section, tells the parser when to shift and when 

to reduce.  It also tells it how to resolve reduce-reduce conflicts.  Unfortunately, for many LR(1) languages, the parse 

table is too large to be practical.   

 

But there is a technique, called LALR (lookahead LR) parsing, that works on a restricted class of LR(1) grammars.  

LALR parsers are deterministic, shift-reduce parsers.  They are widely used for a combination of three important 

reasons: 

 

• Most practical languages can be described by an LALR grammar. 

• The parse tables that are required by an LALR parser are reasonably small. 

• There exist powerful tools  to build those tables.  So efficient parsers are very easy to build. 

 

This last point is key.  While it is possible to build parse tables for top-down LL parsers by hand, it isn’t possible, for 

any but the simplest grammars, to build LALR parse tables by hand.  As a result, bottom-up parsing was not widely 

used until the development of parser-generation tools.  The most influential such tool has been Yacc , which is 

designed to work together with Lex (described briefly in Section 15.1) to build a combined lexical analyzer/parser.  

There have been many implementation of Yacc and it has many descendants.   

15.4 Parsing Natural Languages 
Programming languages are artificial.  They are designed by human designers, who are free to change them so that 

they possess various desirable properties, including parsability.  But now consider English or Spanish or Chinese or 

Swahili.  These languages are natural.  They have evolved to serve a purpose, but that purpose is communication 

among people.  The need to build programs to analyze them, index them, retrieve them, translate them, and so forth, 

has been added very late in the game.  It should therefore come as little surprise that the efficient parsing techniques 

that we have described in the last two sections do not work as well for natural languages as they do for artificial ones.    

15.4.1 The Problems 
Parsers for natural languages must face at least five problems that are substantially more severe in the case of natural 

languages than they are for artificial ones: 

 

• Ambiguity: There do not exist unambiguous grammars with the power to generate all the parse trees that 

correspond to the meanings of sentences in the language.  Many sentences are syntactically ambiguous.  (Recall 

Example 11.22.)  Choosing the correct parse tree for a sentence generally requires appeal to facts about the larger 

context in which the sentence occurs and facts about what makes sense.  Those facts can be encoded in separate 

functions that choose from among a set of parse trees or partial parse trees.  Or they may be encoded 

probabilistically in a stochastic grammar, as described in Section 11.10.  Even when the information required to 

make a choice is available in the input string, it may be many words away, so the single symbol lookahead that we 

used in LL and LR parsing is rarely adequate. 

• Gaps: In the sentence, What did Jen eat?, the word What is the object of the verb eat but it is not near it 

in the sentence.  See C 750 for a discussion of this issue. 

• Dialect: English is not one language.  It is hundreds at least.  Chinese is worse.  There is no ISO standard for 

English or Chinese.  So what language should we build a grammar for? 
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• Evolution:  Natural languages change as they are used.  The sentences, You wanted to do that why? and 

They’re open 24/7 are fine American English sentences today.  But they wouldn’t have been twenty years 

ago.   

• Errors: Even among speakers who agree completely on how they ought to talk, what they actually say is a different 

story.  While it is acceptable (and even desirable) for a compiler to throw out syntactically ill-formed programs, 

imagine the usefulness of a translating telephone that objected to every sentence that stopped in the middle, started 

over, and got a pronoun wrong.  Parsers for natural languages must be robust in a way that parsers for artificial 

languages are not required to be. 

 

In addition, natural languages share with many artificial languages the problem of checking for agreement between 

various constituents: 

 

• For programming languages, it is necessary to check variable declarations against uses. 

• For natural languages, it is necessary to check for agreement between subject and verb, for agreement between 

nouns and modifiers (in languages like Spanish), and so forth.   

