
 

Part II 39 Regular Languages 

Part II: Finite State Machines and Regular Languages  
 

 

In this section, we begin our exploration of the 

language hierarchy.  We will start in the inner 

circle, which corresponds to the class of regular 

languages. 

 

We will explore three techniques, which we 

will prove are equivalent, for defining the 

regular languages: 

 

• Finite state machines. 

 

• Regular languages. 

 

• Regular grammars. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 5 40 Finite State Machines 

5 Finite State Machines 

The simplest and most efficient computational device that we will consider is the finite state machine (or FSM). 

 

 

The history of finite state machines substantially predates modern computers.  C 795. 

 

5.1 Deterministic Finite State Machines 
 

Example 5.1 A Vending Machine 

Consider the problem of deciding when to dispense a drink from a vending machine.  To simplify the problem a bit, 

we’ll pretend that it were still possible to buy a drink for $.25 and we will assume that vending machines do not take 

pennies.  The solution that we will present for this problem can straightforwardly be extended to modern, high-priced 

machines.   

 

The vending machine controller will receive a sequence of inputs, each of which corresponds to one of the following 

events: 

 

• A coin is deposited into the machine.  We can use the symbols N (for nickel), D (for dime), and Q (for quarter) to 

represent these events. 

• The coin return button is pushed.  We can use the symbol R (for return) to represent this event. 

• A drink button is pushed and a drink is dispensed.  We can use the symbol S (for soda) for this event. 

 

After any finite sequence of inputs, the controller will be in either: 

 

• a dispensing state, in which it is willing to dispense a drink if a drink button is pushed, or 

• a nondispensing state in which not enough money has been inserted into the machine. 

 

While there is no bound on the length of the input sequence that a drink machine may see in a week, there is only a 

finite amount of history that its controller must remember in order to do its job.  It needs only to be able to answer the 

question, “Has enough money been inserted, since the last time a drink was dispensed, to purchase the next drink?”  

It is of course possible for someone to keep inserting money without ever pushing a dispense-drink button.  But we 

can design a controller that will simply reject any money that comes in after the amount required to buy a drink has 

been recorded and before a drink has actually been dispensed.  We will however assume that our goal is to design a 

customer-friendly drink machine.  For example, the thirsty customer may have only dimes.  So we’ll build a machine 

that will accept up to $.45.  If more than the necessary $.25 is inserted before a dispensing button is pushed, our 

machine will remember the difference and leave a “credit” in the machine.  So, for example, if a customer inserts three 

dimes and then asks for drink, the machine will remember the balance of $.05. 

 

Notice that the drink controller does not need to remember the actual sequence of coins that it has received.  It need 

only remember the total value of the coins that have been inserted since the last drink was dispensed. 

 

The drink controller that we have just described needs 10 states, corresponding to the possible values of the credit that 

the customer has in the machine: 0, 5, 10, 15, 20, 25, 30, 35, 40, and 45 cents.  The main structure of the controller is 

then: 

 



 

Chapter 5 41 Finite State Machines 

 
 

The state that is labeled S is the start state.  Transitions from one state to the next are shown as arrows and labeled 

with the event that causes them to take place.  As coins are deposited, the controller’s state changes to reflect the 

amount of money that has been deposited.  When the drink button is pushed (indicated as S in the diagram) and the 

customer has a credit of less than $.25, nothing happens.  The machine’s state does not change.  If the drink button is 

pushed and the customer has a credit of $.25 or more, the credit is decremented by $.25 and a drink is dispensed.  The 

drink-dispensing states, namely those that correspond to “enough money”, can be thought of as goal or accepting 

states.  We have shown them in the diagram with double circles. 

 

Not all of the required transitions have been shown in the diagram.  It would be too difficult to read.  We must add to 

the ones shown all of the following: 

 

• From each of the accepting states, a transition back to itself labeled with each coin value.  These transitions 

correspond to our decision to reject additional coins once the machine has been fed the price of a drink. 

• From each state, a transition back to the start state labeled R.  These transitions will be taken whenever the customer 

pushes the coin return button.  They correspond to the machine returning all of the money that it has accumulated 

since the last drink was dispensed. 

 

The drink controller that we have just described is an example of a finite state machine.  We can think of it as a device 

to solve a problem (dispense drinks).  Or we can think of it as a device to recognize a language (the “enough money” 

language that consists of the set of strings, such as NDD, that drive the machine to an accept state in which a drink can 

be dispensed).  In most of the rest of this chapter, we will take the language recognition perspective.  But it does also 

make sense to imagine a finite state machine that actually acts in the world (for example, by outputting a coin or a 

drink).  We will return to that idea in Section 5.9. 

 

A finite state machine (or FSM) is a computational device whose input is a string and whose output is one of two 

values that we can call Accept and Reject.  FSMs are also sometimes called finite state automata or FSAs.   

 

If M is an FSM, the input string is fed to M one character at a time, left to right.  Each time it receives a character, M 

considers its current state and the new character and chooses a next state.  One or more of M’s states may be marked 

as accepting states.  If M runs out of input and is in an accepting state, it accepts.  If, however, M runs out of input and 

is not in an accepting state, it rejects.  The number of steps that M executes on input w is exactly equal to |w|, so M 

always halts and either accepts or rejects.  

 

We begin by defining the class of FSMs whose behavior is deterministic.  In such machines, there is always exactly 

one move that can be made at each step; that move is determined by the current state and the next input character.   In 

Section 5.4, we will relax this restriction and introduce nondeterministic FSMs (also called NDFSMs), in which there 

may, at various points in the computation, be more than one move from which the machine may choose.  We will 

continue to use the term FSM to include both deterministic and nondeterministic FSMs. 

 

A telephone switching circuit can easily be modeled as a DFSM. 

 

Formally, a deterministic FSM (or DFSM) M is a quintuple (K, , , s, A), where: 

 



 

Chapter 5 42 Finite State Machines 

• K is a finite set of states, 

•  is the input alphabet, 

• s  K is the start state, 

• A  K is the set of accepting states, and 

•  is the transition function.  It maps from: 

 

  K                      to  K.   

            state   input symbol             state 

 

A configuration of a DFSM M is an element of K  *.  Think of it as a snapshot of M.  It captures the two things 

that can make a difference to M’s future behavior: 

 

• its current state, and 

• the input that is still left to read. 

 

The initial configuration of a DFSM M, on input w, is (sM, w), where sM is the start state of M.  (We can use the 

subscript notation to refer to components of a machine M’s definition, although, when the context makes it clear what 

machine we are talking about, we may omit the subscript.) 

 

The transition function  defines the operation of a DFSM M one step at a time.  We can use it to define the sequence 

of configurations that M will enter.  We start by defining the relation yields-in-one-step, written |-M.  Yields-in-one-

step relates configuration1 to configuration2 iff M can move from configuration1 to configuration2 in one step.  Let c 

be any element of  and let w be any element of *.  Then: 

 

 (q1, cw) |-M (q2, w) iff ((q1, c), q2)  . 

 

We can now define the relation yields, written |-M* to be the reflexive, transitive closure of |-M.  So configuration C1 

yields configuration C2 iff M can go from C1 to C2 in zero or more steps.  In this case, we will write:  

 

 C1  |-M*  C2. 

 

A computation by M is a finite sequence of configurations C0, C1, …, Cn for some n  0 such that: 

 

• C0 is an initial configuration, 

• Cn is of the form (q, ), for some state q  KM (i.e., the entire input string has been read), and 

• C0 |-M  C1 |-M  C2 |-M … |-M  Cn. 

 

Let w be an element of *.  Then we will say that: 

 

• M accepts w iff (s, w) |-M* (q, ), for some q  AM.  Any configuration (q, ), for some q  AM, is called an 

accepting configuration of M.  

 

• M rejects w iff (s, w) |-M* (q, ), for some q  AM.  Any configuration (q, ), for some q  AM, is called an rejecting 

configuration of M.  

 

M halts whenever it enters either an accepting or a rejecting configuration.  It will do so immediately after reading the 

last character of its input. 

 

The language accepted by M, denoted L(M), is the set of all strings accepted by M. 



 

Chapter 5 43 Finite State Machines 

Example 5.2 A Simple Language of a’s and b’s 

Let L = {w  {a, b}* : every a is immediately followed by a b}.  L can be accepted by the DFSM M = ({q0, q1, q2}, 

{a, b}, , q0, {q0}), where:  

 

      = { ((q0, a), q1), 

 ((q0, b), q0), 

 ((q1, a), q2), 

 ((q1, b), q0), 

 ((q2, a), q2), 

 ((q2, b), q2))  }. 

 

The tuple notation that we have just used for  is quite hard to read.  We will generally find it useful to draw  as a 

transition diagram instead.  When we do that, we will use two conventions: 

 

• The start state will be indicated with an unlabeled arrow pointing into it. 

• The accepting states will be indicated with double circles. 

 

With those conventions, a DFSM can be completely specified by a transition diagram.  So M is: 

 
                         b                              b              

 

  q0 a q1 a q2          a, b 

 

We will use the notation a, b as a shorthand for two transitions, one labeled a and one labeled b. 

 

As an example of M’s operation, consider the input string abbabab.  M’s computation is the sequence of 

configurations: (q0, abbabab), (q1, bbabab), (q0, babab), (q0, abab), (q1, bab), (q0, ab), (q1, b), (q0, ).  Since q0 

is an accepting state, M accepts. 

 

If we look at the three states in M, the machine that we just built, we see that they are of three different sorts: 

 

• State q0 is an accepting state.  Every string that drives M to state q0 is in L. 

• State q1 is not an accepting state.  But every string that drives M to state q1 could turn out to be in L if it is followed 

by an appropriate continuation string, in this case, one that starts with a b. 

• State q2 is what we will call a dead state.  Once M enters state q2, it will never leave.  State q2 is not an accepting 

state, so any string that drives M to state q2 has already been determined not to be in L, no matter what comes next.  

We will often name our dead states d.   

Example 5.3 Even Length Regions of a’s 

Let L = {w  {a, b}* : every a region in w is of even length}.  L can be accepted by the DFSM M: 

 
                         b                               a             

 

  q0 a q1 b d           a, b 

 

If M sees a b in state q1, then there has been an a region whose length is odd.  So, no matter what happens next, M 

must reject.  So it goes to the dead state d. 

 

A useful way to prototype a complex system is as a finite state machine.  See C 801 for one 

example: the controller for a soccer-playing robot.  

 

Because objects of other data types are encoded in computer memories as binary strings, it is important to be able to 

check key properties of such strings. 



 

Chapter 5 44 Finite State Machines 

Example 5.4 Checking for Odd Parity 

Let L = {w  {0, 1}* : w has odd parity}.  A binary string has odd parity iff the number of 1’s in it is odd.  So L can 

be accepted by the DFSM M: 

 
                         0                               1             

 

  q0 1 q1          0  

 

 

One of the most important properties of finite state machines is that they are guaranteed to halt on any input string of 

finite length.  While this may seem obvious, it is worth noting since, as we’ll see later, more powerful computational 

models may not share this property. 

Theorem 5.1 DFSMs Halt 

Theorem: Every DFSM M, on input w, halts after |w| steps. 

 

Proof:  On input w, M executes some computation C0 |-M  C1 |-M  C2 |-M … |-M  Cn, where C0 is an initial configuration 

and Cn is of the form (q, ), for some state q  KM.  Cn is either an accepting or a rejecting configuration, so M will 

halt when it reaches Cn.  Each step in the computation consumes one character of w.  So n = |w|.  Thus M will halt 

after |w| steps. 
◼ 

5.2 The Regular Languages 
We have now built DFSMs to accept four languages: 

 

• “enough money to buy a drink”. 

• {w  {a,b}* : every a is immediately followed by a b}. 

• {w  {a, b}* : every a region in w is of even length}. 

• binary strings with odd parity. 

 

These four languages are typical of a large class of languages that can be accepted by finite state machines.   

 

We define the set of regular languages to be exactly those that can be accepted by some DFSM.   

Example 5.5 No More Than One b 

Let L = {w  {a,b}* : w contains no more than one b}.  L is regular because it can be accepted by the DFSM M: 

 
                         a                         a   

 

  q0 b q1 b d           a, b 

 

Any string with more than one b will drive M to the dead state d.  All other strings will drive M to either q0 or q1, both 

of which are accepting states. 

 



 

Chapter 5 45 Finite State Machines 

Example 5.6 No Two Consecutive Characters Are the Same 

Let L = {w  {a, b}* : no two consecutive characters are the same}.  L is regular because it can be accepted by the 

DFSM M: 

 

   q1 
                                 a       a 

 

  q0        b    a   d           a, b 

 
                                   b                b 

   q2 

 

The start state, q0, is the only state in which both a and b are legal inputs.  M will be in state q1 whenever the 

consecutive characters rule has not been violated and the last character it has read was a.  At that point, the only legal 

next character is b.  M will be in state q2 whenever the consecutive characters rule has not been violated and the last 

character it has read was b.  At that point, the only legal next character is a.  Any other inputs drive M to d. 

 

Simple languages of a’s and b’s, like the ones in the last two examples, are useful for practice in designing DFSMs.  

But the real power of the DFSM model comes from the fact that the languages that arise in many real-world 

applications are regular.   

 

The language of universal resource identifiers (URIs), used to describe objects on the World Wide 

Web, is regular.  C 704. 

 

To describe less trivial languages will sometimes require DFSMs that are hard to draw if we include the dead state.  

In those cases, we will omit it from our diagrams.  This doesn’t mean that it doesn’t exist.   is a function that must be 

defined for all (state, input) pairs.  It just means that we won’t bother to draw the dead state.  Instead, our convention 

will be that if there is no transition specified for some (state, input) pair, then that pair drives the machine to a dead 

state. 

Example 5.7 Floating Point Numbers 

Let FLOAT = {w : w is the string representation of a floating point number}.  Assume the following syntax for floating 

point numbers: 

 

• A floating point number is an optional sign, followed by a decimal number, followed by an optional exponent. 

• A decimal number may be of the form x or x.y, where x and y are nonempty strings of decimal digits. 

• An exponent begins with E and is followed by an optional sign and then an integer. 

• An integer is a nonempty string of decimal digits. 

 

So, for example, these strings represent floating point numbers: 

 

+3.0, 3.0, 0.3E1, 0.3E+1, -0.3E+1, -3E8 

 

FLOAT is regular because it can be accepted by the DFSM: 

 
                d            d                  d 

 

   +,-  d  .  d  E   +, -         d  

  

 
                            d    E    d 

 



 

Chapter 5 46 Finite State Machines 

In this diagram, we have used the shorthand d to stand for any one of the decimal digits (0 - 9).  And we have omitted 

the dead state to avoid arrows crossing over each other.  

 

Example 5.8 A Simple Communication Protocol 

Let L be a language that contains all the legal sequences of messages that can be exchanged between a client and a 

server using a simple communication protocol.  We will actually consider only a very simplified version of such a 

protocol, but the idea can be extended to a more realistic model. 

   

Let L ={Open, Request, Reply, Close}.  Every string in L begins with Open and ends with Close.  In addition, every 

Request, except possibly the last, must be followed by Reply and no unsolicited Reply’s may occur. 

 

L is regular because it can be accepted by the DFSM: 

 

           Reply 

 

 

       Open       Request        Close  

 

 

     Close 

 

Note that we have again omitted the dead state. 

 

More realistic communication protocols can also be modeled as FSMs.  C 693. 

5.3 Designing Deterministic Finite State Machines 
Given some language L, how should we go about designing a DFSM to accept L?  In general, as in any design task, 

there is no magic bullet.  But there are two related things that it is helpful to think about:   

 

• Imagine any DFSM M that accepts L.  As a string w is being read by M, what properties of the part of w that has 

been seen so far are going to have any bearing on the ultimate answer that M needs to produce?  Those are the 

properties that M needs to record.  So, for example, in the “enough money” machine, all that matters is the amount 

of money since the last drink was dispensed.  Which coins came in and the order in which they were deposited 

make no difference. 

 

• If L is infinite but M has a finite number of states, strings must “cluster”.  In other words, multiple different strings 

will all drive M to the same state.  Once they have done that, none of their differences matter anymore.  If they’ve 

driven M to the same state, they share a fate.  No matter what comes next, either all of them cause M to accept or 

all of them cause M to reject.  In Section 5.7 we will show that the smallest DFSM for any language L is the one 

that has exactly one state for every group of initial substrings that share a common fate.  For now, however, it 

helps to think about what those clusters are.  We’ll do that in our next example. 

 

A building security system can be described as a DFSM that sounds an alarm if given an input 

sequence that signals an intruder.  C 717. 

Example 5.9 Even a’s, Odd b’s 

Let L = {w  {a, b}* : w contains an even number of a’s and an odd number of b’s}.  To design a DFSM M to accept 

L, we need to decide what history matters.  Since M’s goal is to separate strings with even a’s and odd b’s from strings 

that fail to meet at least one of those requirements, all it needs to remember is whether the count of a’s so far is even 

or odd and whether the count of b’s is even or odd.  So, since there are two clusters based on the number of a’s so far 

(even and odd) and two clusters based on the number of b’s, there are four distinct clusters.  That suggests that we 



 

Chapter 5 47 Finite State Machines 

need a four-state DFSM.  Often it helps to name the states with a description of the clusters to which they correspond.  

The following DFSM M accepts L: 

 
              a 

  even a’s         odd a’s 

  even b’s         even b’s 
                      a 
    b                 b 
                              b         b 

    a 

  even a’s          odd a’s 

  odd b’s          odd b’s 
    a 

 

Notice that, once we have designed a machine that analyzes an input string with respect to some set of properties we 

care about, it is relatively easy to build a different machine that accepts strings based on different values of those 

properties.  For example, to change M so that it accepts exactly the strings with both even a’s and even b’s, all we 

need to do is to change the accepting state. 

 

Example 5.10 All the Vowels in Alphabetical Order 

Let L = {w  {a - z}* : all five vowels, a, e, i, o, and u, occur in w in alphabetical order}.  So L contains words like 

abstemious, facetious, and sacrilegious.  But it does not contain tenacious, which does contain all 

the vowels, but not in the correct order.  It is hard to write a clear, elegant program to accept L.  But designing a DFSM 

is simple.  The following machine M does the job.  In this description of M, let the label “ - {a}” mean “all elements 

of  except a” and let the label “” mean “all elements of ”: 

 

            - {a}        - {e}           - {i}            - {o}              - {a}              - {u}      

 

 

 S a A e E i I o O u        yes  

 

Notice that the state that we have labeled yes functions exactly opposite to the way in which the dead state works.  If 

M ever reaches yes, it has decided to accept no matter what comes next.   

 

Sometimes an easy way to design an FSM to accept a language L is to begin by designing an FSM to accept the 

complement of L.  Then, as a final step, we swap the accepting and the nonaccepting states. 

Example 5.11 A Substring that Doesn’t Occur 

Let L = {w  {a, b}* : w does not contain the substring aab}.  It is straightforward to design a DFSM that looks for 

the substring aab.  So we can begin building a machine to accept L by building the following machine to accept L: 

   

       b          a           a, b 
          a 

 q0  q1 a q2 b q3  
                        b 

 

Then we can convert this machine into one that accepts L by making states q0, q1, and q2 accepting and state q3 

nonaccepting. 

 

In Section 8.3 we’ll show that the regular languages are closed under complement (i.e., the complement of every 

regular language is also regular).  The proof will be by construction and the last step of the construction will be to 

swap accepting and nonaccepting states, just as we did in the last example. 



 

Chapter 5 48 Finite State Machines 

 

Sometimes the usefulness of the DFSM model, as we have so far defined it, breaks down before its formal power 

does.  There are some regular languages that seem quite simple when we state them but that can only be accepted by 

DFSMs of substantial complexity. 

Example 5.12 The Missing Letter Language 

Let  = {a,b,c,d}.  Let LMissing = {w : there is a symbol ai   not appearing in w}.  LMissing is regular.  We can begin 

writing out a DFSM M to accept it.  We will need the following states: 

 

• The start state: all letters are still missing. 

 

After one character has been read, M could be in any one of: 

• a read, so b, c, and d still missing. 

• b read, so a, c, and d still missing. 

• c read, so a, b, and d still missing. 

• d read, so a, b, and c still missing. 

 

After a second character has been read, M could be in any of the previous states or one of: 

• a and b read, so c and d still missing. 

• a and c read, so b and d still missing. 

• and so forth.  There are six of these. 

 

After a third character has been read, M could be in any of the previous states or one of: 

• a and b and c read, so d missing. 

• a and b and d read, so c missing. 

• a and c and d read, so b missing. 

• b and c and d read, so a missing.  

 

After a fourth character has been read, M could be in any of the previous states or: 

• All characters read, so nothing is missing. 

 

Every state except the last is an accepting state.  M is complicated but it would be possible to write it out.  Now imagine 

that  were the entire English alphabet.  It would still be possible to write out a DFSM to accept LMissing, but it would 

be so complicated it would be hard to get it right.  The DFSM model is no longer very useful. 

5.4 Nondeterministic FSMs 
To solve the problem that we just encountered in the missing letter example, we will modify our definition of an FSM 

to allow nondeterminism.  Recall our discussion of nondeterminism in Section 4.2.  We will now introduce our first 

specific use of the ideas we discussed there.  We’ll see that we can easily build a nondeterministic FSM M to accept 

LMissing.  Any string in LMissing must be missing at least one letter.  We’ll design M so that it simply guesses at which 

letter that is.  If there is a missing letter, then at least one of M’s guesses will be right and the corresponding path will 

accept.  So M will accept. 

5.4.1 What Is a Nondeterministic FSM? 

A nondeterministic FSM (or NDFSM) M is a quintuple (K, , , s, A), where: 

   

• K is a finite set of states, 

•  is an alphabet, 

• s  K is the start state, 

• A  K is the set of final states, and  

•  is the transition relation.  It is a finite subset of:  

 (K  (  {}))  K. 



 

Chapter 5 49 Finite State Machines 

         

In other words, each element of  contains a (state, input symbol or ) pair, and a new state. 

 

We define configuration, initial configuration, accepting configuration, yields-in-one-step, yields, and computation 

analogously to the way that we defined them for DFSMs.  

 

Let w be an element of *.  Then we will say that: 

 

• M accepts w iff at least one of its computations accepts. 

• M rejects w iff none of its computations accepts.   

 

The language accepted by M, denoted L(M), is the set of all strings accepted by M. 

 

There are two key differences between DFSMs and NDFSMs.  In every configuration, a DFSM can make exactly one 

move.  However, because  can be an arbitrary relation (that may not also be a function), that is not necessarily true 

for an NDFSM.  Instead: 

 

• An NDFSM M may enter a configuration in which there are still input symbols left to read but from which no 

moves are available.  Since any sequence of moves that leads to such a configuration cannot ever reach an accepting 

configuration, M will simply halt without accepting.  This situation is possible because  is not a function.  So there 

can be (state, input) pairs for which no next state is defined. 