 

In C 666, we prove that one typical programming language, Java, is not context-free because of the requirement that 

variables be declared before they are used.  So parsers for programming languages exploit additional mechanisms, 

such as symbol tables, to check such features.  In C 747, we address the question of whether natural languages such 

as English are formally context-free.  There are no proofs, consistent with the empirical facts about how people 

actually talk, that English is not context-free.  There is, on the other hand, a proof that one grammatical feature of one 

natural language, Swiss German, is not context-free.  But, even for English, it is more straightforward to describe 

agreement features, just as we do for Java, with additional mechanisms that check agreement features before context-

free rules can be applied during parsing.  

15.4.2 The Earley Algorithm 
Despite the problems we just described, context-free parsers, augmented as necessary, are widely used in natural 

language processing systems.  Although efficient parsing is important, deterministic parsing is generally not possible.  

So LL and LR techniques won’t work.  And it is usually not acceptable to require grammars to be in Chomsky normal 

form (because parsers based on such grammars will not generate natural parse trees).  So the CKY algorithm can’t be 

used.  The Earley algorithm, which we present next, is a reasonably efficient (O(n3)) algorithm that works with an 

arbitrary context-free grammar.  Because of its importance in natural language processing, we’ll describe this 

algorithm as it operates on English sentences.  But it can be applied to any context-free language.  So, for example, to 

imagine it being used in a compiler, substitute the term “token” each time we mention a “word” here. 

 

The Earley algorithm, like the CKY algorithm, is a dynamic programming technique.  It works top-down but, unlike 

the simple depth-first search algorithm that we discussed in Section 15.2.1, it builds each potential constituent only 

once (and then may reuse smaller constituents as it explores alternative ways to build larger ones).  The structure that 

is used to record the constituents as they are found can be thought of as a simple chart.  So parsers that are based on 

the Earley algorithm, and on others that are related to it, are often called chart parsers.   

 

To describe the way that the Earley algorithm works, we introduce the dot notation, which we will use to indicate the 

progress that the parser has made so far in matching the right-hand side of a grammar rule against the input.  Let: 

 

A → • describe an attempt to apply the rule A → , where everything before the • has already matched 

against the input and the parser is still trying match everything after the •.   

A → • describe a similar attempt except that nothing has yet matched against the input.   

A → • describe a similar attempt except that the entire right-hand side (and thus also A) has matched against 

the input.   

 

The overall progress of the parsing process can be described by listing each rule that is currently being attempted and 

indicating, for each: 
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• Where in the sentence the parser is trying to match the right hand side, and 

• How much progress (as indicated by the position of the dot) has been made in doing that matching.   

 

All of this information can be summarized in a chart with n+1 rows, where n is the number of words in the input string.  

In creating the chart, we won’t assign indices to the words of the input string.  Instead we’ll assign the indices to the 

points in between the words.  So, for example, we might have: 

 

  0 Jen 1 saw 2 Bill 3 

 

We’ll let row i of the chart contain every instance of an attempt to match a rule whose • is in position i.  The easiest 

way to envision the chart is to imagine that it also has n+1 columns, which will correspond to the location in the input 

at which the partial match began.  We’ll reverse our usual convention and list the column index first so that the pair 

describes the start and then the end of a partial match.  So associating the indices [i, j] with a rule A → • means 

that the parser began matching  in position i and the • is currently in position j.  

 

The Earley algorithm works top-down.  So it starts by inserting into the chart every rule whose left-hand side is the 

start symbol of the grammar.  The indices associated with each such rule are [0, 0], since the parser must try to match 

the right-hand side starting before the first word (i.e., in position 0) and it has so far matched nothing.  The job of the 

parser is to find a match, for the right-hand side of at least one of those rules, that spans the entire sentence.  In other 

words, for at least one of those initial rules, the • must move all the way to the right and the index pair [0, n], indicating 

a match starting before the first word and ending after the last one, must be assigned to the rule.  

 

To see how the algorithm works, we’ll trace its operation on the simple sentence we showed above, given the following 

grammar: 

 

 S → NP VP 

  NP → ProperNoun  

 VP → V NP 

 

After initialization, the chart will be: 

 

3  

2  

1  

0                 S → • NP VP  [0, 0] 

 

             0         Jen        1 saw  2  Bill    3 

 

Next, the algorithm predicts that an NP must occur, starting at position 0.  So it looks for rules that tell it how to 

construct such an NP.  It finds one, and adds it to the chart, giving: 

 

3  

2  

1  

0              NP → • ProperNoun  [0, 0]       

                S → • NP VP  [0, 0] 

 

             0         Jen        1 saw  2  Bill    3 

 

Now it predicts the existence of a ProperNoun that starts in position 0.  It isn’t generally practical to handle part of 

speech tags like ProperNoun by writing a rule like ProperNoun → Jen | Bill | Chris | …  Instead, we’ll assume 

that the input has already been tagged with part of speech markers like Noun, ProperNoun, Verb, and so forth.  (See 

C 741 for a discussion of how this is process, called part of speech or POS tagging is done.)  So, whenever the next 

symbol the parser is looking for is a part of speech tag, it will simply check the next input symbol and see whether it 
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has the required tag.  If it does, a match has occurred and the parser will behave as though it just matched the implied 

rule.  If it does not, then no match has been found and the rule can make no progress.  In this case, Jen is a 

ProperNoun, so there is a match.  The parser can apply the implied rule ProperNoun → Jen.  Notice that whenever 

the parser actually matches against the input, the • moves.  So the parser adds this new rule to the next row of the 

chart, which now becomes: 

 

3  

2  

1              ProperNoun                        Jen •  [0, 1]  

0              NP → • ProperNoun  [0, 0]       

                S → • NP VP  [0, 0] 

 

        ProperNoun     V, N               ProperNoun  

             0         Jen        1 saw  2  Bill    3 

 

The parser has now finished considering both of the rules in row 0, so it moves on to row 1. It notices that it has found 

a complete ProperNoun.  Whenever it finds a complete constituent, it must look back to see what rules predicted the 

occurrence of that constituent (and thus are waiting for it).  The new, complete constituent starts at position 0, so the 

parser looks for rules whose • is in position 0, indicating that they are waiting for a constituent that starts there.  So it 

looks back in row 0.  It finds that the NP rule is waiting for a ProperNoun.  Since a ProperNoun has just been found, 

the parser can create the rule NP → ProperNoun • [0, 1] and add it to row 1.  Then it looks at that rule and realizes 

that it has found a complete NP starting in position 0.  So it looks back in row 0 again, this time to see what rule is 

waiting for an NP.  It finds that S is, so it creates the rule S → NP • VP [0, 1].  At this point, the chart looks like this 

(using ✓ to mark rules that have already been processed): 

 

3  

2  

1                S                                          NP • VP  [0, 1] 

    ✓      NP                          ProperNoun •  [0, 1] 

    ✓      ProperNoun                        Jen •  [0, 1]  

0     ✓       NP → • ProperNoun  [0, 0]       

    ✓          S → • NP VP  [0, 0] 

 

        ProperNoun     V, N                ProperNoun  

             0         Jen        1 saw  2  Bill    3 

 

The remaining unprocessed rule tells the parser that it needs to predict again.  It needs to find a VP starting in position 

1.  Because no progress has been made in finding a VP, any rule that could describe one will have its • still in position 

1.  So the parser adds the rule VP → • V NP [1, 1] to row 1 of the chart.  At this point, the chart will be:  

 

3  

2  

1                                                      VP → • V NP  [1, 1]    

    ✓        S                                         NP • VP  [0, 1] 

    ✓     NP                          ProperNoun •  [0, 1] 

    ✓     ProperNoun                        Jen •  [0, 1]  

0     ✓      NP → • ProperNoun  [0, 0]       

    ✓         S → • NP VP  [0, 0] 

 

        ProperNoun   V, N                ProperNoun  

             0         Jen        1 saw  2  Bill    3 
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In processing the next rule, the parser notices that the predicted symbol is a part of speech, so it checks the next input 

word to see if it can be a Verb.  Saw has been tagged as a possible Verb or a possible Noun.  So a new rule is added, 

this time to row 2 since the • moves to the right to indicate that the match has moved one word farther in the input.  