 

• An NDFSM M may enter a configuration from which two or more competing moves are possible.  The competition 

can come from either or both of the following properties of the transition relation of an NDFSM:  

 

• An NDFSM M may have one or more transitions that are labeled , rather than being labeled with a character from 

.  An -transition out of state q may (but need not) be followed, without consuming any input, whenever M is in 

state q.  So an -transition from a state q competes with all other transitions out of q.  One way to think about the 

usefulness of -transitions is that they enable M to guess at the correct path before it actually sees the input.  Wrong 

guesses will generate paths that will fail but that can be ignored. 

 

• Out of some state q, there may be more than one transition with a given label.  These competing transitions give M 

another way to guess at a correct path. 

 

 

    q1 

                                          

 

  q0        a  q2         

 
                                        a 

    q3   Figure 5.1  An NDFSM with two kinds of nondeterminism 

 

 

 

Consider the fragment, shown in Figure 5.1, of an NDFSM M.  If M is in state q0 and the next input character is an a, 

then there are three moves that M could make: 

 

1. It can take the -transition to q1 before it reads the next input character, 

2. It can read the next input character and take the transition to q2, or 

3. It can read the next input character and take the transition to q3. 

 

One way to envision the operation of M is as a tree, as shown in Figure 5.2.  Each node in the tree corresponds to a 

configuration of M.  Each path from the root corresponds to a sequence of moves that M might make.  Each path that 

leads to a configuration in which the entire input string has been read corresponds to a computation of M.  



 

Chapter 5 50 Finite State Machines 

 

    s, abab 

 

 

 q1, abab     q2, bab     q3, bab 

 

 

       q1, ab       q2, ab 

 

Figure 5.2  Viewing nondeterminism as search through a space of computation paths 

 

An alternative is to imagine following all paths through M in parallel.  Think of M as being in a set of states at each 

step of its computation.  If, when M runs out of input, the set of states that it is in contains at least one accepting state, 

then M will accept. 

Example 5.13 An Optional Initial a 

Let L = {w  {a, b}* : w is made up of an optional a followed by aa followed by zero or more b’s}.  The following 

NDFSM M accepts L: 

   
                                b 

           

 q0  q1 a q2 a q3  
                        a 

 

M may (but is not required to) follow the -transition from state q0 to state q1 before it reads the first input character.  

In effect, it must guess whether or not the optional a is present. 

 

Example 5.14 Two Different Sublanguages 

Let L = {w  {a, b}* : w = aba or |w| is even}.  An easy way to build an FSM to accept this language is to build 

FSMs for each of the individual sublanguages and then “glue” them together with -transitions.  In essence, the 

machine guesses, when processing a string, which sublanguage the string might be in.  So we have: 

 
                                 

           

 q0  q1 a q2 b q3 a q4 
                         
                                 

                        a, b 

   q5      q6    

                                            a, b 

 

The upper machine accepts {w  {a, b}* : w = aba}.  The lower one accepts {w  {a, b}* : |w| is even}.   

 

By exploiting nondeterminism, it may be possible to build a simple FSM to accept a language for which the smallest 

deterministic FSM is complex.  A good example of a language for which this is true is the missing letter language that 

we considered in Example 5.12. 

Example 5.15 The Missing Letter Language, Again 

Let  = {a,b,c,d}.   LMissing = {w : there is a symbol ai   not appearing in w}.  The following simple NDFSM M 

accepts LMissing: 

 



 

Chapter 5 51 Finite State Machines 

                                            

                                                                                        b, c, d 

                                                             a 

                                                                q1 

 

 

                                                                                        a, c, d 

                q0                                          b 

                                                                q2 

 

 

                                                                                        a, b, d 

                                                             c 

                                                                q3 

 

 

                                                                                        a, b, c 

                                                             d 

                                                                q4 

 

 

M works by guessing which letter is going to be the missing one.  If any of its guesses is right, it will accept.  If all of 

them are wrong, then all paths will fail and M will reject. 

5.4.2 NDFSMs for Pattern and Substring Matching 
Nondeterministic FSMs are a particularly effective way to define simple machines to search a text string for one or 

more patterns or substrings.   

Example 5.16 Exploiting Nondeterminism for Keyword Matching 

Let L = {w  {a, b, c}* : x, y  {a, b, c}* (w = x abcabb y)}.  In other words, w must contain at least one 

occurrence of the substring abcabb.  The following DFSM M1 accepts L: 

 

 

 

           b, c     a   a              a          a             a, b, c 

 

      q0 a   q1 b   q2 c q3 a        q4      b         q5          b       q6 

 

                c                         b                       b, c                   c                   c            

 

 

 

 

While M1 works, and it works efficiently, designing machines like M1 and getting them right is hard.  The spaghetti-

like transitions are necessary because, whenever a match fails, it is possible that another partial match has already 

been found.   

 

But now consider the following NDFSM M2, which also accepts L: 

 



 

Chapter 5 52 Finite State Machines 

            a, b, c                     a, b, c 

 

      q0 a   q1 b   q2 c q3 a        q4      b         q5          b       q6 

 

 

The idea here is that, whenever M2 sees an a, it may guess that it is at the beginning of the pattern abcabb.  Or, on 

any input character (including a), it may guess that it is not yet at the beginning of the pattern (so it stays in q0).  If it 

ever reaches q6, it will stay there until it has finished reading the input.  Then it will accept. 

 

Of course, practical string search engines need to be small and deterministic.  But NDFSMs like the one we just built 

can be used as the basis for constructing such  efficient search machines.  In Section 5.4.4, we will describe an 

algorithm that converts an arbitrary NDFSM into an equivalent DFSM.  It is likely that that machine will have more 

states than it needs.  But, in Section 5.7, we will present an algorithm that takes an arbitrary DFSM and produces an 

equivalent minimal one (i.e., one with the smallest number of states).  So one effective way to build a correct and 

efficient string-searching machine is to build a simple NDFSM, convert it to an equivalent DFSM, and then minimize 

the result.  One alternative to this three-step process is the Knuth-Morris-Pratt string search algorithm, which we will 

present in Example 27.5 

 

String searching is a fundamental operation in every word processing or text editing system.   

 

Now suppose that we have not one pattern but several.  Hand crafting a DFSM may be even more difficult.  One 

alternative is to use a specialized, keyword-search FSM-building algorithm that we will present in Section 6.2.4.  

Another is to build a simple NDFSM, as we show in the next example. 

Example 5.17 Multiple Keywords 

Let L = {w  {a, b}* : x, y  {a, b}* ((w = x abbaa y)  (w =  x baba y))}.  In other words, w contains at least 

one occurrence of the substring abbaa or the substring baba.  The following NDFSM M accepts L: 

 

            a, b         a, b 

 

       q0 a   q1 b   q2 b q3 a        q4      a        q5 

 

                             b       a, b 

 

                                q6 a   q7 b q8 a       q9 

 

The idea here is that, whenever M sees an a, it may guess that it is at the beginning of the substring abbaa.  Whenever 

it sees a b, it may guess that it is at the beginning of the substring baba.  Alternatively, on either a or b, it may guess 

that it is not yet at the beginning of either substring (so it stays in q0). 

 

NDFSMs are also a natural way to search for other kinds of patterns, as we can see in the next example. 

Example 5.18 Other Kinds of Patterns 

Let L = {w  {a, b}* : the fourth from the last character is a}.  The following NDFSM M accepts L: 

 

           a, b 

 

  a           a, b  a, b         a, b 

 

The idea here is that, whenever it sees an a, one of M’s paths guesses that it is the fourth from the last character (and 

so proceeds along the path that will read the last three remaining characters).  The other path guesses that it is not (and 

so stays in the start state). 

 



 

Chapter 5 53 Finite State Machines 

It is enlightening to try designing DFSMs for the last two examples.  We leave that as an exercise.  If you try it, you’ll 

appreciate the value of the NDFSM model as a high-level tool for describing complex systems. 

5.4.3 Analyzing Nondeterministic FSMs 
Given an NDFSM M, such as any of the ones we have just considered, how can we analyze it to determine what strings 

it accepts?  One way is to do a depth-first search of the paths through the machine.  Another is to imagine tracing the 

execution of the original NDFSM M by following all paths in parallel.  To do that, think of M as being in a set of states 

at each step of its computation.  For example, consider again the NDFSM that we built for Example 5.17.  You may 

find it useful to trace the process we are about to describe by using several fingers.  Or, when fingers run out, use a 

coin on each active state.  Initially, M is in q0.  If it sees an a, it can loop to state q0 or go to q1.  So we will think of it 

as being in the set of states {q0, q1} (thus we need two fingers or two coins).  Suppose it sees a b next.  From q0, it can 

go to q0 or q6.  From q1, it can go to q2.  So, after seeing the string ab, M is in {q0, q2, q6} (three fingers or three coins).  

Suppose it sees a b next.  From q0, it can go to q0 or q6.  From q2, it can go to q3.  From q6, it can go nowhere.  So, 

after seeing abb, M is in {q0, q3, q6}.  And so forth.  If, when all the input has been read, M is in at least one accepting 

state (in this case, q5 or q9), then it accepts.  Otherwise it rejects.    

Handling -Transitions 

But how shall we handle -transitions?  The construction that we just sketched assumes that all paths have read the 

same number of input symbols.  But if, from some state q, one transition is labeled  and another is labeled with some 

element of , M consumes no input as it takes the first transition and one input symbol as it takes the second transition.  

To solve this problem, we introduce the function eps: KM → P(KM).  We define eps(q), where q is some state in M, to 

be the set of states of M that are reachable from q by following zero or more -transitions.  Formally: 

 

eps(q) = {p  K : (q, w) |-M* (p, w)}.   

 

Alternatively, eps(q) is the closure of {q} under the relation {(p, r) : there is a transition (p, , r)  }.  The following 

algorithm computes eps: 

 

eps(q: state) = 

1. result = {q}. 

2. While there exists some p  result and some r  result and some transition (p, , r)   do: 

Insert r into result. 

3. Return result. 

 

This algorithm is guaranteed to halt because, each time through the loop, it adds an element to result.  It must halt 

when there are no elements left to add.  Since there are only a finite number of candidate elements, namely the finite 

set of states in M, and no element can be added more than once, the algorithm must eventually run out of elements to 

add, at which point it must halt.  It correctly computes eps(q) because, by the condition associated with the while loop: 

 

• It can add no element that is not reachable from q following only -transitions. 

• It will add all elements that are reachable from q following only -transitions. 



 

Chapter 5 54 Finite State Machines 

Example 5.19 Computing eps 

Consider the following NDFSM M: 

 

                                                       a           q1 

 

                                                                      b,  

                                

              q0                                                q2 

 
            a                                                         b 

                                                                   

                                                                   q3 

 

 

To compute eps(q0), we initially set result to {q0}.  Then q1 is added, producing {q0, q1}.  Then q2 is added, producing 

{q0, q1, q2}.  There is an -transition from q2 to q0, but q0 is already in result.  So the computation of e(q0) halts. 

 

The result of running eps on each of the states of M is: 

 

  eps(q0) = {q0, q1, q2}.  

  eps(q1) = {q0, q1, q2}.  

  eps(q2) = {q0, q1, q2}.  

  eps(q3) = {q3}.  

 

Example 5.19 illustrates clearly why we chose to define the eps function, rather than treating -transitions like other 

transitions and simply following them whenever we could.  The machine we had to consider in that example contains 

what we might choose to call an -loop:  a loop that can be traversed by following only -transitions.  Since such 

transitions consume no input, there is no limit to the number of times the loop could be traversed.  So, if we were not 

careful, it would be easy to write a simulation algorithm that did not halt.  The algorithm that we presented for eps 

halts whenever it runs out of unvisited states to add, which must eventually happen since the set of states is finite. 

A Simulation Algorithm 

With the eps function in hand, we can now define an algorithm for tracing all paths in parallel through an NDFSM M: 

 

ndfsmsimulate(M: NDFSM, w: string) =  

1. current-state = eps(s).  /*Start in the set that contains  M’s start state and any other states  

   that can be reached from it following only -transitions. 

2. While any input symbols in w remain to be read do: 

2.1. c = get-next-symbol(w). 

2.2. next-state = . 

2.3. For each state q in current-state do: 

        For each state p such that (q, c, p)   do: 

        next-state = next-state  eps(p). 

2.4. current-state = next-state. 

3. If current-state contains any states in A, accept.  Else reject. 

 

Step 2.3 is the core of the simulation algorithm.  It says: Follow every arc labeled c from every state in current-state.  

Then compute next-state (and thus the new value of current-state) so that it includes every state that is reached in that 

process, plus every state that can be reached by following -transitions from any of those states.  For more on how 

this step can be implemented, see the more detailed description of ndfsmsimulate that we present in Section 5.6.2. 



 

Chapter 5 55 Finite State Machines 

5.4.4 The Equivalence of Nondeterministic and Deterministic FSMs 
In this section, we explore the relationship between the DFSM and NDFSM models that we have just defined.   

Theorem 5.2  If There is a DFSM for L, There is an NDFSM for L 

Theorem: For every DFSM there is an equivalent NDFSM. 

 

Proof: Let M be a DFSM that accepts some language L.  M is also an NDFSM that happens to contain no -transitions 

and whose transition relation happens to be a function.  So the NDFSM that we claim must exist is simply M.  
◼ 

 

But what about the other direction?  The nondeterministic model that we have just introduced makes it substantially 

easier to build FSMs to accept some kinds of languages, particularly those that involve looking for instances of 

complex patterns.  But real computers are deterministic.  What does the existence of an NDFSM to accept a language 

L tell us about the existence of a deterministic program to accept L?  The answer is given by the following theorem: 

Theorem 5.3 If There is an NDFSM for L, There is a DFSM for L 

Theorem: Given an NDFSM M  = (K, , , s, A) that accepts some language L, there exists an equivalent DFSM that 

accepts L. 

 

Proof: The proof is by construction of an equivalent DFSM M.  The construction is based on the function eps and on 

the simulation algorithm that we described in the last section.  The states of M will correspond to sets of states in M.  

So M = (K', , ', s', A'), where:  

 

• K' contains one state for each element of P(K). 

• s' = eps(s). 

• A' = {Q  K : Q  A  }. 

• ' (Q, c) = {eps(p) : q  Q ((q, c, p)  )}. 

 

We should note the following things about this definition: 

 

• In principle, there is one state in K' for each element of P(K).  However, in most cases, many of those states will 

be unreachable from s' (and thus unnecessary). So we will present a construction algorithm that creates states only 

as it needs to. 

• We’ll name each state in K' with the element of P(K) to which it corresponds.  That will make it relatively 

straightforward to see how the construction works.  But keep in mind that those labels are just names.  We could 

have called them anything.  

• To decide whether a state in K' is an accepting state, we see whether it corresponds to an element of P(K) that 

contains at least one element of A, i.e., one accepting state from K. 

• M accepts whenever it runs out of input and is in a state that contains at least one accepting state of M.  Thus it 

implements the definition of an NDFSM, which accepts iff at least one path through it accepts. 

• The definition of ' corresponds to step 2.3 of the simulation algorithm we presented above. 

 

The following algorithm computes M given M: 

 

ndfsmtodfsm(M: NDFSM) =    

1. For each state q in K do: 

        Compute eps(q).   /* These values will be used below. 

2. s' = eps(s)  

3. Compute ':  

3.1. active-states = {s'}.  /* We will build a list of all states that are reachable  

    from the start state.  Each element of active-states 

    is a set of states drawn from K. 



 

Chapter 5 56 Finite State Machines 

3.2. ' = . 

3.3. While there exists some element Q of active-states for which ' has not yet been computed do: 

For each character c in  do: 

new-state = . 

For each state q in Q do: 

For each state p such that (q, c, p)   do: 

new-state = new-state  eps(p). 

Add the transition (Q, c, new-state) to '. 

If new-state  active-states then insert it into active-states. 

4. K' = active-states. 

5. A' = {Q  K' : Q  A   }. 

 

The core of ndfsmtodfsm is the loop in step 3.3.  At each step through it, we pick a state that we know is reachable 

from the start state but from which we have not yet computed transitions.  Call it Q.  Then compute the paths from Q 

for each element c of the input alphabet as follows:  Q is a set of states in the original NDFSM M.  So consider each 

element q of Q.  Find all transitions from q labeled c.  For each state p that is reached by such a transition, find all 

additional states that are reachable by following only -transitions from p.  Let new-state be the set that contains all 

of those states.  Now we know that whenever M is in Q and it reads a c, it should go to new-state.  

 

The algorithm ndfsmtodfsm halts on all inputs and constructs a DFSM M that accepts exactly L(M), the language 

accepted by M.   
◼ 

 

A rigorous construction proof requires a proof that the construction algorithm is correct.  We will 

generally omit the details of such proofs.  But we show them for this case as an example of what 

these proofs look like.  B 627.  

 

The algorithm ndfsmtodfsm is important for two reasons: 

• It proves the theorem that, for every NDFSM there exists an equivalent DFSM. 

• It lets us use nondeterminism as a design tool, even though we may ultimately need a deterministic machine.  If we 

have an implementation of ndfsmtodfsm, then, if we can build an NDFSM to solve our problem, ndfsmtodfsm can 

easily construct an equivalent DFSM. 

Example 5.20 Using ndfsmtodfsm to Build a Deterministic FSM 

Consider the following NDFSM M:   

 

 

                  c 

                                                            a, c 

               b                    q3                  q4   

                                         b          c                   

     q1                 q2                                 

                                            b              a,b                           c 

                                                   q5                         q6                        q7 

 

                         c,       b 

 

              q8 

 

First, to get a feel for M, simulate it on the input string bbbacb, using coins to keep track of the states it enters. 

 



 

Chapter 5 57 Finite State Machines 

We can apply ndfsmtodfsm to M as follows: 

1. Compute eps(q) for each state q in KM:  

            eps(q1) = {q1, q2, q7},  eps(q2) = {q2, q7},  eps(q3) = {q3},  eps(q4) = {q4},  

            eps(q5) = {q5},  eps(q6) = {q2, q6, q7},  eps(q7) = {q7},  eps(q8) = {q8}. 

2. s' = eps(s) = {q1, q2, q7}. 

3. Compute ':  

       active-states = {{q1, q2, q7}}.  Consider {q1, q2, q7}: 

   (({q1, q2, q7}, a), ).    

    (({q1, q2, q7}, b), {q1, q2, q3, q5, q7, q8}).    

    (({q1, q2, q7}, c), ). 

       active-states = {{q1, q2, q7}, , {q1, q2, q3, q5, q7, q8}}.  Consider : 

    ((, a), ).  /*  is a dead state and we will generally omit it. 

    ((, b), ).       

    ((, c), ). 

       active-states = {{q1, q2, q7}, , {q1, q2, q3, q5, q7, q8}}.  Consider {q1, q2, q3, q5, q7, q8}: 

    (({q1, q2, q3, q5, q7, q8}, a), {q2, q4, q6, q7}). 

    (({q1, q2, q3, q5, q7, q8}, b), {q1, q2, q3, q5, q6, q7, q8}).   

    (({q1, q2, q3, q5, q7, q8}, c), {q4}). 

       active-states = {{q1, q2, q7}, , {q1, q2, q3, q5, q7, q8}, {q2, q4, q6, q7}, {q1, q2, q3, q5, q6, q7, q8}, {q4}}.   

       Consider {q2, q4, q6, q7}: 

    (({q2, q4, q6, q7}, a), ). 

    (({q2, q4, q6, q7}, b), {q3, q5, q8}).     

    (({q2, q4, q6, q7}, c), {q2, q7}). 

       active-states = {{q1, q2, q7}, , {q1, q2, q3, q5, q7, q8}, {q2, q4, q6, q7}, {q1, q2, q3, q5, q6, q7, q8}, {q4}, {q3, q5, q8}, 

         {q2, q7}}.  Consider {q1, q2, q3, q5, q6, q7, q8}: 

    (({q1, q2, q3, q5, q6, q7, q8}, a), {q2, q4, q6, q7}). 

    (({q1, q2, q3, q5, q6, q7, q8}, b), {q1, q2, q3, q5, q6, q7, q8}). 

    (({q1, q2, q3, q5, q6, q7, q8}, c), {q2, q4, q7}). 

       active-states = {{q1, q2, q7}, , {q1, q2, q3, q5, q7, q8}, {q2, q4, q6, q7}, {q1, q2, q3, q5, q6, q7, q8}, {q4}, {q3, q5, q8}, 

          {q2, q7}, {q2, q4, q7}}.  Consider {q4}: 

    (({q4}, a), ). 

    (({q4}, b), ). 

    (({q4}, c), {q2, q7}). 

       active-states did not change.   Consider {q3, q5, q8}: 

    (({q3, q5, q8}, a), {q2, q4, q6, q7}). 

    (({q3, q5, q8}, b), {q2, q6, q7}). 

    (({q3, q5, q8}, c), {q4}). 

       active-states = {{q1, q2, q7}, , {q1, q2, q3, q5, q7, q8}, {q2, q4, q6, q7}, {q1, q2, q3, q5, q6, q7, q8}, {q4}, {q3, q5, q8}, 

          {q2, q7}, {q2, q4, q7}, {q2, q6, q7}}.  Consider {q2, q7}: 

    (({q2, q7}, a), ). 

    (({q2, q7}, b), {q3, q5, q8}). 

    (({q2, q7}, c), ). 

      active-states did not change.  Consider {q2, q4, q7}: 

    (({q2, q4, q7}, a), ). 

    (({q2, q4, q7}, b), {q3, q5, q8}). 

    (({q2, q4, q7}, c), {q2, q7}). 

       active-states did not change.  Consider {q2, q6, q7}: 

(({q2, q6, q7}, a), ). 

(({q2, q6, q7}, b), {q3, q5, q8}). 

(({q2, q6, q7}, c), {q2, q7}). 

       active-states did not change.   has been computed for each element of active-states. 



 

Chapter 5 58 Finite State Machines 

4. K' = {{q1, q2, q7}, , {q1, q2, q3, q5, q7, q8}, {q2, q4, q6, q7}, {q1, q2, q3, q5, q6, q7, q8}, {q4}, {q3, q5, q8}, {q2, q7}, 

{q2, q4, q7}, {q2, q6, q7}}. 

5. A' = {{q1, q2, q3, q5, q7, q8}, {q1, q2, q3, q5, q6, q7, q8}, {q3, q5, q8}}.  

 

Notice that, in Example 5.20, the original NDFSM had 8 states.  So |P(K)| = 256.  There could have been that many 

states in the DFSM that was constructed from the original machine.  But only 10 of those are reachable from the start 

state and so can play any role in the operation of the machine.  We designed the algorithm ndfsmtodfsm so that only 

those 10 would have to be built. 

 

Sometimes, however, all or almost all of the possible subsets of states are reachable.  Consider again the NDFSM of 

Example 5.15, the missing letter machine.  Let’s imagine a slight variant that considers all 26 letters of the alphabet.  

That machine M has 27 states.  So, in principle, the corresponding DFSM could have 227 states.  And, this time, all 

subsets are possible except that M can not be in the start state, q0, at any time except before the first character is read.  

So the DFSM that we would build if we applied ndfsmtodfsm to M would have 226+1 states.  In Section 5.6, we will 

describe a technique for interpreting NDFSMs without converting them to DFSMs first.  Using that technique, highly 

nondeterministic machines, like the missing letter one, are still practical. 

 

What happens if we apply ndfsmtodfsm to a machine that is already deterministic?  It must work, since every DFSM 

is also a legal NDFSM.  You may want to try it on one of the machines in Section 5.2.  What you will see is that the 

machine that ndfsmtodfsm builds, given an input DFSM M, is identical to M except for the names of the states. 

5.5 From FSMs to Operational Systems 
An FSM is an abstraction.  We can describe an FSM that solves a problem without worrying about many kinds of 

implementation details.  In fact, we don’t even need to know whether it will be etched into silicon or implemented in 

software.   

 

Statecharts, which are based on the idea of hierarchically structured transition networks, are widely 

used in software engineering precisely because they enable system designers to work at varying 

levels of abstraction. C 663. 

 

FSMs for real problems can be turned into operational systems in any of a number of ways: 

• An FSM can be translated into a circuit design and implemented directly in hardware.  For example, it makes 

sense to implement the parity checking FSM of Example 5.4 in hardware. 

• An FSM can be simulated by a general purpose interpreter.  We will describe designs for such interpreters in the 

next section.  Sometimes all that is required is a simulation.  In other cases, a simulation can be used to check a 

design before it is translated into hardware. 

• An FSM can be used as a specification for some critical aspect of the behavior of a complex system.  The 

specification can then be implemented in software just as any specification might be.  And the correctness of the 

implementation can be shown by verifying that the implementation satisfies the specification (i.e., that it matches 

the FSM). 

 

Many network communication protocols, including the Alternating Bit protocol and TCP, are 

described as FSMs.  C 693. 

5.6 Simulators for FSMs   
Once we have created an FSM to solve a problem, we may want to simulate its execution.  In this section, we consider 

techniques for doing that, starting with DFSMs, and then extending our ideas to handle nondeterminism. 

5.6.1 Simulating Deterministic FSMs 
We begin by considering only deterministic FSMs.  One approach is to think of an FSM as the specification for a 

simple, table-driven program and then proceed to write the code.   



 

Chapter 5 59 Finite State Machines 

Example 5.21 Hardcoding a Deterministic FSM 

Consider the following deterministic FSM M that accepts the language L = {w  {a, b}* : w contains no more than 

one b}. 

 
         a                                  a 

                            b 

                S                                  T 

 

 

We could view M as a specification for the following program: 

Until accept or reject do: 

     S: s = get-next-symbol. 

 If s = end-of-file then accept. 

 Else if s = a then go to S. 

 Else if s = b then go to T. 

     T:  s = get-next-symbol. 

 If s = end-of-file then accept. 

 Else if s = a then go to T. 

 Else if s = b then reject. 

     End. 

 

Given an FSM M with states K, this approach will create a program of length = 2 + (|K|(|| + 2)).  The time required 

to analyze an input string w is O(|w|  ||).  The biggest problem with this approach is that we must generate new code 

for every FSM that we wish to run.  Of course, we could write an FSM compiler that did that for us.  But we don’t 

need to.  We can, instead, build an interpreter that executes the FSM directly. 

 

Here’s a simple interpreter for a deterministic FSM M = (K, , , s, A): 

 

    dfsmsimulate(M: DFSM, w: string) = 

1. st = s. 

2. Repeat: 

2.1. c = get-next-symbol(w). 

2.2. If c  end-of-file then: 

st = (st, c). 

until c = end-of-file. 

3. If st  A then accept else reject. 

 

The algorithm dfsmsimulate runs in time approximately O(|w|), if we assume that the lookup in step 2.2.1 can be 

implemented in constant time. 

5.6.2 Simulating Nondeterministic FSMs 
Now suppose that we want to execute an NDFSM M.  One solution is: 

 

     ndfsmconvertandsimulate(M: NDFSM) = 

 dfsmsimulate(ndfsmtodfsm(M)). 

  

But, as we saw in Section 5.4, converting an NDFSM to a DFSM can be very inefficient in terms of both time and 

space.  If M has k states, it could take time and space equal to O(2k) just to do the conversion, although the simulation, 

after the conversion would take time equal to O(|w|). So we would like a better way.  We would like an algorithm that 

directly simulates an NDFSM M without converting it to a DFSM first. 

 

We sketched such an algorithm ndfsmsimulate in our discussion leading up to the definition of the conversion 

algorithm ndfsmtodfsm.  The idea is to simulate being in sets of states at once.  But, instead of generating all of the 



 

Chapter 5 60 Finite State Machines 

reachable sets of states right away, as ndfsmtodfsm does, it generates them on the fly, as they are needed, being careful 

not to get stuck chasing -loops. 

 

We give here a more detailed description of ndfsmsimulate, which simulates an NDFSM M = (K, , , s, A) running 

on an input string w: 

 

    ndfsmsimulate(M: NDFSM, w: string) = 

1. Declare the set st.    /* st will hold the current state (a set of states from K). 

2. Declare the set st1.   /* st1 will be built to contain the next state. 

3. st = eps(s).    /* Start in all states reachable from s via only -transitions. 

4. Repeat: 

       c = get-next-symbol(w). 

       If c  end-of-file then do: 

st1 = . 

For all q  st do:   /* Follow paths from all states M is currently in. 

For all r : (q, c, r)   do:  /* Find all states reachable from q via a transition labeled c. 

st1 = st1  eps(r). /* Follow all -transitions from there. 

st = st1.    /* Done following all paths.  So st becomes M’s new state.  

If st =  then exit.  /* If all paths have died, quit. 

       until c = end-of-file. 

5. If st  A   then accept else reject. 

 

Now there is no conversion cost.  To analyze a string w requires |w| passes through the main loop in step 4.  In the 

worst case, M is in all states all the time and each of them has a transition to every other one.  So one pass could take 

as many as O(|K|2) steps, for a total cost of O(|w|  |K|2) . 

 

There is also a third way we could build a simulator for an NDFSM.  We could build a depth-first search program that 

examines the paths through M and stops whenever either it finds a path that accepts or it has tried all the paths there 

are. 

5.7 Minimizing FSMs   
If we are going to solve a real problem with an FSM, we may want to find  the smallest one that does the job.  We will 

say that a DFSM M is minimal iff there is no other DFSM M such that L(M) = L(M ) and M  has fewer states than 

M does. 

 

We might want to be able to ask: 

 

1. Given a language, L, is there a minimal DFSM that accepts L? 

2. If there is a minimal machine, is it unique? 

3. Given a DFSM M that accepts some language L, can we tell whether M is minimal? 

4. Given a DFSM M, can we construct a minimal equivalent DFSM M? 

 

The answer to all four questions is yes.  We’ll consider questions 1 and 2 first, and then consider questions 3 and 4. 

5.7.1 Building a Minimal DFSM for a Language 
Recall that in Section 5.3 we suggested that an effective way to think about the design of a DFSM M to accept some 

language L over an alphabet  was to cluster the strings in * in such a way that strings that share a future will drive 

M to the same state.  We will now formalize that idea and use it as the basis for constructing a minimal DFSM to 

accept L.  

 

We will say that x and y are indistinguishable with respect to L, which we will write as x L y iff: 

 

z  * (either both xz and yz  L or neither is). 



 

Chapter 5 61 Finite State Machines 

 

In other words, L is a relation that is defined so that x L y precisely in case, if x and y are viewed as prefixes of some 

longer string, no matter what continuation string z comes next, either both xz and yz are in L or both are not. 

Example 5.22 How L Depends on L 

If L = {a}*, then a L aa L aaa.  But if L = {w  {a, b}* : |w| is even}, then a L aaa, but it is not the case that a 

L aa because, if z = a, we have aa  L but aaa  L. 

 

We will say that x and y are distinguishable with respect to L, iff they are not indistinguishable.  So, if x and y are 

distinguishable, then there exists at least one string z such that one but not both of xz and yz is in L. 

 

Note that L is an equivalence relation because it is: 

 

• reflexive:  x  * (x L x), because x, z  * (xz  L  xz  L). 

• symmetric: x, y  * (x L y → y L x), because x, y, z  * ((xz  L  yz  L)  (yz  L  xz  L)). 

• transitive: x, y, z  * (((x L y)  (y L w)) → (x L w)), because: 

x, y, z  * (((xz  L  yz  L)  (yz  L  wz  L)) → (xz  L  wz  L)). 

 

We will use three notations to describe the equivalence classes of L: 

 

• [1], [2], etc. will refer to explicitly numbered classes. 

• [x] describes the equivalence class that contains the string x. 

• [some logical expression P] describes the equivalence class of strings that satisfy P. 

 

Since L is an equivalence relation, its equivalence classes constitute a partition of the set *.  So: 

 

• No equivalence class of L is empty, and 

• Every string in * is in exactly one equivalence class of L. 

 

What we will see soon is that the equivalence classes of L correspond exactly to the states of the minimum DFSM 

that accepts L.  So every string in * will drive that DFSM to exactly one state. 

 

Given some language L, how can we determine L?  Any pair of strings x and y are related via L unless there exists 

some z that could follow them and cause one to be in L and the other not to be.  So it helps to begin the analysis by 

considering simple strings and seeing whether they are distinguishable or not.  One way to start this process is to begin 

lexicographically enumerating the strings in * and continue until a pattern has emerged. 

Example 5.23 Determining L 

Let  = {a, b}.  Let L = {w  * : every a is immediately followed by a b}. 

 

To determine the equivalence classes of L, we begin by creating a first class [1] and arbitrarily assigning  to it.  Now 

consider a.  It is distinguishable from  since ab  L but aab  L.  So we create a new equivalence class [2] and 

put a in it.  Now consider b.  b L  since every string is in L unless it has an a that is not followed by a b.  Neither 

of these has an a that could have that problem.  So they are both in L as long as their continuation doesn’t violate the 

rule.  If their continuation does violate the rule, they are both out.  So b goes into [1].   

 

Next we try aa.  It is distinguishable from the strings in [1] because the strings in [1] are in L but aa is not.  So, 

consider  as a continuation string.  Take any string in [1] and concatenate .  The result is still in L.  But aa is not 

in L.  We also notice that aa is distinguishable from a, and so cannot be in [2], because a still has a chance to become 

in L if it is followed by a string that starts with a b.  But aa is out, no matter what comes next.  We create a new 

equivalence class [3] and put aa in it.  We continue in this fashion until we discover the property that holds of each 

equivalence class.   



 

Chapter 5 62 Finite State Machines 

 

The equivalence classes of L are: 

 

   [1] [, b, abb, …] [all strings in L]. 

   [2] [a, abbba, …] [all strings that end in a and have no prior a that is not followed by a b]. 

   [3] [aa, abaa, …] [all strings that contain at least one instance of aa]. 

 

Even this simple example illustrates three key points about L: 

 

• No equivalence class can contain both strings that are in L and strings that are not.  This is clear if we consider the 

continuation string .  If x  L then x  L.  If y  L then y  L.  So x and y are distinguishable by . 

• If there are strings that would take a DFSM for L to the dead state (in other words, strings that are out of L no matter 

what comes next), then there will be one equivalence class of L that corresponds to the dead state. 

• Some equivalence class contains .  It will correspond to the start state of the minimal machine that accepts L. 

Example 5.24 When More Than One Class Contains Strings in L 

Let  = {a, b}.  Let L = {w  {a, b}* : no two adjacent characters are the same}. 

 

The equivalence classes of L are: 

 

   [1] []   []. 

   [2] [a, aba, ababa, …] [all nonempty strings that end in a and have no identical adjacent characters]. 

   [3] [b, ab, bab, abab, …] [all nonempty strings that end in b and have no identical adjacent characters]. 

   [4] [aa, abaa, ababb…] [all strings that contain at least one pair of identical adjacent characters]. 

 

From this example, we make one new observation about L: 

 

• While no equivalence class may contain both strings that are in L and strings that are not, there may be more than one 

equivalence class that contains strings that are in L.  For example, in this last case, all the strings in classes [1], [2], 

and [3] are in L.  Only those that are in [4], which corresponds to the dead state, are not in L.  That is because of the 

structure of L: any string is in L until it violates the rule, and then it is hopelessly out. 

 

Does L always have a finite number of equivalence classes?  It has in the two examples we have considered so far.  

But let’s consider another one. 

Example 5.25 L for AnBn 

Let  = {a, b}.  Let L = AnBn = {anbn : n  0}.  

 

We can begin constructing the equivalence classes of L: 

 

   [1] [ ].    

   [2] [a ].  

   [3] [aa ].  

   [4] [aaa ]. 

 

But we seem to be in trouble.  Each new string of a’s has to go in an equivalence class distinct from the shorter strings 

because each string requires a different continuation string in order to become in L.  So the set of equivalence classes 

of L must include at least all of the following classes: 

 

  {[n] : n is a positive integer and [n] contains the single string an-1} 

 

Of course, classes that include strings that contain b’s are also required. 

 



 

Chapter 5 63 Finite State Machines 

So, if L = AnBn, then L has an infinite number of equivalence classes.  This should come as no surprise.  AnBn is not 

regular, as we will prove in Chapter 8.  If the equivalence classes of L are going to correspond to the states of a 

machine to accept L, then there will be a finite number of equivalence classes precisely in case L is regular.   

 

We are now ready to talk about DFSMs and to examine the relationship between L and any DFSM that accepts L.  

To help do that we will say that a state q of a DFSM M contains the set of strings s such that M, when started in its 

start state, lands in q after reading s. 

Theorem 5.4  L Imposes a Lower Bound on the Minimum Number of States of a DFSM for L 

Theorem: Let L be a regular language and let M = (K, , , s, A) be a DFSM that accepts L. The number of states in 

M is greater than or equal to the number of equivalence classes of L. 

 

Proof: Suppose that the number of states in M were less than the number of equivalence classes of L.  Then, by the 

pigeonhole principle, there must be at least one state q that contains strings from at least two equivalence classes of 

L. But then M’s future behavior on those strings will be identical, which is not consistent with the fact that they are 

in different equivalence classes of L.   
◼ 

 

So now we know a lower bound on the number of states that are required to build an FSM to accept a language L.  But 

is it always possible to find a DFSM M such that |KM| is exactly equal to the number of equivalence classes of L?  The 

answer is yes. 

Theorem 5.5 There Exists a Unique Minimal DFSM for Every Regular Language 

Theorem: Let L be a regular language over some alphabet .  Then there is a DFSM M that accepts L and that has 

precisely n states where n is the number of equivalence classes of L.  Any other DFSM that accepts L must either 

have more states than M or it must be equivalent to M except for state names.  

 

Proof: The proof is by construction of M = (K, , , s, A), where:  

 

• K contains n states, one for each equivalence class of  L. 

• s = [], the equivalence class of  under L. 

• A = {[x] : x  L}. 

• ([x], a) = [xa].  In other words, if M is in the state that contains some string x, then, after reading the next symbol 

a, it will be in the state that contains xa. 

 

For this construction to prove the theorem, we must show: 

 

• K is finite.  Since L is regular, it is accepted by some DFSM M.  M has some finite number of states m.  By 

Theorem 5.4, n  m.  So K is finite. 

 

•  is a function.  In other words, it is defined for all (state, input) pairs and it produces, for each of them, a unique 

value.  The construction defines a value of  for all (state, input) pairs.  The fact that the construction guarantees a 

unique such value follows from the definition of L. 

 

• L = L(M).  In other words, M does in fact accept the language L.  To prove this, we must first show that s, t (([], 

st) |-M* ([s], t)).  In other words, when M starts in its start state and has a string that we are describing as having two 

parts, s and t, to read, it correctly reads the first part s and lands in the state [s], with t left to read.  We do this by 

induction on |s|.  If |s| = 0 then we have ([], ) |-M* ([], t), which is true since M simply makes zero moves.  Assume 

that the claim is true if |s| = k.  Then we consider what happens when |s| = k+1.  |s|  1, so we can let s = yc where y 

 * and c  .  We have: 

 

     /* M reads the first k characters: 

([], yct) |-M* ([y], ct)  (induction hypothesis, since |y| = k). 

         /* M reads one more character: 



 

Chapter 5 64 Finite State Machines 

([y], ct)   |-M* ([yc], t)  (definition of M). 

         /* Combining those two, after M has read k+1 characters: 

([], yct) |-M* ([yc], t)  (transitivity of |-M*). 

([], st) |-M* ([s], t)  (definition of s as yc). 

 

Now let t be .  (In other words, we are examining M’s behavior after it reads its entire input string.)  Let s be any 

string in *.  By the claim we just proved, ([], s) |-M* ([s], ).  M will accept s iff [s]  A, which, by the way in 

which A was constructed, it will be if the strings in [s] are in L.  So M accepts precisely those strings that are in M. 

 

• There exists no smaller machine M# that also accepts L.  This follows directly from Theorem 5.4, which says that 

the number of equivalence classes of L imposes a lower bound on the number of states in any DFSM that accepts 

L. 

 

• There is no different machine M# that also has n states and that accepts L.  Consider any DFSM M# with n states.  

We show that either M# is identical to M (up to state names) or L(M#)  L(M).   

 

Since we do not care about state names, we can standardize them.  Call the start state of both M and M# state 1.  

Define a lexicographic ordering on the elements of .  Number the rest of the states in both M and M# as follows: 

 

Until all states have been numbered do: 

Let q be the lowest numbered state from which there are transitions that lead to an as yet unnumbered state. 

List the transitions that lead out from q to any unnumbered state.  Sort those transitions lexicographically 

by the symbol on them.   

Go through the sorted transitions (q, a, p), in order, and, for each, assign the next unassigned number to 

state p. 

 

Note that M# has n states and there are n equivalence classes of L. Since none of those equivalence classes is empty 

(by the definition of equivalence classes), M# either wastes no states (i.e., every state contains at least one string) or, 

if it does waste any states, it has at least one state that contains strings in different equivalence classes of L.  If the 

latter, then L(M#)  L.   So we assume the former.  Now suppose that M# is different from M.  Then there would have 

to be at least one state q and one input symbol c such that M has a transition (q, c, r) and M# has a transition (q, c, t) 

and r  t.  Call the set of strings that r contains [r].  Since M# has no unused states (i.e., states that contain no strings), 

by the pigeonhole principle, M#’s transition (q, c, t) must send some string s in [r] to a state, t, that also contains strings 

that are not in [r].  All strings in [t] will then share all futures with s.  But s is distinguishable from the strings in [t].  

If two strings that are distinguishable with respect to L share all futures in M#, then L(M#)  L.  Contradiction.   
◼ 

 

The construction that we used to prove Theorem 5.5 is useful in its own right:  We can use it, if we know L, to 

construct a minimal DFSM for L.  

Example 5.26 Building a Minimal DFSM from L 

We consider again the language of Example 5.24:  Let  = {a, b}.  Let L = {w  {a, b}* : no two adjacent characters 

are the same}. 

 

The equivalence classes of L are: 

   [1] []   {}. 

   [2] [a, aba, ababa, …] {all nonempty strings that end in a and have no identical adjacent characters}. 

   [3] [b, ab, bab, abab, …] {all nonempty strings that end in b and have no identical adjacent characters}. 

   [4] [aa, abaa, ababb…] {all strings that contain at least one pair of identical adjacent characters; these 

           strings are not in L, no matter what comes next}. 

 

We build a minimal DFSM M to accept L as follows: 

 

• The equivalence classes of L become the states of M. 



 

Chapter 5 65 Finite State Machines 

• The start state is [] = [1]. 

• The accepting states are all equivalence classes that contain strings in L, namely [1], [2], and [3]. 

• ([x], a) = [xa].  So, for example, equivalence class [1] contains the string .  If the character a follows , the 

resulting string, a, is in equivalence class [2].  So we create a transition from [1] to [2] labeled a.  Equivalence 

class [2] contains the string a.  If the character b follows a, the resulting string, ab, is in equivalence class [3].  

So we create a transition from [2] to [3] labeled b.  And so forth. 

 

1

2

3

4

a

b

ba

a

b

                a, b

 
 

 

 

The fact that it is always possible to construct a minimum DFSM M to accept any language L is good news.  As we 

will see later, the fact that that minimal DFSM is unique up to state names is also useful.  In particular, we will use it 

as a basis for an algorithm that checks two DFSMs to see if they accept the same languages.  The theorem that we 

have just proven is also useful because it gives us an easy way to prove the following result, which goes by two names, 

Nerode’s Theorem and the Myhill-Nerode Theorem: 

Theorem 5.6  Myhill-Nerode Theorem 

Theorem: A language is regular iff the number of equivalence classes of L  is finite.   

 

Proof: We do two proofs to show the two directions of the implication: 

 

L regular → the number of equivalence classes of L is finite: If L is regular, then there exists some DFSM M that 

accepts L.  M has some finite number of states m.  By Theorem 5.4, the cardinality of L  m.  So the number of 

equivalence classes of L is finite. 

 

The number of equivalence classes of L is finite → L regular:  If the number of equivalence classes of L is finite, 

then the construction that was described in the proof of Theorem 5.5 will build a DFSM that accepts L.  So L must be 

regular.   
◼ 

 

The Myhill-Nerode Theorem gives us our first technique for proving that a language L, such as AnBn, is not regular.  

It suffices to show that L has an infinite number of equivalence classes.  But using the Myhill-Nerode Theorem 

rigorously is difficult.  In Chapter 8, we will introduce other methods that are harder to use incorrectly. 

5.7.2 Minimizing an Existing DFSM 
Now suppose that we already have a DFSM M that accepts L.  In fact, possibly M is the only definition we have of L.  

In this case, it makes sense to construct a minimal DFSM to accept L by starting with M rather than with L.  There 

are two approaches that we could take to constructing a minimization algorithm: 

 

1. Begin with M and collapse redundant states, getting rid of one at a time until the resulting machine is minimal. 

2. Begin by overclustering the states of L into just two groups, accepting and nonaccepting.  Then iteratively split 

those groups apart until all the distinctions that L requires have been made. 

 

Both approaches work.  We will present an algorithm that takes the second one. 

 



 

Chapter 5 66 Finite State Machines 

Our goal is to end up with a minimal machine in which all equivalent states of M have been collapsed.  In order to do 

that, we need a precise definition of what it means for two states to be equivalent (and thus collapsible).  We will use 

the following:   

 

We will say that two states q and p in M are equivalent, which we will write q  p, iff for all strings w  *, either w 

drives M to an accepting state from both q and p or it drives M to a rejecting state from both q and p.  In other words, 

no matter what continuation string comes next, M behaves identically from both states.  Note that  is an equivalence 

relation over states, so it will partition the states of M into a set of equivalence classes. 