Notice that because Earleyparse works top-down, it will ignore part of speech tags (such as saw as a Noun) that don’t 

fit in the larger sentence context.  The chart is now: 

 

3  

2                                                           V                                saw •  [1, 2]   

1     ✓                                               VP → • V NP  [1, 1]    

    ✓         S                                         NP • VP  [0, 1] 

    ✓      NP                          ProperNoun •  [0, 1] 

    ✓      ProperNoun                        Jen •  [0, 1]  

0     ✓      NP → • ProperNoun  [0, 0]       

    ✓         S → • NP VP  [0, 0] 

 

        ProperNoun   V, N                ProperNoun  

             0         Jen        1 saw  2  Bill    3 

 

Having found a complete constituent (the V), starting in position 1, the parser looks back to row 1 to find rules that 

are waiting for it.  It finds one: VP → • V NP [1, 1].  So it can advance this rule’s • and create the rule VP → V • NP 

[1, 2], which can be added to row 2.  That rule will be processed next.  It will predict the existence of an NP starting 

in position 2, so the parser will create rules that describe the possible structures for such an NP.  Our simple grammar 

has only one NP rule, so the parser will create the rule NP → • ProperNoun [2, 2] and add it to the chart in row 2.  

Next the parser looks for, and finds, a ProperNoun, Bill, starting in position 2 and ending at position 3.  So it enters 

it in row 3.  At this point, the chart will be: 

 

3                                                                                              ProperNoun                        Bill •  [2, 3] 

2     ✓                                                                                      NP → • ProperNoun  [2, 2] 

    ✓                                                VP                                         V • NP  [1, 2]  

    ✓                                               V                                       saw •  [1, 2]   

1     ✓                                               VP → • V NP  [1, 1]    

    ✓         S                                         NP • VP  [0, 1] 

    ✓      NP                          ProperNoun •  [0, 1] 

    ✓      ProperNoun                        Jen •  [0, 1]  

0     ✓      NP → • ProperNoun  [0, 0]       

    ✓         S → • NP VP  [0, 0] 

 

        ProperNoun   V, N                ProperNoun  

             0         Jen        1 saw  2  Bill    3 

 

Having found a complete constituent (the ProperNoun), starting in position 2, the parser looks in row 2 to find rules 

that are waiting for a ProperNoun starting in position 2.  It finds one: NP → • ProperNoun [2, 2].  It can advance that 

rule’s • and add the rule NP → ProperNoun • [2, 3] to row 3.  This rule tells the parser that another complete 

constituent, an NP, has been found, starting in position 2.  So it again looks back to row 2 and finds that the rule VP 

→ V • NP [1, 2] is looking for that NP.  So its • can be advanced, and the rule VP → V NP • [1, 3] can be added to 

row 3.  That rule describes yet another complete constituent, a VP, starting back in position 1.  So the parser looks 

back at row 1 to find a rule that is waiting for that VP.  It finds S → NP • VP [0, 1].  So its • can be advanced, and the 

rule S → NP VP • [0, 3] can be added to row 3.  Now the chart is: 
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3                S                                                                                                                    NP VP • [0, 3] 

    ✓                                                VP                                                                            V NP • [1, 3] 

    ✓                                                                                   NP                            ProperNoun •  [2, 3] 

    ✓                                                                                   ProperNoun                        Bill •  [2, 3] 

2     ✓                                                                                      NP → • ProperNoun  [2, 2] 

    ✓                                                VP                                         V • NP  [1, 2]  

    ✓                                                V                                       saw •  [1, 2]   