Example 5.27 A Nonminimal DFSM with Two Equivalent States 

Let  = {a, b}.  Let L = {w  * : |w| is even}.  Consider the following FSM that accepts L: 

 

 
                                                                 a 

         q1    q2 

                                                                                                       a,b 
                               b  

        a,b   

      

     q3 

 

In this machine state q2  state q3. 

 

For two states q and p to be equivalent, they must yield the same outcome for all possible continuation strings.  We 

can’t claim an algorithm for finding equivalent states that works by trying all possible continuation strings since there 

is an infinite number of them (assuming that  is not empty).   Fortunately, we can show that it is necessary to consider 

only a finite subset of them.  In particular, we will consider them one character at a time, and quit when considering 

another character has no effect on the machine we are building. 

 

We define a series of equivalence relations n, for values of n  0.  For any two states p and q, p n q iff p and q yield 

the same outcome for all strings of length n.  So: 

 

• p 0 q iff they behave equivalently when they read .  In other words, if they are both accepting or both rejecting 

states. 

• p 1 q iff they behave equivalently when they read any string of length 1.  In other words, if any single character 

sends both of them to an accepting state or both of them to a rejecting state.  Note that this is equivalent to saying 

that any single character sends them to states that are 0 to each other.  

• p 2 q iff they behave equivalently when they read any string of length 2, which they will do if, when they read the 

first character they land in states that are 1 to each other.  By the definition of 1, they will then yield the same 

outcome when they read the single remaining character. 

• And so forth. 

 

We can state this definition concisely as follows.  For all p, q  K: 

 

• p 0 q iff they are both accepting or both rejecting states. 

• For all n  1, q n p iff: 

• q n-1 p, and 

• a   ((p, a) n-1 (q, a)). 

 

We will define minDFSM, a minimization algorithm that takes as its input a DFSM M = (K, , , s, A).  MinDFSM 

will construct a minimal DFSM M that is equivalent to M.  It begins by constructing 0,  which divides the states of 

M into at most two equivalence classes, corresponding to A and K – A.  If M has no accepting states or if all its states 

are accepting, then there will be only one nonempty equivalence class and we can quit since there is a one-state 

machine that is equivalent to M.  We consider therefore only those cases where both A and K-A are nonempty. 



 

Chapter 5 67 Finite State Machines 

 

MinDFSM executes a sequence of steps, during which it constructs the sequence of equivalence relations 1, 2, … .  

To construct k+1, minDFSM begins with k.  But then it splits equivalence classes of k whenever it discovers some 

pair of states that do not behave equivalently.  MinDFSM halts when it discovers that n is the same as n+1. Any 

further steps would operate on the same set of equivalence classes and so would also fail to find any states that need 

to be split.   

 

We can now state the algorithm: 

 

     minDFSM(M: DFSM) = 

1. classes = {A, K-A}.  /* Initially, just two classes of states, accepting and rejecting. 

 

2. Repeat until a pass at which no change to classes has been made:    

2.1. newclasses = .  /* At each pass, we build a new set of classes, splitting the old 

    ones as necessary.  Then this new set becomes the old set, and 

    the process is repeated. 

2.2. For each equivalence class e in classes, if e contains more than one state, see if it needs to be split: 

For each state q in e do:         /* Look at each state and build a table of what it does. 

Then the tables for all states in the class can be 

compared to see if there are any differences that 

force splitting. 

For each character c in  do: 

     Determine which element of classes q goes to if c is read. 

If there are any two states p and q such that there is any character c such that, when c is read, p goes 

to one element of classes and q goes to another, then p and q must be split.  Create as many 

new equivalence classes as are necessary so that no state remains in the same class with a state 

whose behavior differs from its.  Insert those classes into newclasses. 

If there are no states whose behavior differs, no splitting is necessary.  Insert e into newclasses. 

2.3. classes = newclasses. 

 

/*  The states of the minimal machine will correspond exactly to the elements of classes at this point. 

We use the notation [q] for the element of classes that contains the original state q. 

3. Return M = (classes, , , [sM], {[q: the elements of q are in AM]}), where M is constructed as follows: 

if M(q, c) = p, then M ([q], c) = [p]. 

 

Clearly, no class that contains a single state can be split.  So, if |K| is k, then the maximum number of times that 

minDFSM can split classes is k-1.  Since minDFSM halts when no more splitting can occur, the maximum number of 

times it can go through the loop is k-1.  Thus minDFSM must halt in a finite number of steps.  M is the minimal DFSM 

that is equivalent to M since: 

 

• M is minimal: It splits classes and thus creates new states only when necessary to simulate M. and 

• L(M) = L(M): The proof of this is straightforward by induction on the length of the input string. 



 

Chapter 5 68 Finite State Machines 

Example 5.28 Using minDFSM to Find a Minimal Machine 

Let  = {a, b}.  Let M = 

 
                            a 

   1  a  2    3 
                                                                                                                                            a 
    b               a                                             b             

                                                              b                      

                          

   4              b   5    6 
               b 

     a                                     a,b 

 

 

We will show the operation of minDFSM at each step:    

 

Initially, classes = {[2, 4], [1, 3, 5, 6]}. 

 

At step 1: 

((2, a), [1, 3, 5, 6]) ((4, a), [1, 3, 5, 6])   No splitting required here.  

((2, b), [1, 3, 5, 6]) ((4, b), [1, 3, 5, 6])  

 

((1, a), [2, 4])  ((3, a), [2, 4])  ((5, a), [2, 4])  ((6, a), [1, 3, 5, 6])  

((1, b), [2, 4])  ((3, b), [2, 4])  ((5, b), [2, 4])  ((6, b), [1, 3, 5, 6])  

 

There are two different patterns, so we must split into two classes, [1, 3, 5] and [6].  Note that, although [6] has the 

same behavior as [2, 4] after reading a single character, it cannot be combined with [2, 4] because they do not share 

behavior after reading no characters.  

 

Classes = {[2, 4], [1, 3, 5], [6]}. 

 

At step 2:  

((2, a), [1, 3, 5])  ((4, a), [6])    These two must be split.  

((2, b), [6])  ((4, b), [1, 3, 5]) 

  

((1, a), [2, 4])  ((3, a), [2, 4])  ((5, a), [2, 4]) No splitting required here.   

((1, b), [2, 4])  ((3, b), [2, 4])  ((5, b), [2, 4]) 

 

Classes = {[2], [4], [1, 3, 5], [6]}. 

 

At step 3:  

((1, a), [2])  ((3, a), [2])  ((5, a), [2]) No splitting required here.   

((1, b), [4])  ((3, b), [4])  ((5, b), [4]) 

    



 

Chapter 5 69 Finite State Machines 

So minDFSM returns M =      

                                   
    a   

              [1,3,5]  [2]   
    a 

         b    b 
                           b 

       

    [4] a [6] 

       a,b 

 

 

5.8 A Canonical Form for Regular Languages 
A canonical form for some set of objects C assigns exactly one representation to each class of “equivalent” objects 

in C.  Further, each such representation is distinct, so two objects in C share the same representation iff they are 

“equivalent” in the sense for which we define the form.   

 

The ordered binary decision diagram (OBDD) is a canonical form for Boolean expressions that 

makes it possible for model checkers to verify the correctness of very large concurrent systems 

and hardware circuits. B 612.  

 

Suppose that we had a canonical form for FSMs with the property that two FSMs share a canonical form iff they 

accept the same language.  Further suppose that we had an algorithm that on input M, constructed M’s canonical form.  

Then some questions about FSMs would become easy to answer.  For example, we could test whether two FSMs are 

equivalent (i.e., they accept the same language).  It would suffice to construct the canonical form for each of them and 

test whether the two forms are identical.   

 

The algorithm minDFSM constructs, from any DFSM M, a minimal machine that accepts L(M).  By Theorem 5.5, all 

minimal machines for L(M) are identical except possibly for state names.  So, if we could define a standard way to 

name states, we could define a canonical machine to accept L(M) (and thus any regular language).  The following 

algorithm does this by using the state-naming convention that we described in the proof of Theorem 5.5: 

 

     buildFSMcanonicalform(M: FSM) =  

1. M = ndfsmtodfsm(M). 

2. M# = minDFSM(M). 

3. Create a unique assignment of names to the states of M# as follows:   

3.1. Call the start state q0.   

3.2. Define an order on the elements of .  

3.3. Until all states have been named do: 

 Select the lowest numbered named state that has not yet been selected.  Call it q. 

 Create an ordered list of the transitions out of q by the order imposed on their labels. 

 Create an ordered list of the as yet unnamed states that those transitions enter by doing the following: if the 

first transition is (q, c1, p1), then put p1 first.  If the second transition is (q, c2, p2) and p2 is not already 

on the list, put it next.  If it is already on the list, skip it.  Continue until all transitions have been 

considered.  Remove from the list any states that have already been named. 

 Name the states on the list that was just created:  Assign to the first one the name qk, where k is the smallest 

index that hasn’t yet been used.  Assign the next name to the next state and so forth until all have been 

named. 

4. Return M#. 

 

Given two FSMs M1 and M2, buildFSMcanonicalform(M1) = buildFSMcanonicalform(M2) iff L(M1) = L(M2).  We’ll 

see, in Section 9.1.4 one important use for this canonical form: it provides the basis for a simple way to test whether 

an FSM accepts any strings or whether two FSMs are equivalent.  



 

Chapter 5 70 Finite State Machines 

5.9 Finite State Transducers   
So far, we have used finite state machines as language recognizers.  All we have cared about, in analyzing a machine 

M, is whether or not M ends in an accepting state.  But it is a simple matter to augment our finite state model to allow 

for output at each step of a machine’s operation.  Often, once we do that, we may cease to care about whether M 

actually accepts any strings.  Many finite state transducers are loops that simply run forever, processing inputs. 

 

One simple kind of finite state transducer associates an output with each state of a machine M.  That output is generated 

whenever M enters the associated state.  Deterministic finite state transducers of this sort are called Moore machines, 

after their inventor Edward Moore.  A Moore machine M is a seven-tuple (K, , O, , D, s, A), where: 

 

• K is a finite set of states, 

•  is an input alphabet, 

• O is an output alphabet, 

• s  K is the start state, 

• A  K is the set of accepting states (although for some applications this designation is not important),  

•  is the transition function.  It is function from (K  ) to (K), and 

• D is the display or output function.  It is a function from (K) to (O*). 

 

A Moore machine M computes a function f(w) iff, when it reads the input string w, its output sequence is f(w). 

Example 5.29 A Typical United States Traffic Light 

Consider the following controller for a single direction of a very simple US traffic light (which ignores time of day, 

traffic, the need to let emergency vehicles through, etc.).  We will also ignore the fact that practical controller has to 

manage all directions for a particular intersection.  In Exercise 5.16), we will explore removing some of these 

limitations. 

 

The states in this simple controller correspond to the light’s colors: green, yellow and red.  Note that the definition of 

the start state is arbitrary.  There are three inputs, all of which are elapsed time.   

 

   70 seconds  10 seconds   

  G   Y   R 

 

           

      80 seconds   

 

A different definition for a deterministic finite state transducer permits each machine to output any finite sequence of 

symbols as it makes each transition (in other words, as it reads each symbol of its input).  FSMs that associate outputs 

with transitions are called Mealy machines, after their inventor George Mealy.  A Mealy machine M is a six-tuple (K, 

, O, , s, A), where: 

 

• K is a finite set of states, 

•  is an input alphabet, 

• O is an output alphabet, 

• s  K is the start state, 

• A  K is the set of accepting states, and 

•  is the transition function.  It is function from (K  ) to (K  O*). 

 

A Mealy machine M computes a function f(w) iff, when it reads the input string w, its output sequence is f(w). 

Example 5.30 Generating Parity Bits 

The following Mealy machine adds an odd parity bit after every four binary digits that it reads.  We will use the 

notation a/b on an arc to mean that the transition may be followed if the input character is a.  If it is followed, then the 

string b will be generated. 



 

Chapter 5 71 Finite State Machines 

        

 

                0/01, 1/10 

         0/0   0/0   

                               0/0                            

                                                        1/1                                    1/1   

              1/1         1/1 

      1/1       0/0   0/0   

 

                 0/00, 1/11 

 

 

Digital circuits can be modeled as transducers using either Moore or Mealy machines.  C 800.  

 

Example 5.31 A Bar Code Reader 

Bar codes are ubiquitous.  We consider here a simplification: a bar code system that encodes 

just binary numbers.  Imagine an individual bar code as being composed of columns, each of 

the same width.  A column can be either white or black.  If two black columns occur next to 

each other, it will look to us like a single, wide, black column, but the reader will see two 

adjacent black columns of the standard width.  The job of the white columns is to delimit the 

black ones.  A single black column encodes 0.  A double black column encodes 1.   

 

We can build a finite state transducer to read such a bar code and output a string of binary digits.  We’ll represent a 

black bar with the symbol B and a white bar with the symbol W.  The input to the transducer will be a sequence of 

those symbols, corresponding to reading the bar code left to right.  We’ll assume that every correct bar code starts 

with a black column, so white space ahead of the first black column is ignored.  We’ll also assume that after every 

complete bar code there are at least two white columns.  So the reader should, at that point, reset to be ready to read 

the next code.  If the reader sees three or more black columns in a row, it must indicate an error and stay in its error 

state until it is reset by seeing two white columns. 

   

 Start 

    B/ 

     W/ 

  W/          B/     B/ 

             

   1W B/ 1B B/ 2B      B/error D1 W/ D2 

 

                  W/0                     W/1 

                    W/ 

 

 

 

 

Interpreters for finite state transducers can be built using techniques similar to the ones that we used in Section 5.6 to 

build interpreters for finite state machines. 

5.10 Bidirectional Transducers   
A process that reads an input string and constructs a corresponding output string can be described in a variety of 

different ways.  Why should we choose the finite state transducer model?  One reason is that it provides a declarative, 

rather than a procedural, way to describe the relationship between inputs and outputs.  Such a declarative model can 

then be run in two directions.  For example: 

 



 

Chapter 5 72 Finite State Machines 

• To read an English text requires transforming a word like “liberties” into the root word “liberty” and the affix 

PLURAL.  To generate an English text requires transforming a root word like “liberty” and the semantic marker 

“PLURAL” into the surface word “liberties”.  If we could specify, in a single declarative model, the relationship 

between surface words (the ones we see in text) and underlying root words and affixes, we could use it for either 

application. 

 

The facts about English spelling rules and morphological analysis can be described with a 

bidirectional finite state transducer.  C 739. 

 

• The Soundex system, described below in Example 5.33, groups names that sound alike.  To create the Soundex  

representation of a name requires a set of rules for mapping the spelling of the name to a unique four character 

code.  To find other names that sound like the one that generated a particular code requires running those same 

rules backwards.   

 

• Many things we call translators need to run in both directions.  For example, consider translating between Roman 

numerals  and Arabic ones. 

 

If we expand the definition of a Mealy machine to allow nondeterminism, than any of these bidirectional processes 

can be represented.  A nondeterministic Mealy machine can be thought of as defining a relation between one set of 

strings (for example, English surface words) and a second set of strings (for example, English underlying root words, 

along with affixes).  It is possible that we will need a machine that is nondeterministic in one or both directions because 

the relationship between the two sets may not be able to be described as a function. 

Example 5.32 Letter Substitution 

When we define a regular language, it doesn’t matter what alphabet we use  Anything that is true of a language L 

defined over the alphabet {a, b} will also be true of the language L that contains exactly the strings in L except that 

every a has been replaced by a 0 and every b has been replaced by a 1.  We can build a simple bidirectional transducer 

that can convert strings in L to strings in L and vice versa. 

 

               a/0 

 

 

               b/1 

 

 

Of course, the real power of bidirectional finite state transducers comes from their ability to model more complex 

processes. 

Example 5.33 Soundex: A Way to Find Similar Sounding Names 

People change the spelling of their names.  Sometimes the spelling was changed for them when they immigrated to a 

country with a different language, a different set of sounds, and maybe a different writing system.  For various reasons, 

one might want to identify other people to whom one is related.  But because of spelling changes, it isn’t sufficient 

simply to look for people with exactly the same last name.  The Soundex  system was patented by Margaret O'Dell 

and Robert C. Russell in 1918 as a solution to this problem.  The system maps any name to a four character code that 

is derived from the original name but that throws away details of the sort that often get perturbed as names evolve.  

So, to find related names, one can run the Soundex transducer in one direction, from a starting name to its Soundex 

code and then, in the other direction, from the code to the other names that share that code.  For example, if we start 

with the name Kaylor, we will produce the Soundex code K460.  If we then use that code and run the transducer 

backwards, we can generate the names Kahler, Kaler, Kaylor, Keeler, Kellar, Kelleher, Keller, Kelliher, Kilroe, 

Kilroy, Koehler, Kohler, Koller, and Kyler. 

 

The Soundex system is described by the following set of rules for mapping from a name to a Soundex code: 

 



 

Chapter 5 73 Finite State Machines 

1. If two or more adjacent letters (including the first in the name) would map to the same number if rule 3.1 were 

applied to them, remove all but the first in the sequence. 

2. The first character of the Soundex code will be the first letter of the name. 

3. For all other letters of the name do: 

       3.1. Convert the letters B, P, F, V, C, S, G, J, K, Q, X, Z, D, T, L, M, N, and R to numbers using the following 

              correspondences: 

     B, P, F, V = 1. 

     C, S, G, J, K, Q, X, Z = 2. 

        D, T = 3. 

        L = 4. 

        M, N = 5. 

        R = 6. 

       3.2 Delete all instances of the letters A, E, I, O, U, Y, H, and W.  

4. If the string contains more than three numbers, delete all but the leftmost three. 

5. If the string contains fewer than three numbers, pad with 0’s on the right to get three. 

 

Here’s an initial fragment of a finite-state transducer that implements the relationship between names and Soundex 

codes.  The complete version of this machine can input a name and output a code by interpreting each transition 

labeled x/y as saying that the transition can be taken on input x and it will output y.  Going the other direction, it can 

input a code and output a name if it interprets each transition the other way: on input y, take the transition and output 

x.  To simplify the diagram, we’ve used two conventions:  The symbol # stands for any one of the letters 

A,E,I,O,U,Y,H, or W.  And a label of the form x, y, z/a is a shorthand for three transitions labeled x/a, y/a, and z/a.  

Also, the states are named to indicate how many code symbols have been generated/read. 

 

    B,P,F,V/    B,P,F,V/ 

  B/B 

 

 0 P/P                            1b          2b 

      #/ 

  F/F            B,P,F,V/1               #/ 

           #/   #/ 

  V/V                    1v   2v                     • • • 

        

          L/           #/ 

              L/L          B,P,F,V/1 

                                                             1l 

 

Notice that in one direction (from names to codes), this machine operates deterministically.  But, because information 

is lost in that direction, if we run the machine in the direction that maps from code to name, it becomes 

nondeterministic.  For example, the -transitions can be traversed any number of times to generate vowels that are not 

represented in the code.  Because the goal, in running the machine in the direction from code to names is to generate 

actual names, the system that does this is augmented with a list of names found in US census reports.  It can then 

follow paths that match those names. 

 

The Soundex system was designed for the specific purpose of matching names in United States census data from the 

early part of the twentieth century and before.  Newer systems, such as Phonix and Metaphone , are attempts to 

solve the more general problem of identifying words that sound similar to each other.  Such systems are used in a 

variety of applications, including ones that require matching a broader range of proper names (e.g., genealogy and 

white pages look up) as well as more general word matching tasks (e.g., spell checking). 

5.11 Stochastic Finite Automata: Markov Models and HMMs   
Most of the finite state transducers that we have considered so far are deterministic.  But that is simply a property of 

the kinds of applications to which they are put.  We do not want to live in a world of nondeterministic traffic lights or 

phone switching circuits.  So we typically design controllers (i.e., machines that run things) to be deterministic.  For 

some applications though, nondeterminism can be useful.  For example, it can add entertainment value.   



 

Chapter 5 74 Finite State Machines 

 

Nondeterministic (possibly stochastic) FSMs can form the basis of video games.  C 789.    

 

But now consider problems like the name-evolution one we just discussed.  Now we are not attempting to build a 

controller that drives the world.  Instead we are trying to build a model that describes and predicts a world that we are 

not in control of.  Nondeterministic finite state models are often very useful tools in solving such problems.  And 

typically, although we do not know enough to predict with certainty how the behavior of the model will change from 

one step to the next (thus the need for nondeterminism), we do have some data that enable us to estimate the probability 

that the system will move from one state to the next.  In this section, we explore the use of nondeterministic finite 

state machines and transducers that have been augmented with probabilistic information. 

5.11.1 Markov Models 
A Markov model  is an NDFSM in which the state at each step can be predicted by a probability distribution 

associated with the current state.  Steps usually correspond to time intervals, but they may correspond to any ordered 

discrete sequence.  In essence we replace transitions labeled with input symbols by transitions labeled with 

probabilities.  The usual definition of a Markov model is that its behavior at time t depends only on its state at time t-

1 (although higher-order models may allow any finite number of past states to play a role).  Of course, if we eliminate 

an input sequence, that is exactly the property that characterizes an FSM. 

 

Markov models have been used in music composition.  C 776.  They have also been used to model 

the generation of many other sorts of content, including Web pages . 

 

Formally a Markov model is a triple M = (K, , A), where: 

 

• K is a finite set of states, 

•  is a vector that contains the initial probabilities of each of the states, and  

• A is a matrix that represents the transition probabilities.  A[p, q] = Pr(state q at time t | state p at time t – 1).  In 

other words A[p, q] is the probability that, if M is in state p, it will go to state q next. 

 

Some definitions specify a unique start state, but this definition is more general.  If there is a unique start state, then 

its initial probability is 1 and the initial probabilities of all other states are 0. 

 

Notice that we have not mentioned any output alphabet.  We will assume that the output at each step is simply the 

name of the state of the machine at that step.  The sequence of outputs produced by a Markov model is often called a 

Markov chain. 

 

The link structure of the World Wide Web can be modeled as a Markov chain, where the states 

correspond to Web pages and the probabilities describe the likelihood, in a random walk, of going 

from one page to the next.  Google’s PageRank is based on the limits of those probabilities . 

 

Given a Markov model that describes some random process, we can answer either of the following questions: 

 

• What is the probability that we will observe a particular sequence s1 s2 … sn of states?  We can compute this as 

follows, using the probability that s1 is the start state and then multiplying by the probabilities of each of the 

transitions: 

1 2 1 1

2

Pr( ... ) [ ] [ , ]
n

n i i

i

s s s s A s s −

=

=  . 

• If the process runs for an arbitrarily long sequence of steps, what is likely to be the result?  More specifically, for 

each state in the system, what is the probability that the system will land in that state?   

Example 5.34 A Simple Markov Model of the Weather 

Suppose that we have the following model for the weather where we live.  This model assumes that the weather on 

day t is influenced only by the weather on day t-1. 



 

Chapter 5 75 Finite State Machines 

 

  = .4           .75    

    Sunny      

       

 .25  .3     

 

  = .6            .7    

   Rainy      

       

       

We are considering a five day camping trip and want to know the probability of five sunny days in a row.  So we want 

to know the probability of the sequence Sunny Sunny Sunny Sunny Sunny.  The model tells us that it is: 

 

  .4  (.75)4 = .1266 

 

Or we could ask, given that it’s sunny today, what is the probability that, if we leave now, it will stay sunny for four 

more days.  Now we assume that the model starts in state Sunny, so we compute: 

 

  (.75)4 = .316 

 

Example 5.35 A Simple Markov Model of System Performance 

Markov models are used extensively to model the performance of complex systems of all kinds, including computers, 

electrical grids, and manufacturing plants.  While real models are substantially more complex, we can see how these 

models work by taking Example 5.34 and renaming the states: 

 

  = .9           .95    

    Operational      

       

 .05  .7     

 

  = .1            .3    

   Broken      

       

       

To make it a bit more realistic, we’ve changed the probabilities so that they describe a system that actually works most 

of the time.  We’ll also use smaller time intervals, say seconds.  Now we might ask, “Given that the system is now up, 

what is the probability that the system will stay up for an hour (i.e., for 3600 time steps).  The (possibly surprising) 

answer is: 

    .953600 = 6.382310-81 

 

Example 5.36 Population Genetics 

In this example we consider a simple problem in population genetics.  For a survey of the biological concepts behind 

this example, see C 727.  Suppose that we are interested in the effect of inbreeding on the gene pool of a diploid 

organism (an organism, such as humans, in which each individual has two copies of each gene).  Consider the 

following simple model of the inheritance of a single gene with two alleles (values): A and B.  There are potentially 

three kinds of individuals in the population:  the AA organisms, the BB organisms, and the AB organisms.  Because 

we are studying inbreeding, we’ll make the assumption that individuals always mate with others who are genetically 

similar to themselves and so possess the same gene pair. 

 

To simplify our model, we will assume that one couple mates, has two children, and dies.  So we can think of each 

individual as replacing itself and then dying.  We can build the following Markov model of a chain of descendents.  

Each step now corresponds to a generation.  



 

Chapter 5 76 Finite State Machines 

 

  AA      BB 

 

 

          1        .25       .25             1 

     AB 

 

 

            .5 

 

AA pairs can produce only AA offspring.  BB pairs can produce only BB offspring.  But what about AB pairs?  What 

is their fate?  We can answer this question by considering the probability that the model, if it starts in state AB and 

runs for some number of generations, will land in state AB.  That probability is .5n, where n is the number of 

generations.  As n grows, that number approaches 0.  We show how quickly it does so in the following table: 

     

n Pr(AB) 

1 .5 

5 .03125 

10 .0009765625 

100 7.888610-31 

 

After only 10 generations, very few heterozygous individuals (i.e., possessing two different alleles) remain.  After 100 

generations, almost none do.  If there is survival advantage in being heterozygous, this could be a disaster for the 

population.  The disaster can be avoided, of course, if individuals mate with genetically different individuals. 

 

Where do the probabilities in a Markov model come from?  In some simple cases, they may be computed by hand and 

added to the system.  In most cases, however, they are computed by examining real datasets and discovering the 

probabilities that best describe those data.  So, for example, the probabilities we need for the system performance 

model of Example 5.35 could be extracted from a log of system behavior over some recent period of time.  To see 

how this can be done, suppose that we have observed the output sequences: T P T Q P Q T and S S P T P Q Q P S T 

Q P T T P.  The correct value for A[P, Q] is the number of times the pair P Q appears in the sequence divided by the 

total number of times that P appears in any position except the last.  Similarly, the correct value for [P] is the total 

number of times that P is the first symbol in a sequence divided by the total number of sequences.  In realistic problem 

contexts, the models are huge and they evolve over time.  There exist more computationally tractable algorithms for 

updating the probabilities (and, when necessary the states) of such models. 

 

Substantial work has been done on efficient techniques for updating the huge Markov model of 

the World Wide Web that is used to compute Google’s PageRanks .  Note here that both the 

state set (corresponding to the set of pages on the Web) as well as the probabilities (which depend 

on the link structure of the Web) must be regularly revised. 

 

All of the Markov models we have presented so far have the property that their behavior at step t is a function only of 

their state at step t-1.  Such models are called first-order.  To build a first-order model with k states requires that we 

specify k2 transition probabilities.  Now suppose that we wish to describe a situation in which what happens next 

depends on the previous two states. Or the previous three.  Using the same techniques that we used to build a first-

order model, we can build models that consider the previous n states for any fixed n.  Such models are called nth order 

Markov models.  Notice that an nth order model requires kn+1 transition probabilities.  But if there are enough data 

available to train a higher-order model (i.e., to assign appropriate probabilities to all of the required transitions), it 

may be possible to build a system that quite accurately mimics the behavior of a very complex system.   

 

A third-order Markov model, trained on about half of this book, used word frequencies to generate 

the text “The Pumping Theorem is a useful way to define a precedence hierarchy for the operators 

+ and *.”  C 746. A clever application of a higher order Markov model of English is in producing 

spam that is hard to detect.  C 747. 

 



 

Chapter 5 77 Finite State Machines 

Early work on the use of Markov models for musical composition suggested that models of order 

four or less tended to create works that seemed random, while models of order seven or more 

tended to create works that felt just like copies of works on which the model was trained.  C 776. 

 

Whenever we build a Markov model to describe a naturally occurring process, there is a sense in which we are using 

probabilities to hide an underlying lack of understanding that would enable us to build a deterministic model of the 

phenomenon.  So, for example, if we know that our computer system is more likely to crash in the morning than in 

the evening, that may show up as a pair of different probabilities in a Markov model, even if we have no clue why the 

time of day affects system performance.  Some Markov models that do a pretty good job of mimicking nature may 

seem silly to us for exactly that reason.  The one that generates random English text is a good example of that.  But 

now suppose that we had a model that did a very good job of predicting earthquakes.  Although we might rather have 

a good structural model that tells us why earthquakes happen, a purely statistical, predictive model would be a very 

useful tool.  It is because of cases like this that Markov models can be extremely valuable tools for anyone studying 

complex systems (be they naturally occurring ones like plate tectonics or engineering artifacts like computer systems).  

5.11.2 Hidden Markov Models 
Now suppose that we are interested in analyzing a system that can be described with a Markov model with one 

important difference:  the states of the system are not directly observable.  Instead the model has a separate set of 

output symbols, which are emitted, with specified probabilities, whenever the system enters one of its now “hidden” 

states.  Now we must base our analysis of the system on an observed sequence of output symbols, from which we can 

infer, with some probability, the actual sequence of states of the underlying model. 

 

Examples of significant problems that can be described in this way include: 

 

• DNA and protein evolution: A protein is a sequence of amino acids that is manufactured in living organisms 

according to a DNA blueprint.  Mutations that change the blueprint can occur, with the result that one amino acid 

may be substituted for another, one or more amino acids may be deleted, or one or more additional amino acids 

may be inserted.  When we examine a DNA fragment or a protein, we’d like to be able to reconstruct the 

evolutionary process so that we can find other proteins that are functionally related to the current one, even though 

its details may be different.  But the process isn’t visible; only its result is. 

 

HMMs are used for DNA and protein sequence alignment in the face of mutations and other kinds 

of evolutionary change.  C 735. 

 

• Speech understanding: When we talk, our mouths map from the sentences we want to say into sequences of sounds.  

The mapping is complex and nondeterministic since multiple words may map to the same sound, words are 

pronounced differently as a function of the words before and after them, we all form sounds slightly differently, 

and so forth.  All a listener can hear is the sequence of sounds.  (S)he would like to reconstruct the mapping 

(backwards) in order to determine what words we were attempting to say. 

 

HMMs are used extensively in speech understanding systems.  C 754. 

 

• Optical character recognition (OCR) : When we write, our hands map from an idealized symbol to some set of 

marks on a page.  The marks are observable, but the process that generates them isn’t.  Imagine that we could 

describe a probabilistic process corresponding to each symbol that we can write.  Then, to interpret the marks, we 

must select the process that is most likely to have generated the marks we can see. 

What is a Hidden Markov Model? 

A powerful technique for solving problems such as this is the hidden Markov model or HMM .  An HMM is a 

nondeterministic finite state transducer that has been augmented with three kinds of probabilistic information: 

 

• Each state is labeled with the probability that the machine will be in that state when it starts. 



 

Chapter 5 78 Finite State Machines 

• Each transition from some state p to some (possibly identical) state q is labeled with the probability that, whenever 

the machine is in state p, it will go next to state q.  We can specify M’s transition behavior completely by defining 

these probabilities.  If it is not possible for M to go from some state p to some other state q, then we simply state 

the probability of going from p to q as 0.   

• Each output symbol c at each state q is labeled with the probability that the machine, if it is in state q, will output 

c. 

 

Formally, an HMM M is a quintuple (K, O, , A, B), where: 

 

• K is a finite set of states, 

• O is the output alphabet, 

•  is a vector that contains the initial probabilities of each of the states, 

• A is a matrix that represents the transition probabilities.  A[p, q] = Pr(state q at time t | state p at time t – 1). 

• B, sometimes called the confusion matrix, represents the output probabilities.  B[q, o] = Pr(output o | state q).  Note 

that outputs are associated with states (as in Moore machines). 

 

The name “hidden Markov model” derives from the two key properties of such devices: 

 

• They are Markov models.  Their state at time t is a function solely of their state at time t – 1. 

• The actual progression of the machine from one state to the next is hidden from all observers.  Only the machine’s 

output string can be observed. 

 

To use an HMM as the basis for an application program, we typically have to solve some or all of the following 

problems: 

 

• The decoding problem: Given an observation sequence O and an HMM M, discover the path through M that is 

most likely to have produced O.  For example, O might be a string of words that form a sentence.  We might have 

an HMM that describes the structure of naturally occurring English sentences.  Each state in M corresponds to a 

part of speech, such as noun, verb, or adjective.  It’s not possible to tell, just by looking at O, what sequence of 

parts of speech generated it, since many words can have more than one part of speech.  (Consider, for example, 

the simple English sentence, “Hit the fly ball.”)  But we need to infer the parts of speech (a process called part of 

speech or POS tagging) before we can parse the sentence.  We can do that if we can find the path through the 

HMM that is the most likely to have generated the observed sentence.  This problem can be solved efficiently 

using a dynamic programming algorithm called the Viterbi algorithm, described below.    

 

HMMs are often used for part of speech tagging.  C 741. 

 

Suppose that the sequences that we observe correspond to original sequences that have been altered in some way.  The 

alteration may have been done intentionally (we’ll call this “obfuscation”) or it may be the result of a natural 

phenomenon like evolution or a noisy transmission channel.  In either case, if we want to know what the original 

sequence was, we have an instance of the decoding problem.  We seek to find the original sequence that is most likely 

to have been the one that got transformed into the observed sequence. 

 

In the Internet era, an important application of obfuscation is the generation of spam.   If specific 

words are known to trigger spam filters, they can be altered, by changing vowels, introducing 

special characters, or whatever, so that they are still recognizable to people but unrecognizable, at 

least until the next patch, to the spam filters.  HMMs can be used to perform “deobfuscation” in 

an attempt to foil the obfuscators.  . 

 

• The evaluation problem: Given an observation sequence O and a set of HMMs that describe a collection of 

possible underlying models, choose the HMM that is most likely to have generated O.  For example, O might be 

a sequence of sounds.  We might have one HMM for each of the words that we know.  We need to choose the 

word model that is most likely to have generated O.  As another example, consider again the protein problem:  

Now we have one HMM for each family of related proteins.  Given a new sample, we want to find the family to 

which it is most likely to be related.  So we look for the HMM that is most likely to have generated it.  This problem 



 

Chapter 5 79 Finite State Machines 

can be solved efficiently using the forward algorithm, which is very similar to the Viterbi algorithm except that it 

considers all paths through a candidate HMM, rather than just the most likely one.   

 

• The training problem: We typically assume, in crafting an HMM M, that the set K of states is built by hand.  But 

where do all the probabilities in , A, and B come from?  Fortunately, there are algorithms that can learn them 

from a set of training data (i.e., a set of observed output sequences O).  One of the most commonly used algorithms 

is the Baum-Welch algorithm , also called the forward-backward algorithm.  Its goal is to tune , A, and B so 

that the resulting HMM M has the property that, out of all the HMMs whose state set is equal to K, M is the one 

most likely to have produced the outputs that constitute the training set.  Because the states cannot be directly 

observed (as they can be in a standard Markov model), the training technique that we described in Section 5.11.1 

won’t work here.  Instead, the Baum-Welch algorithm employs a technique called expectation maximization or 

EM.  It is an iterative method, so it begins with some initial set of values for , A, and B.  Then it runs the forward 

algorithm, along with a related backward algorithm, on the training data.  The result of this step is a set of 

probabilities that describe the likelihood that the existing machine, with the current values of , A, and B, would 

have output the training set.  Using those probabilities, Baum-Welch updates , A, and B to increase those 

probabilities.  The process continues until no changes to the parameter values can be made.      

The Viterbi Algorithm 

Given an HMM M and an observed output sequence O, a solution to the decoding problem is the path through M that 

is most likely to have produced O.  One way to find that most likely path is to explore all paths of length |O|, keeping 

track of the accumulated probabilities, and then report the path whose probability is the highest.  This approach is 

straightforward, but may require searching a tree with |KM||O| nodes, so the time required may grow exponentially in 

the length of O. 

 

A more efficient approach uses a dynamic programming technique in which the most likely path of some length, say 

t, is computed once and then extended by one more step to find the most likely path of length t + 1.   The Viterbi 

algorithm uses this approach.  It solves the decoding problem by computing, for each step t and for each state q in M: 

 

• the most likely path to q of all the ones that would have generated O1 … Ot, and 

• the probability of that path.   

 

Once it has done that for each step for which an output was observed, it traces the path backwards.  It assumes that 

the last state is the one at the end of the overall most likely path.  The next to the last state is the one that preceded that 

one on the most likely path, and so forth. 

 

Assume, at each step t, that the algorithm has already considered all paths of length t-1 that could have generated O1 

… Ot-1.  From those paths, it has selected, for each state p, the most likely path to p and it has recorded the probability 

of the model taking that path, reaching p, and producing O1 … Ot-1.  We assume further that the algorithm has also 

recorded, at each state p, the state that preceded p on that most likely path.  Before the first output symbol is observed, 

the probability that the system has reached some state p is simply (p) and there is no preceding state. 

 

Because the model is Markovian, the only thing that affects the probability of the next state is the previous state.  In 

constructing the model, we assumed that prior history doesn’t matter (although that may be only an approximation to 

reality for some problems).  So, at step t, we compute, for each state q, the probability that the best path so far that is 

consistent with O1 … Ot ends in q and outputs the first t observed symbols.  We do this by considering each state p 

that the model could have been in at step t-1.  We already know the probability that the best path up to step t-1 landed 

in p and produced the observed output sequence.  So, to add one more step, we multiply that probability by A[p, q], 

the probability that the model, if it were in p, would go next to q.  But we have one more piece of information: the 

next output symbol.  So, to compute the probability that the model went through p, landed in q, and output the next 

symbol o, we multiply by B[p, o].  Once these numbers have been computed for all possible preceding states p, we 

choose the most likely one (i.e., the one with the highest score as described above).  We record that score at q and we 

record at q that the most likely predecessor state is the one that produced that highest score. 

 

Although we’ve described the output function as a function of the state the model is in, we don’t actually consider it 

until we compute the next step, so it may be easier to think of the outputs as associated with the transitions rather than 



 

Chapter 5 80 Finite State Machines 

with the states.  In particular, the computation that we have just described will end by choosing the state in which the 

model is most likely to land just after it outputs the final observed symbol.  That last state will not generate any output.   

 

Once all steps have been considered, we can choose the overall most likely path as follows:  Consider all states.  The 

model is most likely to have ended in the one that, at the final time step, has the highest score as described above. Call 

that highest scoring state the last state in the path.  Find the state that was marked as immediately preceding that one.  

Continue backwards to the start state. 

 

We can summarize this process, known as the Viterbi algorithm , as follows:  Given an observed output sequence 

O, we will consider each time step between 1 and the length of O.  At each such step t, we will set score(q, t) to the 

highest probability associated with any path of length t that lands M in q, having output the first t symbols in O.  We 

will set backptr(q, t) to the state that immediately preceded q along that best path.  Once score and backptr have been 

computed for each state at each time step t, we can start at the most likely final state and trace backwards to find the 

sequence states that describes the most likely path through M consistent with O.  So the Viterbi algorithm is: 

 

   Viterbi(M: Markov model, O: output sequence) =   

1. For t = 0, for each state q, set score[q, t] to [q]. 

 

2. /*   Trace forward recording the best path at each step: 

For t = 1 to |O| do: 

2.1. For each state q in K do: 

For each state p in K that could have immediately preceded q: 

candidatescore[p] = score[p, t-1]  A[p, q] * B[p, Ot]. 

/* Record score along most likely path: 

[ , ] max [ ]
p K

score q t candidatescore p


=
. 

/* Set q’s backptr.  The function argmax returns the value of the argument p that produced the 

maximum value of candidatescore[p]: 

[ , ] arg max [ ]
p K

backptr q t candidatescore p


=

. 

3. /*    Retrieve the best path by going backwards from the most likely last state:  

states[|O|] = the state q with the highest value of score[q, |O|].  

For t = |O| - 1 to 0 do:  

states[t] = backptr[states[t+1], t+1]. 

4. Return states[0 : |O|-1].          /* Ignore the last state since its output was  

 not observed. 

The Forward Algorithm 

Now suppose that we want to solve the evaluation problem: given a set of HMMs and an observed output sequence 

O, decide which HMM had the highest probability of producing O.  This problem can be solved with the forward 

algorithm , which is very similar to the Viterbi algorithm except that, instead of finding the single best path through 

an HMM M, it computes the probability that M could have output O along any path.  In step 2.1.2, the Viterbi algorithm 

selects the highest score associated with any one path to q.  The forward algorithm, at that point, sums all the scores.  

The other big difference between the Viterbi algorithm and the forward algorithm is that the forward algorithm does 

not need to find a particular path.  So it will not have to bother maintaining the backptr array.  We can state the 

algorithm as follows: 

 

   forward(M: Markov model, O: output sequence) =   

1. For t = 0, for each state q, set forward-score[q, t] to [q]. 

 

2. /*  Trace forward recording, at each step, the total probability associated with all paths to each state:  

For t = 1 to |O| do: 

2.1. For each state q in K do: 

2.1.1. Consider each state p in K that could have immediately preceded q: 

     candidatescore[p] = forwardscore[p, t-1]  A[p, q] * B[p, Ot]. 



 

Chapter 5 81 Finite State Machines 

2.1.2. /* Sum scores over all paths:  

      [ , ] [ ]
p

forwardscore q t candidatescore p=  . 

3. /*  Find the total probability of going through M along any path, landing in any of M’s states, and  

emitting O.  This is simply the sum of the probability of landing in state 1 having emitted O, 

plus the probability of landing in state 2 having emitted O, and so forth.  So: 

      [ ,| |]
q K

totalprob forwardscore q O


=  .  

4. Return totalprob.          

 

To solve the evaluation problem, we run the forward algorithm on all of the contending HMMs and return the one 

with the highest final score. 

The Complexity of the Viterbi and the Forward Algorithms 

Analyzing the complexity of the Viterbi and the forward algorithms is straightforward.  In both cases, the outer loop 

of step 2 is executed once for each observed output, so |O| times.  Within that loop, the computation of candidatescore 

is done once for each state pair.  So if M has k states, it is done k2 times.  The computation of score/forwardscore takes 

O(k) steps, as does the computation of backptr in the Viterbi algorithm.  The final operation of the Viterbi algorithm 

(computing the list of states to be returned) takes O(|O|) steps.  The final operation of the forward algorithm 

(computing the total probability of producing the observed output) takes O(k) steps.  So, in both cases, the total time 

complexity is O(k2|O|). 

An Example of How These Algorithms Work 

The real power of HMMs is in solving complex, real-world problems in which probability estimates can be derived 

from large datasets.  So it is hard to illustrate the effectiveness of HMMs on small problems, but the idea should be 

clear from the following simple example of the use of the Viterbi algorithm. 

Example 5.37 Using the Viterbi Algorithm to Guess the Weather 

Suppose that you are a state department official in a small country.  Each day, you receive a report from each of your 

consular offices telling you whether or not any of your passports were reported missing that day.  You know that the 

probability of a passport getting lost or stolen is a function of the weather, since people tend to stay inside (and thus 

manage to keep track of their passports) when the weather is bad.  But they tend to go out and thus risk getting their 

passport lost or stolen if the weather is good.  So it amuses you to try to infer the weather in your favorite cities by 

watching the lost passport reports.  We’ll use the symbol L to mean that a passport was lost and the symbol # to mean 

that none was.  So, for example, a report for a week might look like LL##L###.  

 

We’ll consider just two cities, London and Athens.  We can build an HMM for each.  Both HMMs have two states, 

Sunny and Rainy. 

 



 

Chapter 5 82 Finite State Machines 

  London      Athens 

 

  = .55   .75    = .87    .9 

    Sunny      Sunny 

 B(Sunny, L) = .7     B(Sunny, L) = .2 

 B(Sunny, #) = .3     B(Sunny, #) = .8 

 

 

 .25  .3    .1  .67 

 

 

  = .45   .7    = .13   .33 

   Rainy      Rainy 

 B(Rainy, L) = .2     B(Rainy, L) = .05 

 B(Rainy, #) = .8     B(Rainy, #) = .95 

 

 

Now suppose that you receive the report ###L from London and you want to find out what the most likely sequence 

of weather reports was for those days.  The Viterbi algorithm will solve the problem.   

 

The easiest way to envision the way that Viterbi works is to imagine a lattice, in which each column corresponds to a 

step and each row corresponds to a state in M: 

 

Sunny .55  .12  .06  .034  .018 

 

 

 

Rainy .45  .252  .141  .079  .011 

 

 t = 0  t = 1  t = 2  t = 3  t = 4 

 

The number shown at each point (q, t) is the value that Viterbi computes for score[q, t].  So we can think of Viterbi as 

creating this lattice left to right, and filling in scores as it goes along.  The arrows represent possible transitions in M.  

The heavy arrows indicate the path that is recorded in the matrix backptr. 

 

At t = 0, the probabilities recorded in score are just the initial probabilities, as given in .  So the sum of the values in 

column 1 is 1.  At later steps, the sum is less than 1 because we are considering only the probabilities of paths through 

M that result in the observed output sequence.  Other paths could have produced other output sequences.   