1     ✓                                               VP → • V NP  [1, 1]    

    ✓         S                                         NP • VP  [0, 1] 

    ✓      NP                          ProperNoun •  [0, 1] 

    ✓      ProperNoun                        Jen •  [0, 1]  

0     ✓      NP → • ProperNoun  [0, 0]       

    ✓         S → • NP VP  [0, 0] 

 

        ProperNoun   V, N                ProperNoun  

             0         Jen        1 saw  2  Bill    3 

 

At this point, the parsing process halts.  A complete S that spans the entire input has been found.  In this simple 

example, there is only one parse.  Given a more complex sentence and a more realistic grammar, there could be several 

parses.  If we want to find them all, the parser can be allowed to continue until no new edges can be added.   

 

We can now state the algorithm that we have just described: 

 

     Earleyparse(w: input string containing n words, G: context-free grammar) =  

1. For every rule in G of the form S → , where S is the start symbol of G, do:    /* Initialize chart. 

       insert(chart, S → •  [0, 0]).             /* Insert the rule S → •  [0, 0] into row 0 of chart.  

2. For i = 0 to n do:                         /* Go through the rows one at a time. 

       For each rule r in rowi of chart do: 

If r corresponds to finding a complete constituent, then extendothers(chart, r). 

Else if the symbol after the • of r is a part of speech tag, then scaninput(w, chart, r). 

Else predict(chart, r). 

 

     insert(chart, r [j, k]: rule that spans from j to k in chart) = 

If r is not already on chart, spanning from j to k, then add it in row k. 

 

     extendothers(chart: chart, r [j, k]: rule of the form A →  •  that spans from j to k in chart) =  

For each rule p of the form X →  • A  [i, j] on chart do:    /* Find rules waiting for A starting at j. 

       insert(chart, X →  A •  [i, k]).               /* Move the • one symbol to the right and add rule to rowk  

 

     scaninput(w: input string, chart: chart, r [j, k]: rule of the form A →  • A , where A is a part of speech tag,  

and the rule spans from j to k in chart ) =   

If wk (the kth word of the input) has been labeled with the tag A then: 

       insert(chart, A → wk • [k, k+1]).             /*  Add this one to the next row.  

 

     predict(chart: chart, r [j, k]: rule of the form A →  • B   that spans from j to k in chart) =  

For each rule in G of the form B →  do: 

       insert(chart, B → •  [k, k]).                  /*  Try to find a B starting at k. 

 

As we have presented it, Earleyparse doesn’t actually build a parse tree.  It simply decides whether a parse exists.  But 

it is straightforward to modify it so that the parse tree(s) that correspond to successful S rules can be extracted.  

 

Notice that Earleyparse avoids the two major pitfalls of the more straightforward top-down parsing algorithm that 

exploits simple depth-first search.  First, we observe that it will always halt, even if provided with a grammar that 

contains left-recursive rules.  This must be true because a rule cannot be added to the chart at a given location more 
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than once.  Since there is a finite number of rules and a finite number of locations in the chart, only a finite number of 

rules can be placed on the chart and Earleyparse terminates after it has processed each of them.  

 

Second, we observe that Earleyparse avoids the wasted effort of backtracking search.  Instead it  reuses constituents.  

How it does so may not have been obvious in the very simple example that we just considered.  But suppose that we 

added to our grammar a few more NP rules, the necessary prepositional phrase (PP) rules and the rule: 

 

VP → VP PP 

 

Now suppose that we try to parse the sentence Jen saw Bill through the window.  A backtracking, top-down 

parser would try the VP → V NP rule first (assuming it was listed first).  It would build an S using that VP and then 

realize that the S didn’t span the entire sentence.  So it would back up and throw away all the work it did to build the 

VP, including building the NP that dominates Bill.  In this simple example, that NP doesn’t represent a lot of work, 

but in a less trivial sentence, it might.  Then the parser would start over to build a VP using the new rule that allows 

for a prepositional phrase.  Earleyparse, on the other hand, will build each of those constituents once.  Since rules are 

never removed from the chart, they can be reused as necessary by other, higher-level rules.  We leave working out the 

details of this example as an exercise. 

 

We can analyze the complexity of Earleyparse as follows:  The loop of step 2 is executed n times.  The inner loop is 

executed once for each rule that is already in the row.  There are O(n) of them.  Whenever extendothers is called, it 

must compare its edge to all the other edges in the row.  And there are O(n) of them.  Multiplying these together, we 

get that the total number of steps is O(n3).  If we want to consider the size of G, then let |G| be the number of rules in 

G.  The total number of steps executed by Earleyparse becomes O(n3|G|2).   

15.5 Exercises 
1) Consider the following grammar that we presented in Example 15.9: 

 S → AB$ | AC$  

 A → aA | a 

 B → bB | b 

 C → c 

       Show an equivalent grammar that is LL(1) and prove that it is. 

 

2) Assume the grammar: 

 S → NP VP 

  NP → ProperNoun  

  NP → Det N 

 VP → V NP 

 VP → VP PP 

 PP → Prep NP 

 

Assume that Jen and Bill have been tagged ProperNoun, saw has been tagged V, through has been tagged 

Prep, the has been tagged Det, and window has been tagged N.  Trace the execution of Earleyparse on the 

input sentence Jen saw Bill through the window. 

   

3) Trace the execution of Earleyparse given the string and grammar of Example 15.5. 

 

4) Trace the execution of a CKY parser on the input string id + id  id, given the unambiguous arithmetic 

expression grammar shown in Example 11.19, by: 

a) Converting the grammar to Chomsky normal form. 

b) Showing the steps of the parser. 
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16 Summary and References 

The theory of context-free languages is not as tidy as the theory of regular languages.  Interesting subsets, including 

the deterministic context-free languages and the context-free languages that are not inherently ambiguous, can be 

shown to be only proper subsets of the larger class of context-free languages.  The context-free languages are not 

closed under many common operations.  There is no algorithm for minimizing PDAs.  There is no fast recognition 

algorithm that works for arbitrary context-free languages.  There are no decision procedures for many important 

questions.  Yet substantial effort has been invested in studying the context-free languages because they are useful.  

The results that we have presented here have been developed by many people, including theoreticians (who were 

particularly interested in the formal properties of the set), linguists (who were interested in modeling natural languages 

and who found context-free grammars to be a useful tool), and compiler writers (who were interested in building 

efficient parsers for programming languages).  The theory that was developed out of the confluence of those efforts 

continues to provide the basis for practical parsing systems today. 

 

Table16.1 summarizes the properties of the context-free languages and compares them to the regular languages: 

 

 

 Regular Context-Free 

Automaton FSM PDA 

Grammar(s) Regular grammar 

Regular expressions  

Context-free grammar 

ND = D? Yes No 

Closed under:   

   Concatenation Yes Yes 

   Union Yes Yes 

   Kleene star Yes Yes 

   Complement Yes No 

   Intersection Yes No 

    with Regular Yes Yes 

Decidable:   

   Membership Yes Yes 

   Emptiness Yes Yes 

   Finiteness Yes Yes 

   = * Yes No 

   Equivalence  Yes No 

 

  Table16.1  Comparing the regular and the context-free languages 

 

References 
The context-free grammar formalism grew out of the efforts of linguists to describe the structure of sentences in natural 

languages such as English.  By the mid 1940’s, it was widely understood that sentences could be described 

hierarchically, with a relatively small number of immediate constituents (or ICs) at each level.  For example, many 

English sentences can be described as a noun phrase followed by a verb phrase.  Each such IC, until the smallest ones, 

could in turn be further described as a set of smaller constituents, and so forth.  [Chomsky 1956] introduced phrase 

structure (production-rule) grammars as a way to describe such a structural analysis of a sentence.  In [Chomsky 1959], 

Chomsky defined a four-level hierarchy of language classes based on the form of the grammar rules that are allowed.  