 

At all times t > 0, the values for score can be computed by considering the probabilities at the previous time (as 

recorded in score), the probabilities of moving from one state to another (as recorded in the matrix A), and the 

probabilities (recorded in the vector O) of observing the next output symbol.  To see how the Viterbi algorithm 

computes those values, let’s compute the value of score[Sunny, 1]: 

 

candidate-score[Sunny]  = score[Sunny, 0]  A[Sunny, Sunny]  B[Sunny, #]  

   = .55  .75  .3 

   = .12 

candidate-score[Rainy]  = score[Rainy, 0]  A[Rainy, Sunny]  B[Rainy, #]  

   = .45  .3  .8 

   = .11 

So score[Sunny, 1] = max(.12, .11) = .12, and backptr(Sunny, 1) is set to Sunny. 

 

Once all the values of score have been computed, the final step is to observe that Sunny as the most likely state for M 

to have reached just prior to generating a fifth output symbol.  The state that most likely preceded it is Sunny, so we 



 

Chapter 5 83 Finite State Machines 

report Sunny as the last state to have produced output.  Then we trace the backpointers and report that the most likely 

sequence of weather reports is Rainy, Rainy, Rainy, Sunny. 

 

Now suppose that the fax machine was broken and the reports for last week came in with the city names chopped off 

the top.  You have received the report ###L and you want to know whether it is more likely that it came from London 

or from Athens.  To solve this problem, you use the forward algorithm.  You run the output sequence ###L through 

the London model and through the Athens model, this time computing the total probability (as opposed to just the 

probability along the best path) of reaching each state from any path that is consistent with the output sequence.  The 

most likely source of this report is the model with the highest final probability. 

5.12 Finite Automata, Infinite Strings: Büchi Automata   
So far, we have considered, as input to our machines, only strings of finite length.  Thus we have focused on problems 

for which we expect to write programs that read an input, compute a result, and halt.  Many problems are of that sort, 

but some are not.  For example, consider: 

 

• an operating system. 

• an air traffic control system. 

• a factory process control system. 

 

Ideally, such systems never halt.  They should accept an infinite string of inputs and continue to function.  Define  

to be the set of infinite length strings drawn from the alphabet .  For the rest of this discussion, define a language to 

be a set of such infinite-length strings.   

 

To model the behavior of processes that do not halt, we can extend our notion of an NDFSM to define a machine 

whose inputs are elements of .  Such machines are sometimes called -automata (or omega automata).    

 

We’ll define one particular kind of -automaton:  A Büchi automaton is a quintuple (K, , , S, A), where: 

 

• K is a finite set of states, 

•  is the input alphabet, 

• S  K is a set of start states, 

• A  K is the set of accepting states, and 

•  is the transition relation.  It is a finite subset of:  

 

 (K  )  K. 

 

Note that, unlike NDFSMs, Büchi automata may have more than one start state.  Note also that the definition of a 

Büchi automaton does not allow -transitions. 

 

We define configuration, initial configuration, yields-in-one-step, and yields exactly as we did for NDFSMs.  A 

computation of a Büchi automaton M is an infinite sequence of configurations C0, C1, … such that: 

 

• C0 is an initial configuration, and 

• C0 |-M  C1 |-M  C2 |-M … 

 

But now we must define what it means for a Büchi automaton M to accept a string.  We can no longer define acceptance 

by the state of M when it runs out of input, since it won’t.  Instead, we’ll say that M accepts a string w   iff, in at 

least one of its computations, there is some accepting state q such that, when processing w, M enters q an infinite 

number of times.  So note that it is not required that M enter an accepting state and stay there.  But it is not sufficient 

for M to enter an accepting state just once (or any finite number of times).  As before, the language accepted by M, 

denoted L(M), is the set of all strings accepted by M.  A language L is Büchi-acceptable iff it is accepted by some 

Büchi automaton. 

 



 

Chapter 5 84 Finite State Machines 

Büchi automata can be used to model concurrent systems, hardware devices, and their 

specifications.  Then programs called model checkers can verify that those systems correctly 

conform to a set of stated requirements.  C 679. 

Example 5.38 Büchi Automata for Event Sequences 

Suppose that there are five kinds of events that can occur in the system that we wish to model.  We’ll call them a, b, 

c, d, and e.  So let  = {a, b, c, d, e}.   

 

We first consider the case in which we require that event e occur at least once.  The following (nondeterministic) 

Büchi automaton accepts all and only the elements of  that contain at least one occurrence of e: 

 

                       a, b, c, d         a, b, c, d, e 

 

 

  1 e 2 

 

 

Now suppose that we require that there come a point after which only e’s can occur.  The following Büchi automaton 

(described using our convention that the dead state need not be written explicitly) accepts all and only the elements of 

 that eventually reach a point after which no events other than e’s occur: 

 

                       a, b, c, d, e             e 

 

 

  1 e 2 

 

 

Finally, suppose that we require that every c event be immediately followed by an e event.  The following Büchi 

automaton (this time with the dead state, 3, shown explicitly) accepts all and only the elements of  that satisfy that 

requirement: 

 

                       a, b, d, e             

 
   e 

  1  2 
   c 

      a, b, c, d 

 

    3  a, b, c, d, e 

 

 

Example 5.39 Mutual Exclusion 

Suppose that we want to model a concurrent system with two processes and enforce the constraint, often called a 

mutual exclusion property, that it never happens that both processes are in their critical regions at the same time.  We 

could do this in the usual way, using an alphabet of atomic symbols such as {Both, NotBoth}, where the system 

receives the input Both at any time interval at which both processes are in their critical region and the input NotBoth 

at any other time interval.  But a more direct way to model the behavior of complex concurrent systems is to allow 

inputs that correspond to Boolean expressions that capture the properties of interest.  That way, the same Boolean 

predicates can be combined into different expressions in different machines that correspond to different desirable 

properties.  To capture the mutual exclusion constraint, we’ll use two Boolean predicates, CR0, which will be True iff 

process0 is in its critical region and CR1, which will be True iff process1 is in its critical region.  The inputs to the 



 

Chapter 5 85 Finite State Machines 

system will then be drawn from a set of three Boolean expressions: {(CR0  CR1), (CR0  CR1), True}.  The following 

Büchi automaton accepts all and only the input sequences that satisfy the property that (CR0  CR1) never occurs: 

 

                   (CR0  CR1)                 True 

 

 

  1 (CR0  CR1) 2 

 

 

While there is an obvious similarity between Büchi automata and FSMs, and the languages they accept are related, as 

described below, there is one important difference.  For Büchi automata, nondeterminism matters.   

Example 5.40 For Büchi Automata, Nondeterminism Matters 

Let L = {w  {a, b} : #b(w) is finite}.  Note that every string in L must contain an infinite number of a’s.  The 

following nondeterministic Büchi automaton accepts L: 

 

                           a, b              a 

 

 

  1 a  2 

 

 

We can try to build a corresponding deterministic machine by using the construction that we used in the proof of 

Theorem 5.3 (which says that for every NDFSM there does exist an equivalent DFSM).  The states of the new machine 

will then correspond to subsets of states of the original machine and we’ll have: 

 
                            b               a 

 
   a 

             {1}               {1, 2} 
   b 

 

This new machine is indeed deterministic and it does accept all strings in L.  Unfortunately, it also accepts an infinite 

number of strings that are not in L, including (ba).  More unfortunately, we cannot do any better. 

Theorem 5.7 Nondeterministic versus Deterministic Büchi Automata 

Theorem: There exist languages that can be accepted by a nondeterministic Büchi automaton (i.e., one that meets the 

definition we have given), but for which there exists no equivalent deterministic Büchi automaton (i.e., one that has a 

single start state and whose transitions are defined by a function from (K  ) to K). 

 

Proof:  The proof is by a demonstration that no deterministic Büchi automaton accepts the language L = {w  {a, b} 

: #b(w) is finite} of Example 5.40.  Suppose that there were such a machine B.  Then, among the strings accepted by 

B, would be every string of the form wa, where w is some finite string in {a, b}*.  This must be true since all such 

strings contain only a finite number of b’s.  Remove from B any states that are not reachable from the start state.  Now 

consider any remaining state q in B.  Since q is reachable from the start state, there must exist at least one finite string 

that drives B from the start state to q.  Call that string w.  Then, as we just observed, wa is in L and so must be 

accepted by B.  In order for B to accept it, there must be at least one accepting state qa that occurs infinitely often in 

the computation of B on wa.  That accepting state must be reachable from q (the state of B when just w has been 

read) by some finite number, which we’ll call aq, of a’s (since B has only a finite number of states).  Compute aq for 

every state q in B.  Let m be the maximum number of the aq values.   

 

We can now show that B accepts the string (bam), which is not in L.  Since B is deterministic, its transition function 

is defined on all (state, input) pairs, so it must run forever on all strings including (bam).  From the last paragraph we 



 

Chapter 5 86 Finite State Machines 

know that, from any state, there is a string of m or fewer a’s that can drive B to an accepting state.  So, in particular, 

after each time it reads a b, followed by a sequence of a’s, B must reach some accepting state within m a’s.  But B 

has only a finite number of accepting states.  So, on input (bam), B reaches some accepting state an infinite number 

of times and it accepts. 
◼ 

 

There is a natural relationship between the languages of infinite strings accepted by Büchi automata and the regular 

languages (i.e., the languages of finite strings accepted by FSMs).  To describe this relationship requires an 

understanding of the closure properties of the regular languages that we will present in Section 8.3, as well as some 

of the decision procedures for regular languages that we will present in Chapter 9.  It would be helpful to read those 

sections before continuing to read this discussion of Büchi automata. 

 

Any Büchi-acceptable language can be described in terms of regular languages.  To see how, observe that any Büchi 

automaton B can almost be viewed as an FSM, if we simply consider input strings of finite length.  The only reason 

that that can’t quite be done is that Büchi automata may have multiple start states.  So, from any Büchi automaton B, 

we can build what we’ll call the mirror FSM M to B as follows: let M = B except that, if B has more than one start 

state, then, in M, create a new start state that has an -transition to each of the start states of B.  Notice that the set of 

finite length strings that can drive B from a start state to some state q is identical to the set of finite length strings that 

can drive M from its start state to state q. 

 

Now consider any Büchi automaton B and any string w that B accepts.  Since w is accepted, there is some accepting 

state in B that is visited an infinite number of times while B processes w.  Call that state q.  (There may be more than 

one such state.  Pick one.)  Then we can divide w into two parts, x and y.  The first part, x, has finite length and it 

drives B from a start state to q for the first time.  The second part, y, has infinite length and it simply pushes B through 

one loop after another, each of which starts and ends in q (although there may be more than one path that does this).  

The set of possible values for x is regular: it is exactly the set that can be accepted by the FSM M that mirrors B, if we 

let q be M’s only accepting state.  Call a path from q back to itself minimal iff it does not pass through q.  Then we 

also notice that the set of strings that can force B through such a minimal path is also regular.  It is the set accepted by 

the FSM M that mirrors B, if we let q be both M’s start state and its only accepting state.  These observations lead to 

the following theorem: 

Theorem 5.8 Büchi-Acceptable and Regular Languages  

Theorem: L is a Büchi-acceptable language iff it is the finite union of sets each of which is of the form XY, where 

each X and Y is a regular language. 

 

Proof: Given any Büchi automaton B = (K, , , S, A), let Wq0q1 be the set of all strings that drive B from state q0 to 

state q1.  Then, by the definition of what it means for a Büchi automaton to accept a string, we have: 

 

 L(B) = 
)( qqsq

Ss Aq

WW
 

. 

If L is a Büchi-acceptable language, then there is some Büchi automaton B that accepts it.  So the only-if part of the 

claim is true since: 

 

• S and A are both finite,  

• For each s and q, Wsq is regular since it is the set of strings accepted by B’s mirror FSM M with start state s and 

single accepting state q,  

• Wqq = Y*, where Y is the set of strings that can force B along a minimal path from q back to q,  

• Y is regular since it is the set of strings accepted by B’s mirror FSM M with q as its start state and its only accepting 

state, and  

• The regular languages are closed under Kleene star so Wqq = Y* is also regular.  

 

The if part follows from a set of properties of the Büchi-acceptable and regular languages that are described in 

Theorem 5.9. 
◼ 



 

Chapter 5 87 Finite State Machines 

Theorem 5.9  Closure Properties of Büchi Automata 

Theorem and Proof: The Büchi-acceptable languages (like the regular languages) are closed under: 

 

• Concatenation with a regular language: if L1 is a regular language and L2 is a Büchi-acceptable language, then L1L2 

is Büchi-acceptable.  The proof is similar to the proof that the regular languages are closed under concatenation 

except that, since  transitions are not allowed, the machines for the two languages must be “glued together” 

differently.  If q is a state in the FSM that accepts L1, and there is a transition from q, labeled c, to some accepting 

state, then add a transition from q, labeled c, to each start state of the Büchi automaton that accepts L2. 

• Union: if L1 and L2 are Büchi-acceptable, then L1  L2 is also Büchi-acceptable.  The proof is analogous to the 

proof that the regular languages are closed under union.  Again, since  transitions are not allowed, we must use a 

slightly different glue.  The new machine we will build will have transitions directly from a new start state to the 

states that the original machines can reach after reading one input character. 

• Intersection: if L1 and L2 are Büchi-acceptable, then L1  L2 is also Büchi-acceptable.  The proof is by construction 

of a Büchi automaton that effectively runs a Büchi automaton for L1 in parallel with one for L2. 

• Complement: if L is Büchi-acceptable, then L is also Büchi-acceptable.  The proof of this claim is less obvious.  

It is given in [Thomas 1990]. 

 

Further, if L is a regular language, then L is Büchi-acceptable.  The proof is analogous to the proof that the regular 

languages are closed under Kleene star, but we must again use the modification that was used above in the proof of 

closure under concatenation. 
◼ 

 

Büchi automata are useful as models for computer systems whose properties we wish to reason about because a set of 

important questions can be answered about them.  In particular, Büchi automata share with FSMs the existence of 

decision procedures for all of the properties described in the following theorem: 

Theorem 5.10   Decision Procedures for Büchi Automata  

Theorem: There exist decision procedures for all of the following properties: 

• Emptiness: Given a Büchi automaton B, is L(B) empty? 

• Nonemptiness: Given a Büchi automaton B, is L(B) nonempty? 

• Inclusion: Given two Büchi automata B1 and B2, is L(B1)  L(B2)? 

• Equivalence: Given two Büchi automata B1 and B2, is L(B1) = L(B2)? 

 

Proof: The proof of each of these claims can be found in [Thomas 1990]. 
◼ 

 

5.13 Exercises 
1) Give a clear English description of the language accepted by the following DFSM: 

 
                                      b 

          

   1 b 2 a 3 

 
           a     a             b           a     a 

 

   4 b 5  6 

 

     a, b 

 

 



 

Chapter 5 88 Finite State Machines 

2) Show a DFSM to accept each of the following languages: 

a) {w  {a, b}* : every a in w is immediately preceded and followed by b}. 

b) {w  {a, b}* : w does not end in ba}. 

c) {w  {0, 1}* : w corresponds to the binary encoding, without leading 0’s, of natural numbers that are evenly 

divisible by 4}. 

d) {w  {0, 1}* : w corresponds to the binary encoding, without leading 0’s, of natural numbers that are powers 

of 4}. 

e) {w  {0-9}* : w corresponds to the decimal encoding, without leading 0’s, of an odd natural number}. 

f) {w  {0, 1}* : w has 001 as a substring}. 

g) {w  {0, 1}* : w does not have 001 as a substring}. 

h) {w  {a, b}* : w has bbab as a substring}. 

i) {w  {a, b}* : w has neither ab nor bb as a substring}. 

j) {w  {a, b}* : w has both aa and bb as substrings}. 

k) {w  {a, b}* : w contains at least two b’s that are not immediately followed by an a}. 

l) {w  {0, 1}* : w has no more than one pair of consecutive 0’s and no more than one pair of consecutive 

1’s}.  

m) {w  {0, 1}* : none of the prefixes of w ends in 0}. 

n) {w {a, b}*: (#a(w) + 2#b(w)) 5 0}. (#aw is the number of a’s in w).  

 

3) Consider the children’s game Rock, Paper, Scissors .  We’ll say that the first player to win two rounds wins the 

game.  Call the two players A and B.   

a) Define an alphabet  and describe a technique for encoding Rock, Paper, Scissors games as strings over .  

(Hint: each symbol in  should correspond to an ordered pair that describes the simultaneous actions of A 

and B.) 

b) Let LRPS be the language of Rock, Paper, Scissors games, encoded as strings as described in part (a), that 

correspond to wins for player A.  Show a DFSM that accepts LRPS. 

 

4) If M is a DFSM and   L(M), what simple property must be true of M? 

 

5) Consider the following NDFSM M: 

 
                   a 

                                                                     a 
                               b 

 
                                                        b 

                                                                  a 
              b 

 
                  b                             

                  

 
                                                              b 

 
                 a 

 

 

For each of the following strings w, determine whether w  L(M): 

a) aabbba. 

b) bab. 

c) baba. 

 



 

Chapter 5 89 Finite State Machines 

6) Show a possibly nondeterministic FSM to accept each of the following languages: 

a) {anbam : n, m  0, n 3 m}. 

b) {w  {a, b}* : w contains at least one instance of aaba, bbb or ababa}. 

c) {w  {0-9}* : w corresponds to the decimal encoding of a natural number whose encoding contains, as a 

substring, the encoding of a natural number that is divisible by 3}. 

d) {w  {0, 1}* : w contains both 101 and 010 as substrings}. 

e) {w  {0, 1}* : w corresponds to the binary encoding of a positive integer that is divisible by 16 or is odd}. 

f) {w  {a, b, c, d, e}* : |w|  2 and w begins and ends with the same symbol}. 

 

7) Show an FSM (deterministic or nondeterministic) that accepts L = {w  {a, b, c}* : w contains at least one 

substring that consists of three identical symbols in a row}.  For example: 

• The following strings are in L: aabbb, baacccbbb. 

• The following strings are not in L: , aba, abababab, abcbcab. 

 

8) Show a DFSM to accept each of the following languages.  The point of this exercise is to see how much harder it 

is to build a DFSM for tasks like these than it is to build an NDFSM.  So do not simply build an NDFSM and 

then convert it.  But do, after you build a DFSM, build an equivalent NDFSM. 

a) {w  {a,b}* : the fourth from the last character is a}. 

b) {w  {a, b}* : x, y  {a,b}* : ((w = x  abbaa y)  (w =  x baba y))}. 

 

9) For each of the following NDFSMs, use ndfsmtodfsm to construct an equivalent DFSM.  Begin by showing the 

value of eps(q) for each state q: 

a)  

              1 
 

q0  q1 0 q2 

 

 

  1         1           1 

 
                                           0 

q3  0 q4   q5  

                                          

 

b)    a, b  

 

  q0 a q1 a, b q2   a, b q3  a, b q4  

 

 

c)              b  
        a  

          a   

  q0   q1   a    q4  

 

 

            b       a     a             b  
           a  

 

  q3 b  q2   b    q5  

 
            a  

 

 



 

Chapter 5 90 Finite State Machines 

10) Let M be the following NDFSM.  Construct (using ndfsmtodfsm), a DFSM that accepts L(M). 
 

 

q1    q2 a   q3             

 

                             b                                          b   

 
                a  

 

  q4   q5   

 
            b 

 

 
                     a 

  q6   q7   
                b                                          b 

 

 

11) For each of the following languages L: 

(i) Describe the equivalence classes of L. 

(ii) If the number of equivalence classes of L is finite, construct the minimal DFSM that accepts L. 

a) {w  {0, 1}* : every 0 in w is immediately followed by the string 11}. 

b) {w  {0, 1}* : w has either an odd number of 1’s and an odd number of 0’s or it has an even number of 1’s 

and an even number of 0’s}. 

c) {w  {a, b}* : w contains at least one occurrence of the string aababa}. 

d) {wwR : w  {a, b}*}. 

e) {w  {a, b}* : w contains at least one a and ends in at least two b’s}. 

f) {w  {0, 1}* : there is no occurrence of the substring 000 in w}. 

 

12) Let M be the following DFSM.  Use minDFSM to minimize M.   
 

 a   

q1 a   q2   q3             
      a   
           b                 b                                        b   

 
     b        b  

      a  

  q4   a  q5     q6   
      a  

  

13) Construct a deterministic finite state transducer with input alphabet {a, b} for each of the following tasks: 

a) On input w, produce 1n, where n = #a(w). 

b) On input w, produce 1n, where n = #a(w)/2. 

c) On input w, produce 1n, where n is the number of occurrences of the substring aba in w. 

 

14) Construct a deterministic finite state transducer that could serve as the controller for an elevator.  Clearly describe 

the input and output alphabets, as well as the states and the transitions between them. 

 

15) Consider the problem of counting the number of words in a text file that may contain letters plus any of the 

following non-letter characters: 

 

 <blank> <linefeed> <end-of-file>  , . ; : ? ! 



 

Chapter 5 91 Finite State Machines 

 

Define a word to be a string of letters that is preceded by either the beginning of the file or some non-letter 

character and that is followed by some non-letter character.  For example, there are 11 words in the following 

text: 

The <blank> <blank> cat <blank> <linefeed>  

saw <blank> the <blank> <blank> <blank> rat <linefeed>  

<blank> with  

<linefeed> a <blank> hat <linefeed>  

on <blank> the <blank> <blank> mat <end-of-file>  

 

Describe a very simple finite-state transducer that reads the characters in the file one at a time and solves the 

word-counting problem.  Assume that there exists an output symbol with the property that, every time it is 

generated, an external counter gets incremented. 

 

16) Real traffic light controllers are more complex than the one that we drew in Example 5.29. 

a) Consider an intersection of two roads controlled by a set of four lights (one in each direction).  Don’t worry 

about allowing for a special left-turn signal.  Design a controller for this four-light system. 

b) As an emergency vehicle approaches an intersection, it should be able to send a signal that will cause the 

light in its direction to turn green and the light in the cross direction to turn yellow and then red.  Modify 

your design to allow this. 

 

17) Real bar code systems are more complex than the one that we sketched in Example 

5.31.  They must be able to encode all ten digits, for example.  There are several 

industry-standard formats for bar codes, including the common UPC code  found on 

nearly everything we buy.  Describe a finite state transducer that reads the bars and 

outputs the corresponding decimal number. 

 

18) Extend the description of the Soundex FSM that was started in Example 5.33 so that it can assign a code to the 

name Pfifer.  Remember that you must take into account the fact that every Soundex code is made up of exactly 

four characters. 

 

19) Consider the weather/passport HMM of Example 5.37.  Trace the execution of the Viterbi and forward algorithms 

to answer the following questions: 

a) Suppose that the report ###L is received from Athens.  What was the most likely weather during the time of 

the report? 

b) Is it more likely that ###L came from London or from Athens? 

 

20) Construct a Büchi automaton to accept each of the following languages of infinite length strings: 

a) {w  {a, b, c} : after any occurrence of an a there is eventually an occurrence of a b}. 

b) {w  {a, b, c} : between any two a’s there is an odd number of b’s}. 

c) {w  {a, b, c} : there never comes a time after which no b’s occur}. 

 

21) In C 685, we describe the use of statecharts as a tool for building complex systems.  A statechart is a hierarchically 

structured transition network model.  Statecharts aren’t the only tools that exploit this idea.  Another is Simulink® 

, which is one component of the larger programming environment Matlab® .  Use Simulink to build an FSM 

simulator. 

 

22) In C 696, we describe the Alternating Bit protocol for handling message transmission in a network.  Use the FSM 

that describes the sender to answer the question, “Is there any upper bound on the number of times a message 

may be retransmitted?” 

 

23) In C 717, we show an FSM model of a simple intrusion detection device that could be part of a building security 

system.  Extend the model to allow the system to have two zones that can be armed and disarmed independently 

of each other.  

 

0 51 2 3 4 5 6 7 8 9 0



 

Chapter 6 92 Regular Expressions 

6 Regular Expressions 

Let’s now take a different approach to categorizing problems.  Instead of focusing on the power of a computing device, 

let’s look at the task that we need to perform.  In particular, let’s consider problems in which our goal is to match 

finite or repeating patterns.  For example, consider: 

 

• The first step of compiling a program: this step is called lexical analysis.  Its job is to break the source code into 

meaningful units such as keywords, variables, and numbers.  For example, the string void may be a keyword, 

while the string 23E-12 should be recognized as a floating point number. 

• Filtering email for spam. 

• Sorting email into appropriate mailboxes based on sender and/or content words and phrases. 

• Searching a complex directory structure by specifying patterns that are known to occur in the file we want. 

 

In this chapter, we will define a simple pattern language.  It has limitations.  But its strength, as we will soon see, is 

that we can implement pattern matching for this language using finite state machines. 

 

In his classic book, A Pattern Language , Christopher Alexander described common patterns 

that can be found in successful buildings, towns and cities.  Software engineers read Alexander’s 

work and realized that the same is true of successful programs and systems.  Patterns are 

ubiquitous in our world.   

6.1 What is a Regular Expression? 
The regular expression language that we are about to describe is built on an alphabet that contains two kinds of 

symbols: 

 

• a set of special symbols to which we will attach particular meanings when they occur in a regular expression.  These 

symbols are , , , (, ), *, and +.   

• an alphabet , which contains the symbols that regular expressions will match against. 

 

A regular expression  is a string that can be formed according to the following rules: 

 

1.  is a regular expression. 

2.  is a regular expression. 

3. Every element in  is a regular expression. 

4. Given two regular expressions  and ,  is a regular expression.   

5. Given two regular expressions  and ,    is a regular expression.   

6. Given a regular expression , * is a regular expression. 

7. Given a regular expression , + is a regular expression. 

8. Given a regular expression , () is a regular expression. 

 

So, if we let  = {a, b}, the following strings are regular expressions: 

 

, , a, b, (a  b)*, abba  . 

 

The language of regular expressions, as we have just defined it, is useful because every regular expression has a 

meaning (just like every English sentence and every Java program).  In the case of regular expressions, the meaning 

of a string is another language.  In other words, every string  (such as abba  ) in the regular expression language 

has, as its meaning, some new language that contains exactly the strings that match the pattern specified in .   

 

To make it possible to determine that meaning, we need to describe a semantic interpretation function for regular 

expressions.  Fortunately, the regular expressions language is simple.  So designing a compositional semantic 

interpretation function (as defined in Section 2.2.6) for it is straightforward.  As you read the definition that we are 

about to present, it will become clear why we chose the particular symbol alphabet we did.  In particular, you will 



 

Chapter 6 93 Regular Expressions 

notice the similarity between the operations that are allowed in regular expressions and the operations that we defined 

on languages in Section 2.2. 

 

Define the following semantic interpretation function L for the language of regular expressions:   

 

1. L() = , the language that contains no strings. 

2. L() = {}, the language that contains just the empty string. 

3. For any c  , L(c) = {c}, the language that contains the single, one-character string c. 

4. For any regular expressions  and , L() = L() L().  In other words, to form the meaning of the concatenation 

of two regular expressions, first determine the meaning of each of the constituents.  Both meanings will be 

languages.  Then concatenate the two languages together.  Recall that the concatenation of two languages L1 and 

L2 is {w = xy, where x  L1 and y  L2}.  Note that, if either L() or L() is equal to , then the concatenation 

will also be equal to . 

5. For any regular expressions  and , L(  ) = L()  L().  Again we form the meaning of the larger expression 

by first determining the meaning of each of the constituents.  Each of them is a language.  The meaning of    

then, as suggested by our choice of the character  as an operator, is the union of the two constituent languages. 

6. For any regular expression , L(*) = (L())*, where * is the Kleene star operator defined in Section 2.2.5.  So 

L(*) is the language that is formed by concatenating together zero or more strings drawn from L().   

7. For any regular expression , L(+) = L(*) = L() (L())*.  If L() is equal to , then L(+) is also equal to 

.  Otherwise L(+) is the language that is formed by concatenating together one or more strings drawn from 

L(). 

8. For any regular expression , L(()) = L().  In other words, parentheses have no effect on meaning except to 

group the constituents in an expression. 

 

If the meaning of a regular expression  is the language L, then we say that  defines or describes L. 

 

The definition that we have just given for the regular expression language contains three kinds of rules: 

 

• Rules 1, 3, 4, 5, and 6 give the language its power to define sets, starting with the basic sets defined by rules 1 and 

3, and then building larger sets using the operators defined by rules 4, 5, and 6.   

• Rule 8 has as its only role grouping other operators.  

• Rules 2 and 7 appear to add functionality to the regular expression language.  But in fact they don’t; they serve only 

to provide convenient shorthands for languages that can be defined using only rules 1, 3-6, and 8.  Let’s see why. 

 

First consider rule 2: the language of regular expressions does not need the symbol  because it has an alternative 

mechanism for describing L().  Observe that L(*) = {w : w is formed by concatenating together zero or more strings 

from }.  But how many ways are there to concatenate together zero or more strings from ?  If we select zero strings 

to concatenate, we get .  We cannot select more than zero since there aren’t any to choose from.  So L(*) = {}.  

Thus, whenever we would like to write , we could instead write *.  It is much clearer to write , and we shall.  But, 

whenever we wish to make a formal statement about regular expressions or the languages they define, we need not 

consider rule 2 since we can rewrite any regular expression that contains  as an equivalent one that contains * 

instead.  

 

Next consider rule 7: as we showed in the statement of rule 7 itself, the regular expression + is equivalent to the 

slightly longer regular expression *.  The form + is a convenient shortcut, and we will use it.  But we need not 

consider rule 7 in any analysis that we may choose to do of regular expressions or the languages that they generate. 

  

The compositional semantic interpretation function that we just defined lets us map between regular expressions and 

the languages that they define.  We begin by analyzing the smallest subexpressions and then work outwards to larger 

and larger expressions. 



 

Chapter 6 94 Regular Expressions 

Example 6.1 Analyzing a Simple Regular Expression 

             L((a  b)*b)  =  L((a  b)*)  L(b) 

                          = (L((a  b)))* L(b) 

                          = (L(a)  L(b))* L(b) 

                          = ({a}  {b})* {b} 

                          = {a, b}* {b}. 

 

So the meaning of the regular expression (a  b)*b is the set of all strings over the alphabet {a, b} that end in b.   

 

One straightforward way to read a regular expression and determine its meaning is to imagine it as a procedure that 

generates strings.  Read it left to right and imagine it generating a string left to right.  As you are doing that, think of 

any expression that is enclosed in a Kleene star as a loop that can be executed zero or more times.  Each time through 

the loop, choose any one of the alternatives listed in the expression.  So we can read the regular expression of the last 

example, (a  b)*b, as, “Go through a loop zero or more times, picking a single a or b each time.  Then concatenate 

b.”  Any string that can be generated by this procedure is in L((a  b)*b). 

 

Regular expressions can be used to scan text and pick out email addresses.  C 793. 

 

Example 6.2 Another Simple Regular Expression 

               L(((a  b)(a  b))a(a  b)*)  = L(((a  b)(a  b))) L(a) L((a  b)*) 

      = L((a  b)(a  b))  {a}  (L((a  b)))* 

      = L((a  b)) L((a  b))  {a}  {a, b}* 

      = {a, b} {a, b} {a} {a, b}* 

 

So the meaning of the regular expression ((a  b)(a  b))a(a  b)* is:  

 

{xay: x and y are strings of a’s and b’s and |x| = 2}. 

 

Alternatively, it is the language that contains all strings of a’s and b’s such that there exists a third character and it  is 

an a. 

 

Example 6.3 Given a Language, Find a Regular Expression 

Let L = {w  {a, b}* : |w| is even}.  There are two simple regular expressions both of which define L:  

 

 ((a  b)(a  b))*  This one can be read as, “Go through a loop zero or more times.   

      Each time through, choose an a or b, then choose a second  

      character (a or b).” 

 

 (aa  ab  ba  bb)*  This one can be read as, “Go through a loop zero or more times.   

      Each time through, choose one of the two-character sequences.” 

 

From this example, it is clear that the semantic interpretation function we have defined for regular expressions is not 

one-to-one.  In fact, given any language L, if there is one regular expression that defines it, there is an infinite number 

that do.  This is trivially true since, for any regular expression , the regular expression    defines the same 

language  does. 

 

Recall from our discussion in Section 2.2.6 that this is not unusual.  Semantic interpretation functions for English and 

for Java are not one-to-one.  The practical consequence of this phenomenon for regular expressions is that, if we are 

trying to design a regular expression that describes some particular language, there will be more than one right answer.  

We will generally seek the simplest one that works, both for clarity and to make pattern matching fast. 



 

Chapter 6 95 Regular Expressions 

Example 6.4 More than One Regular Expression for a Language 

Let L = {w  {a, b}* : w contains an odd number of a’s}.  Two equally simple regular expressions that define L are: 

 

 b* (ab*ab*)* a b*. 

 

 b* a b* (ab*ab*)*. 

 

Both of these expressions require that there be a single a somewhere.  There can also be other a’s, but they must occur 

in pairs, so the result is an odd number of a’s.  In the first expression, the last a in the string is viewed as the required 

“odd a”.  In the second, the first a plays that role.   

 

The regular expression language that we have just defined provides three operators.  We will assign the following 

precedence order to them (from highest to lowest): 

 

1. Kleene star. 

2. concatenation. 

3. union. 

 

So the expression (a  bb*a) will be interpreted as (a  (b(b*a))). 

 

All useful languages have idioms: common phrases that correspond to common meanings.  Regular expressions are 

no exception.  In writing them, we will often use the following: 

 

(  ) Can be read as “optional ”, since the expression can be satisfied either 

by matching  or by matching the empty string. 

(a  b)* Describes the set of all strings composed of the characters a and b.  More 

generally, given any alphabet  = {c1, c2, …, cn}, the language * is 

described by the regular expression: 

                (c1  c2  …   cn)*.  

 

When writing regular expressions, the details matter.  For example: 

 

a*  b*  (a  b)* The language on the right contains the string ab, while the language on 

the left does not.  Every string in the language on the left contains only 

a’s or only b’s. 

(ab)*  a*b* The language on the left contains the string abab, while the language on 

the right does not.  The language on the right contains the string 

aaabbbb, while the language on the left does not. 

 

The regular expression a* is simply a string.  It is different from the language L(a*) = {w : w is composed of zero or 

more a’s}.  However, when no confusion will result, we will use regular expressions to stand for the languages that 

they describe and we will no longer write the semantic interpretation function explicitly.  So we will be able to say 

things like, “The language a* is infinite.” 

6.2 Kleene’s Theorem 
The regular expression language that we have just described is significant for two reasons: 

 

• It is a useful way to define patterns. 

• The languages that can be defined with regular expressions are, as the name perhaps suggests, exactly the regular 

languages.  In other words, any language that can be defined by a regular expression can be accepted by some finite 

state machine.  And any language that can be accepted by a finite state machine can be defined by some regular 

expressions.   

 



 

Chapter 6 96 Regular Expressions 

In this section, we will state and prove as a theorem the claim that we just made: the class of languages that can be 

defined with regular expressions is exactly the regular languages.  This is the first of several claims of this sort that 

we will make in this book.  In each case, we will assert that some set A is identical to some very different looking set 

B.  The proof strategy that we will use in all of these cases is the same.  We will first prove that every element of A is 

also an element of B.  We will then prove that every element of B is also and element of A.  Thus, since A and B 

contain the same elements, they are the same set. 

6.2.1 Building an FSM from a Regular Expression 

Theorem 6.1 For Every Regular Expression There is an Equivalent FSM 

Theorem: Any language that can be defined with a regular expression can be accepted by some FSM and so is regular. 

 

Proof:  The proof is by construction.  We will show that, given a regular expression , we can construct an FSM M 

such that L() = L(M).   

 

We first show that there exists an FSM that corresponds to each primitive regular expression: 

 

• If  is any c  , we construct for it the simple FSM shown in Figure 6.1 (a). 

 

• If  is , we construct for it the simple FSM shown in Figure 6.1 (b). 

 

• Although it’s not strictly necessary to consider  since it has the same meaning as *, we’ll do so since we don’t 

usually think of it that way.  So, if  is , we construct for it the simple FSM shown in Figure 6.1 (c), 

 

 

 

  c   

 

      (a)                (b)          (c) 

 

Figure 6.1 FSMs for primitive regular expressions 

 

Next we must show how to build FSMs to accept languages that are defined by regular expressions that exploit the 

operations of concatenation, union, and Kleene star.  Let  and  be regular expressions that define languages over the 

alphabet .  If L() is regular, then it is accepted by some FSM M1 = (K1, , Δ1, s1, A1).  If L() is regular, then it is 

accepted by some FSM M2 = (K2, , Δ2, s2, A2). 

 

• If  is the regular expression    and if both L() and L() are regular, then we construct M3 = (K3, , Δ3, s3, A3) 

such that L(M3) = L() = L()  L().  If necessary, rename the states of M1 and M2 so that K1  K2 = .  Create a 

new start state, s3, and connect it to the start states of M1 and M2 via -transitions.  M3 accepts if either M1 or M2 

accepts.  So M3 = ({s3}  K1  K2, , Δ3, s3, A1  A2), where Δ3 = Δ1  Δ2  {((s3, ), s1), ((s3, ), s2)}. 

 

• If  is the regular expression  and if both L() and L() are regular, then we construct M3 = (K3, , Δ3, s3, A3) 

such that L(M3) = L() = L() L().  If necessary, rename the states of M1 and M2 so that K1  K2 = .  We will 

build M3 by connecting every accepting state of M1 to the start state of M2 via an -transition.  M3 will start in the 

start state of M1 and will accept if M2 does.  So M3 = (K1  K2, , Δ3, s1, A2), where Δ3 = Δ1  Δ2  {((q, ), s2) : q 

 A1}. 

 

• If  is the regular expression * and if L() is regular, then we construct M2 = (K2, , Δ2, s2, A2) such that L(M2) = 

L() = L()*.  We will create a new start state s2 and make it accepting, thus assuring that M2 accepts .  (We need 

a new start state because it is possible that s1, the start state of M1, is not an accepting state.  If it isn’t and if it is 

reachable via any input string other than , then simply making it an accepting state would cause M2 to accept 

strings that are not in (L(M1))*.)  We link the new s2 to s1 via an -transition.  Finally, we create -transitions from 



 

Chapter 6 97 Regular Expressions 

each of M1’s accepting states back to s1.  So M2 = ({s2}  K1, , Δ2, s2, {s2}  A1), where Δ2 = Δ1  {((s2, ), s1)} 

 {((q, ), s1) : q  A1}.   

 

Notice that the machines that these constructions build are typically highly nondeterministic because of their use of -

transitions.  They also typically have a large number of unnecessary states.  But, as a practical matter, that is not a 

problem since, given an arbitrary NDFSM M, we have an algorithm that can construct an equivalent DFSM M.  We 

also have an algorithm that can minimize M. 
 

Based on the constructions that have just been described, we can define the following algorithm to construct, given a 

regular expression , a corresponding (usually nondeterministic) FSM: 

 

        regextofsm(: regular expression) =  

Beginning with the primitive subexpressions of  and working outwards until an FSM for all of  has been 

built do: 

Construct an FSM as described above. 
◼ 

 

The fact that regular expressions can be transformed into executable finite state machines is 

important.  It means that people can specify programs as regular expressions and then have those 

expressions “compiled” into efficient processes.  For example, hierarchically structured regular 

expressions, with the same formal power as the regular expressions we have been working with, 

can be used to describe a lightweight parser for analyzing legacy software.  C 689. 

 

Example 6.5 Building an FSM from a Regular Expression 

Consider the regular expression (b  ab)*.   We use regextofsm to build an FSM that accepts the language defined 

by this regular expression: 

 

 

                      An FSM for b                An FSM for a             An FSM for b 

 

 
                                                    b                                            a   b 

 

 

An FSM for ab: 

  

                  a         b 

 

 

An FSM for (b  ab): 

 

 

 

              

 

 

 

           b    a                        b 

 

 



 

Chapter 6 98 Regular Expressions 

An FSM for (b  ab)*: 

 

 

              

 

       

   

               

      

         b    a                      b 

 

 

6.2.2 Building a Regular Expression from an FSM 
Next we must show that it is possible to go the other direction, namely to build, from an FSM, a corresponding regular 

expression.  The idea behind the algorithm that we are about to present is the following:  Instead of limiting the labels 

on the transitions of an FSM to a single character or , we will allow entire regular expressions as labels.  The goal of 

the algorithm is to construct, from an input FSM M, an output machine M such that M and M are equivalent and M 
has only two states, a start state and a single accepting state.  It will also have just one transition, which will go from 

its start state to its accepting state.  The label on that transition will be a regular expression that describes all the strings 

that could have driven the original machine M from its start state to some accepting state.  

Example 6.6  

Let M be: 
                                                           b 

 

                                       q1          a            q2     a              q3  

 

 

We can build an equivalent machine M by ripping out q2 and replacing it by a transition from q1 to q3 labeled with 

the regular expression ab*a.  So M is: 
                                                         

 

                                       q1          ab*a                              q3  

 

 

Given an arbitrary FSM M, M will be built by starting with M and then removing, one at a time, all the states that lie 

in between the start state and an accepting state.  As each such state is removed, the remaining transitions will be 

modified so that the set of strings that can drive M from its start state to some accepting state remains unchanged. 

 

The following algorithm creates a regular expression that defines L(M), provided that step 6 can be executed correctly: 

 

       fsmtoregexheuristic(M: FSM) =  

1. Remove from M any states that are unreachable from the start state. 

2. If M has no accepting states then halt and return the simple regular expression . 

3. If the start state of M is part of a loop (i.e., it has any transitions coming into it), create a new start state 

s and connect s to M’s start state via an -transition.  This new start state s will have no transitions into 

it. 

4. If there is more than one accepting state of M or if there is just one but there are any transitions out of it, 

create a new accepting state and connect each of M’s accepting states to it via an -transition.  Remove 

the old accepting states from the set of accepting states.  Note that the new accepting state will have no 

transitions out from it. 



 

Chapter 6 99 Regular Expressions 

5. If, at this point, M has only one state, then that state is both the start state and the accepting state and M 

has no transitions.  So L(M) = {}.  Halt and return the simple regular expression . 

6. Until only the start state and the accepting state remain do: 

6.1. Select some state rip of M.  Any state except the start state or the accepting state may be chosen.   

6.2. Remove rip from M. 

6.3. Modify the transitions among the remaining states so that M accepts the same strings.  The labels 

on the rewritten transitions may be any regular expression. 

7. Return the regular expression that labels the one remaining transition from the start state to the accepting 

state. 

Example 6.7 Building a Regular Expression from an FSM 

Let M be:  

 
                              a 

                   1                             2 
                                          b 
                                                    a 

                    b         3 

  
                          a 

 

Create a new start state and a new accepting state and link them to M: 

                                         

 

                                 a 

  4                      1                              2 
                                           b 

                                                      a 

                            b         3 

  
                                 a 

                                                                                      

 

                                                                  5 

 

Remove state 3: 

 

                                 a 

  4                      1                             2 
                                                 b 

                                                       

                                      aa*b  

  

                                

                                                                                      

 

                                                                  5 

 



 

Chapter 6 100 Regular Expressions 

Remove state 2: 

 

                                      ab  aaa*b 

                                                    4                       1 

 

 

                                                                                    a 

 

                                                                               5 

 

 

Remove state 1: 

 

    (ab  aaa*b)*(a  ) 

                                            4                                                          5  

 

 

Example 6.8 A Simple FSM With No Simple Regular Expression 

Let M be the FSM that we built in Example 5.9 for the language L = {w  {a,b}* : w contains an even number of a’s 

and an odd number of b’s}.  M is: 

 
              a 

            [1] even a’s       [2]  odd a’s 

    even b’s           even b’s 
                      a 

    b                 b 
                              b         b 

    a 

              [3] even a’s       [4] odd a’s 

     odd b’s           odd b’s 
    a 

 

Try to apply fsmtoregexheuristic to M.  It will not be easy because it is not at all obvious how to implement step 6.3.  

For example, if we attempt to remove state [2], this changes not just the way that M can move from state [1] to state 

[4].  It also changes, for example, the way that M can move from state [1] to state [3] because it changes how M can 

move from state [1] back to itself. 

 

So, to prove that for every FSM there does exist a corresponding regular expression will require a construction in 

which we make clearer what must be done each time a state is removed and replaced by a regular expression.  The 

algorithm that we are about to describe has that property, although it comes at the expense of simplicity in easy cases 

such as the one in Example 6.7. 

Theorem 6.2 For every FSM There is an Equivalent Regular Expression 

Theorem: Every regular language (i.e., every language that can be accepted by some DFSM) can be defined with a 

regular expression.  

 

Proof: The proof is by construction.  Given a DFSM M = (K, , , s, A), we can construct a regular expression  such 

that L(M) = L(). 

 

As we did in fsmtoregexheuristic, we will begin by assuring that M has no unreachable states and that it has a start 

state that has no transitions into it and a single accepting state that has no transitions out from it.  But now we will 

make a further important modification to M before we start removing states: from every state other than the accepting 

state there must be exactly one transition to every state (including itself) except the start state.  And into every state 



 

Chapter 6 101 Regular Expressions 

other than the start state there must be exactly one transition from every state (including itself) except the accepting 

state.  To make this true, we do two things: 

 

• If there is more than one transition between states p and q, collapse them into a single transition:  If the set of labels 

on the original set of such transitions is {c1, c2, …,  cn}, then delete those transitions and replace them by a single 

transition with the label c1  c2  …  cn.  For example, consider the FSM fragment shown in Figure 6.2 (a).  We 

must collapse the two transitions between states 1 and 2.  After doing so, we have the fragment shown in Figure 

6.2 (b). 