Context-free grammars, in the sense in which we have defined them, with their particular restrictions on the form of 

the rules, were described there.  We’ll say more about the Chomsky hierarchy in Section Error! Reference source 

not found..   

 

Chomsky normal form was also introduced in [Chomsky 1959].  Greibach normal form was introduced in [Greibach 

1965]. 
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Island grammars are described in [Moonen 2001].  There are many other applications of them as well .  Two early 

uses of the related idea, island parsing, are described in [Carroll 1983] and  [Stock, Falcone and Insinnamo 1988].  For 

a discussion of stochastic (probabilistic) context-free grammars and parsing techniques, see [Jurafsky and Martin 

2000]. 

 

The idea of using a pushdown stack to process naturally recursive structures, like formulas in logic or in programming 

languages, was developed independently by many people in the 1950s.  (For a brief discussion of this history, as well 

as many other aspects of the theory of context-free languages, see [Greibach 1981].)  The pushdown automaton was 

described both in [Oettinger 1961] (where it was used for the syntactic analysis of natural language sentences as part 

of a machine translation system) and in [Schutzenberger 1963].  The proof of the equivalence of context-free grammars 

and PDAs appeared independently in [Evey 1963], [Chomsky 1962] and [Schutzenberger 1963].   

 

Many key properties of context-free languages, including the Pumping Theorem and the fact that the context-free 

languages are closed under intersection with the regular languages, were described in [Bar-Hillel, Perles and Shamir 

1961].  Our claim that, if a grammar G is not self-embedding then L(G) is regular, is proved in [Hopcroft and Ullman 

1969].  The fact that the context-free languages are closed under union but not under intersection and complement 

was shown in [Scheinberg 1960].  Ogden’s Lemma appeared in [Ogden 1968].  Parikh’s Theorem was presented in 

[Parikh 1966].  The fact that every context-free language over a single character alphabet is regular is from [Ginsburg 

and Rice 1962].  For a comprehensive treatment of the mathematical theory of context-free languages, see [Ginsburg 

1966]. 

 

[Parikh 1966] proved that there exist inherently ambiguous context-free languages.  It showed that {aibjakbl : i, j, k, l 

 0, i = k or j = l} is inherently ambiguous.  The claim that {aibjck : i, j, k  0, i = j or j = k} is inherently ambiguous 

is proved in [Harrison 1978] and in [Du and Ko 2001], using Ogden’s Lemma. 

 

The proof in Example 11.10 is taken from [Martin 2003].   

 

See [Aho, Sethi and Ullman 1986] for a more detailed treatment of the issues that arise in parsing artificial context-

free languages, as well as a good survey of the history of the development of parsing techniques, including the 

definition of LL(k) and LR(k) languages.  In particular, algorithms for computing first and follow and for eliminating 

all left recursion are presented there.  Lex is described in [Lesk and Schmidt 1979].  Yacc is described in [Johnson 

1979].  The CKY algorithm was independently discovered by J. Cocke, Daniel Younger, and Tadao Kasami, and 

described in [Younger 1967] and [Kasami 1965].  [Valiant 1975] showed that context-free parsing could be recast as 

matrix multiplication.  Strassen’s algorithm for fast matrix multiplication was described in [Strassen 1969].  The 

O(n2.376) matrix multiplication algorithm was presented in [Coppersmith and Winograd 1990].  The claim that if there 

were a fast context-free parsing algorithm there would be a fast algorithm for Boolean matrix multiplication is proved 

in [Lee 2002].  The claims we made about the LR(k) languages are proved in [Hopcroft and Ullman 1969]. 

 

Earley’s algorithm for general top-down parsing was first presented in [Earley 1970].  The version given here is 

patterned after the one in [Jurafsky and Martin 2000]. 
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