 
                                                     b                               

                       1   2    1        a  b 2 
                                                     a                                              

    (a)                    (b) 

 

Figure 6.2 Collapsing multiple transitions into one 

                                                                    

• If any of the required transitions are missing, add them.  We can add all of those transitions without changing L(M) 

by labeling all of the new transitions with the regular expression .  So there is no string that will allow them to 

be taken.  For example, let M be the FSM shown in Figure 6.3 (a).  Several new transitions are required.  When 

we add them, we have the new FSM shown in Figure 6.3(b). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Adding all the required transitions 

 

 

Now suppose that we select a state rip and remove it and the transitions into and out of it.  Then we must modify every 

remaining transition so that M’s function stays the same.  Since M already contains a transition between each pair of 

states (except the ones that are not allowed into and out of the start and accepting states), if all those transitions are 

modified correctly then M’s behavior will be correct.  

 

So, suppose that we remove some state that we will call rip.  How should the remaining transitions be changed?  

Consider any pair of states p and q.  Once we remove rip, how can M get from p to q?   

 

• It can still take the transition that went directly from p to q, or 

• It can take the transition from p to rip.  Then, it can take the transition from rip back to itself zero or more times.  

Then it can take the transition from rip to q. 

 

Let R(p, q) be the regular expression that labels the transition in M from p to q.  Then, in the new machine M that will 

be created by removing rip, the new regular expression that should label the transition from p to q is: 

 

 R(p, q)     /* Go directly from p to q, 

     /*        or 

 R(p, rip)    /* go from p to rip, then 

 R(rip, rip)*    /* go from rip back to itself any number of times, then 

 R(rip, q)    /* go from rip to q.  



 

Chapter 6 102 Regular Expressions 

 

We’ll denote this new regular expression R (p, q).  Writing it out without the comments, we have: 

 

 R = R(p, q)  R(p, rip) R(rip, rip)* R(rip, q).   

Example 6.9 Ripping States Out One at a Time 

Again, let M be:  

             

 

 

      4 

  

                                                                                    b          
                                                           b                b 

                                                                                                

                        1   2    3 
                                                                   a                              a                 

                                 

 

 

Let rip be state 2.  Then: 

 

           R (1, 3)  = R(1, 3)  R(1, rip)R(rip, rip)*R(rip, 3). 

             = R(1, 3)  R(1, 2)R(2, 2)*R(2, 3). 

  =               a         b*        a. 

  = ab*a. 

 

Notice that ripping state 2 also changes another way the original machine had to get from state 1 to state 3:  It could 

have gone from state 1 to state 4 to state 2 and then to state 3.  But we don’t have to worry about that in computing R 

(1, 3).  The required change to that path will occur when we compute R (4, 3). 

 

When all states except the start state s and the accepting state a have been removed, R(s, a) will describe the set of 

strings that can drive M from its start state to its accepting state.  So R(s, a) will describe L(M). 

 

We can now define an algorithm to build, from any FSM M = (K, , Δ, s, A), a regular expression that describes L(M).  

We’ll use two subroutines, standardize, which will convert M to the required form, and buildregex, which will 

construct, from the modified machine M, the required regular expression. 

 

     standardize(M: FSM) =  

1. Remove from M any states that are unreachable from the start state. 

2. If the start state of M is part of a loop (i.e., it has any transitions coming into it), create a new start state s 

and connect s to M’s start state via an -transition.   

3. If there is more than one accepting state of M or if there is just one but there are any transitions out of it, 

create a new accepting state and connect each of M’s accepting states to it via an -transition.  Remove the 

old accepting states from the set of accepting states.    

4. If there is more than one transition between states p and q, collapse them into a single transition. 

5. If there is a pair of states p, q and there is no transition between them and p is not the accepting state and 

q is not the start state, then create a transition from p to q labeled . 

 

     buildregex(M: FSM) =  

1. If M has no accepting states, then halt and return the simple regular expression . 

2. If M has only one state, then halt and return the simple regular expression . 

3. Until only the start state and the accepting state remain do: 

3.1. Select some state rip of M.  Any state except the start state or the accepting state may be chosen.   



 

Chapter 6 103 Regular Expressions 

3.2. For every transition from some state p to some state q, if both p and q are not rip then, using the 

current labels given by the expressions R, compute the new label R for the transition from p to q 

using the formula: 

 

   R (p, q) = R(p, q)  R(p, rip) R(rip, rip)* R(rip, q).   

 

3.3. Remove rip and all transitions into and out of it. 

4. Return the regular expression that labels the one remaining transition from the start state to the accepting 

state. 

 

We can show that the new FSM that is built by standardize is equivalent to the original machine (i.e., that they accept 

the same language) by showing that the language that is accepted is preserved at each step of the procedure.  We can 

show that buildregex(M) builds a regular expression that correctly defines L(M) by induction on the number of states 

that must be removed before it halts.  Using those two procedures, we can now define: 

 

     fsmtoregex(M: DSM) =  

1. M = standardize(M: FSM). 

2. Return buildregex(M). 
◼ 

6.2.3 The Equivalence of Regular Expressions and FSMs 
 

The last two theorems enable us to prove the next one, due to Stephen Kleene . 

Theorem 6.3 Kleene’s Theorem 

Theorem: The class of languages that can be defined with regular expressions is exactly the class of regular languages.  

 

Proof:  Theorem 6.1 says that every language that can be defined with a regular expression is regular.  Theorem 6.2 

says that every regular language can be defined by some regular expression.  
◼ 

6.2.4 Kleene’s Theorem, Regular Expressions, and Finite State Machines 
Kleene’s Theorem tells us that there is no difference between the formal power of regular expressions and finite state 

machines.  But, as some of the examples that we just considered suggest, there is a practical difference in their 

effectiveness as problem solving tools: 

 

• As we said in the introduction to this chapter, the regular expression language is a pattern language.  In particular, 

regular expressions must specify the order in which a sequence of symbols must occur.  This is useful when we 

want to describe patterns such as phone numbers (it matters that the area code comes first) or email addresses (it 

matters that the user name comes before the domain). 

 

• But there are some applications where order doesn’t matter.  The vending machine example that we considered at 

the beginning of Chapter 5 is an instance of this class of problem.  The order in which the coins were entered doesn’t 

matter.  Parity checking is another.  Only the total number of 1 bits matters, not where they occur in the string.  

Finite state machines can be very effective in solving problems such as this.  But the regular expressions that 

correspond to those FSMs may be too complex to be useful. 

 

The bottom line is that sometimes it is easy to write a finite state machine to describe a language.  For other problems, 

it may be easier to write a regular expression.   

Sometimes Writing Regular Expressions is Easy 

Because, for some problems, regular expressions are easy to write, Kleene’s Theorem is useful.  It gives us a second 

way to show that a language is regular.  We need only show a regular expression that defines it. 



 

Chapter 6 104 Regular Expressions 

Example 6.10 No More Than One b 

Let L = {w  {a, b}* : there is no more than one b}.  L is regular because it can be described with the following 

regular expression: 

 

 a* (b  ) a*. 

 

Example 6.11 No Two Consecutive Letters Are the Same 

Let L = {w  {a, b}* : no two consecutive letters are the same}.  L is regular because it can be described with either 

of the following regular expressions: 

 

 (b  ) (ab)* (a  ). 

 (a  ) (ba)* (b  ). 

 

Example 6.12 Floating Point Numbers 

Consider again FLOAT, the language of floating point numbers that we described in Example 5.7.  Kleene’s Theorem 

tells us that, since FLOAT is regular, there must be some regular expression that describes it.  In fact, regular 

expressions can be used easily to describe languages like FLOAT.  We’ll use one shorthand.  Let: 

 

 D stand for (0  1  2  3  4  5  6  7  8  9). 

 

Then FLOAT is the language described the following regular expression: 

 

(  +  -) D+ (  .D+) (  (E (  +  -) D+). 

 

It is useful to think of programs, queries, and other strings in practical languages as being 

composed of a sequence of tokens, where a token is the smallest string that has meaning.  So 

variable and function names, numbers and other constants, operators, and reserved words are all 

tokens.  The regular expression we just wrote for the language FLOAT describes one kind of 

token.  The first thing a compiler does, after reading its input, is to divide it into tokens.  That 

process is called lexical analysis.  It is common to use regular expressions to define the behavior 

of a lexical analyzer.  C 669.  

Sometimes Building a Deterministic FSM is Easy 

Given an arbitrary regular expression, the general algorithms presented in the proof of Theorem 6.1 will typically 

construct a highly nondeterministic FSM.  But there is a useful special case in which it is possible to construct a DFSM 

directly from a set of patterns.  Suppose that we are given a set K of n keywords and a text string s.  We want to find 

occurrences in s of the keywords in K.  We can think of K as defining a language that can be described by a regular 

expression of the form: 

 

 (* (k1  k2  …  kn) *)+. 

 

In other words, we will accept any string in which at least one keyword occurs.  For some applications this will be 

good enough.  For others, we may care which keyword was matched.  For yet others we’ll want to find all substrings 

that match some keyword in K.   

 

By letting the keywords correspond to sequences of amino acids, this idea can be used to build a 

fast search engine for protein databases.  C 734. 

 



 

Chapter 6 105 Regular Expressions 

In any of these special cases, we can build a deterministic FSM M by first building a decision tree out of the set of 

keywords and then adding arcs as necessary to tell M what to do when it reaches a dead end branch of the tree.  The 

following algorithm builds an FSM that accepts any string that contains at least one of the specified keywords: 

 

     buildkeywordFSM(K: set of keywords) =  

1. Create a start state q0. 

2. For each element k of K do: 

Create a branch corresponding to k. 

3. Create a set of transitions that describe what to do when a branch dies, either because its complete pattern 

has been found or because the next character is not the correct one to continue the pattern. 

4. Make the states at the ends of each branch accepting. 

Example 6.13 Recognizing a Set of Keywords 

Consider the set of keywords {cat, bat, cab}.  We can use buildkeywordFSM to build a DFSM to accept strings 

that contain at least one of these keywords.  We begin by creating a start state and then a path to accept the first 

keyword, cat: 

 

           {c} 

 

            

 q0 c  a  t 

 

 

Next we add branches for the remaining keywords, bat and cab: 

 

         {c, b, a} 

 

                        

 q0 c  a  t 

 

 

 

                       
      b 

 

 

          

                         
   b  a  t   

 

 

Finally, we add transitions that let the machine recover after a path dies: 

 



 

Chapter 6 106 Regular Expressions 

     {c, b} 

          {c, b, a}      c      {t, b, c} 

                        

 q0 c  a  t 
     c 

              

 

             b      c                    
      b 

 

 
                         c 

                b                                  
   b  a  t   

    b 

 

    {t, b, c} 

6.3 Applications of Regular Expressions 
Patterns are everywhere. 

 

Regular expressions can be matched against the subject fields of emails to find at least some of 

the ones that are likely to be spam.   C 793. 

 

Because patterns are everywhere, applications of regular expressions are everywhere.  Before we look at some specific 

examples, one important caveat is required: the term regular expression is used in the modern computing world  in 

a much more general way than we have defined it here.  Many programming languages and scripting systems provide 

support for regular expression matching.  Each of them has its own syntax.  They all have the basic operators union, 

concatenation, and Kleene star.  They typically have others as well.  Many, for example, have a substitution operator 

so that, after a pattern is successfully matched against a string, a new string can be produced.  In many cases, these 

other operators provide enough additional power that languages that are not regular can be described.  So, in discussing 

“regular expressions” or “regexes”, it is important to be clear exactly what definition is being used.  In the rest of this 

book, we will use the definition that we presented in Section 6.1, with two additions to be described below, unless we 

clearly state that, for some particular purpose, we are going to use a different definition. 

 

The programming language Perl, for example, supports regular expression matching.  C 792.  In 

Exercise 6.19), we’ll consider the formal power of the Perl regular expression language. 

 

Real applications need more than two or three characters.  But we do not want to have to write expressions like: 

 

        (abcdefghijklmnopqrstuvwxyz). 

 

It would be much more convenient to be able to write (a-z).  So, in cases where there is an agreed upon collating 

sequence, we will use the shorthand ( - ) to mean (   …   ), where all the characters in the collating sequence 

between  and  are included in the union. 

Example 6.14 Decimal Numbers 

The following regular expression matches decimal encodings of numbers: 

 

-? ([0-9]+(\.[0-9]*)? | \.[0-9]+). 

 

In most standard regular expression dialects, the notation ? is equivalent to (  ).  In other words,  is optional.  

So, in this example, the minus sign is optional.  So is the decimal point. 



 

Chapter 6 107 Regular Expressions 

 

Because the symbol . has a special meaning in most regular expression dialects, we must quote it when we want to 

match it as a literal character.  The quote character in most regular expression dialects is \. 

 

Meaningful “words” in protein sequences are called motifs.  They can be described with regular 

expressions.  C 734. 

Example 6.15 Legal Passwords 

Consider the problem of determining whether a string is a legal password.  Suppose that we require that all passwords 

meet the following requirements: 

 

• A password must begin with a letter. 

• A password may contain only letters, numbers, and the underscore character. 

• A password must contain at least four characters and no more than eight characters. 

 

The following regular expression describes the language of legal passwords.  The line breaks have no significance.  

We have used them just to make the expression easier to read. 

 

   ((a-z)  (A-Z))  

   ((a-z)  (A-Z)  (0-9)  _) 

   ((a-z)  (A-Z)  (0-9)  _) 

   ((a-z)  (A-Z)  (0-9)  _) 

   ((a-z)  (A-Z)  (0-9)  _  ) 

   ((a-z)  (A-Z)  (0-9)  _  ) 

   ((a-z)  (A-Z)  (0-9)  _  ) 

   ((a-z)  (A-Z)  (0-9)  _  ) 

 

While straightforward, the regular expression that we just wrote is a nuisance to write and not very easy to read.  The 

problem is that, so far, we have only three ways to specify how many times a pattern must occur: 

 

•  means that the pattern  must occur exactly once. 

• * means that the pattern  may occur any number (including zero) of times. 

• + means that the pattern  may occur any positive number of times. 

 

What we needed in the previous example was a way to specify how many times a pattern  should occur.  We can do 

this with the following notations: 

 

• {n, m} means that the pattern  must occur at least n times and no more than m times. 

• {n} means that the pattern  must occur exactly n times. 

 

Using this notation, we can rewrite the regular expression of Example 6.15 as: 

 

((a-z)  (A-Z)) ((a-z)  (A-Z)  (0-9)  _){3,7}. 

Example 6.16 IP Addresses 

The following regular expression searches for Internet (IP) addresses: 

 

([0-9]{1,3} (\. [0-9] {1,3} ){3}). 

 

In XML, regular expressions are one way to define parts of new document types.  C 807. 



 

Chapter 6 108 Regular Expressions 

6.4 Manipulating and Simplifying Regular Expressions  
The regular expressions (a  b)* (a  b)* and (a  b)* define the same language.  The second one is simpler than 

the first and thus easier to work with.  In this section we discuss techniques for manipulating and simplifying regular 

expressions.  All of these techniques are based on the equivalence of the languages that the regular expressions define.  

So we will say that, for two regular expressions  and ,  =  iff L() = L(). 

 

We first consider identities that follow from the fact that the meaning of every regular expression is a language, which 

means that it is a set: 

 

• Union is commutative: for any regular expressions  and ,    =   . 

• Union is associative: for any regular expressions , , and , (  )   =   (  ). 

•  is the identity for union: for any regular expression ,     =    = . 

• Union is idempotent: for any regular expression ,    =  . 

• Given any two sets A and B, if B  A, then A  B = A.  So, for example, a*  aa = a*, since L(aa)  L(a*). 

 

Next we consider identities involving concatenation: 

 

• Concatenation is associative: for any regular expressions , , and , () = (). 

•  is the identity for concatenation: for any regular expression ,   =   = . 

•  is a zero for concatenation: for any regular expression ,   =   = . 

 

Concatenation distributes over union: 

 

• For any regular expressions , , and , (  )  = ( )  ( ).  Every string in either of these languages is 

composed of a first part followed by a second part.  The first part must be drawn from L() or L().  The second 

part must be drawn from L() . 

• For any regular expressions , , and ,  (  ) = ( )  ( ).  (By a similar argument.) 

 

Finally, we introduce identities involving Kleene star: 

 

• * = . 

• * = . 

• For any regular expression , (*)* = *.  L(*) contains all and only the strings that are composed of zero or 

more strings from L(), concatenated together. All of them are also in L((*)*) since L((*)*) contains, among 

other things, every individual string in L(*).  No other strings are in L((*)*) since it can contain only strings that 

are formed from concatenating together elements of L(*), which are in turn concatenations of strings from L(). 

• For any regular expression , ** = *.  Every string in either of these languages is composed of zero or more 

strings from  concatenated together.  

• More generally, for any regular expressions  and , if L(*)  L(*) then ** = *.  For example: 

 

a* (a  b)* = (a  b)*, since L(a*)  L((a  b)*).   

 

 is redundant because any string it can generate and place at the beginning of a string to be generated by the 

combined expression ** can also be generated by *. 

• Similarly, if L(*)  L(*) then ** = *.   

• For any regular expressions  and , (  )* = (**)*.  To form a string in either language, a generator must 

walk through the Kleene star loop zero or more times.  Using the first expression, each time through the loop it 

chooses either a string from L() or a string from L().  That process can be copied using the second expression by 

picking exactly one string from L() and then  from L() or one string from L() and then  from L().  Using the 

second expression, a generator can pick a sequence of strings from L() and then a sequence of strings from L() 

each time through the loop.  But that process can be copied using the first expression by simply selecting each 

element of the sequence one at a time on successive times through the loop. 



 

Chapter 6 109 Regular Expressions 

• For any regular expressions  and , if L()  L(*) then (  )* = *.  For example, (a  )* = a*, since {} 

 L(a*).   is redundant since any string it can generate can also be generated by *.  

Example 6.17 Simplifying a Regular Expression 

          ((a*  )*   aa) (b  bb)* b* ((a  b)* b*   ab)* = /* L()  L(a*).  

          ((a*)*           aa) (b  bb)* b* ((a  b)* b*   ab)*  = 

          (a*               aa) (b  bb)* b* ((a  b)* b*   ab)*  = /* L(aa)  L(a*).  

          a*                            (b  bb)* b* ((a  b)* b*   ab)*  = /* L(bb)  L(b*). 

          a*                             b*             b* ((a  b)* b*   ab)*  =  

          a*                             b*                  ((a  b)* b*   ab)*  = /* L(b*)  L((a  b)*). 

          a*                             b*                  ((a  b)*       ab)*  = /* L(ab)  L((a  b)*).  

          a*                             b*                  ((a  b)*               )*  =  

          a*                             b*                   (a  b)*                  = /* L(b*)  L((a  b)*).  

          a*                                                     (a  b)*                  = /* L(a*)  L((a  b)*).  

                                                                   (a  b)*.                    

6.5 Exercises 
1) Describe in English, as briefly as possible, the language defined by each of these regular expressions: 

a) (b  ba) (b  a)* (ab  b). 

b) (((a*b*)*ab)  ((a*b*)*ba))(b  a)*. 

 

2) Write a regular expressions to describe each of the following languages: 

a) {w  {a, b}* : every a in w is immediately preceded and followed by b}. 

b) {w  {a, b}* : w does not end in ba}. 

c) {w  {0, 1}* : y  {0, 1}* (|xy| is even)}. 

d) {w  {0, 1}* : w corresponds to the binary encoding, without leading 0’s, of natural numbers that are evenly 

divisible by 4}. 

e) {w  {0, 1}* : w corresponds to the binary encoding, without leading 0’s, of natural numbers that are powers 

of 4}. 

f) {w  {0-9}* : w corresponds to the decimal encoding, without leading 0’s, of an odd natural number}. 

g) {w  {0, 1}* : w has 001 as a substring}. 

h) {w  {0, 1}* : w does not have 001 as a substring}. 

i) {w  {a, b}* : w has bba as a substring}. 

j) {w  {a, b}* : w has both aa and bb as substrings}. 

k) {w  {a, b}* : w has both aa and aba as substrings}. 

l) {w  {a, b}* : w contains at least two b’s that are not followed by an a}. 

m) {w  {0, 1}* : w has at most one pair of consecutive 0’s and at most one pair of consecutive 1’s}.  

n) {w  {0, 1}* : none of the prefixes of w ends in 0}. 

o) {w  {a, b}* : #a(w) 3 0}. 

p) {w  {a, b}* : #a(w)  3}. 

q) {w  {a, b}* : w contains exactly two occurrences of the substring aa}. 

r) {w  {a, b}* : w contains no more than two occurrences of the substring aa}. 

s) {w  {a, b}* - L}, where L = {w  {a, b}* : w contains bba as a substring}. 

t) {w  {0, 1}* : every odd length string in L begins with 11}. 

u) {w  {0-9}* : w represents the decimal encoding of an odd natural number without leading 0’s. 

v) L1 – L2, where L1 = a*b*c* and L2 = c*b*a*. 

w) The set of legal United States zip codes . 

x) The set of strings that correspond to domestic telephone numbers in your country. 

 



 

Chapter 6 110 Regular Expressions 

3) Simplify each of the following regular expressions: 

a) (a  b)* (a  ) b*.  

b) (*  b) b*.  

c) (a  b)*a*  b. 

d) ((a  b)*)*. 

e) ((a  b)+)*. 

f) a ( (a  b)(b  a) )*  a ( (a  b) a )*  a ( (b  a) b )*. 

 

4) For each of the following expressions E, answer the following three questions and prove your answer: 

(i)  Is E a regular expression? 

(ii)  If E is a regular expression, give a simpler regular expression. 

(iii)  Does E describe a regular language? 

a) ((a  b)  (ab))*. 

b) (a+ anbn). 

c) ((ab)* ). 

d) (((ab)  c)*  (b  c*)). 

e) (*  (bb*)). 

 

5) Let L = {anbn : 0  n  4}. 

a) Show a regular expression for L. 

b) Show an FSM that accepts L. 

 

6) Let L = {w  {1, 2}* : for all prefixes p of w, if |p| > 0 and |p| is even, then the last character of p is 1}. 

a) Write a regular expression for L. 

b) Show an FSM that accepts L.  

 

7) Use the algorithm presented in the proof of Kleene’s Theorem to construct an FSM to accept the language 

generated by each of the following regular expressions: 

a) (b(b  )b)*. 

b) bab  a*. 

 

8) Let L be the language accepted by the following finite state machine: 
 

                     b   
     b 

  q0 a q1  q2    
     a 

                b 
           a  

 

   q3  

 

Indicate, for each of the following regular expressions, whether it correctly describes L: 

a) (a  ba)bb*a. 

b) (  b)a(bb*a)*. 

c) ba ab*a. 

d) (a  ba)(bb*a)*. 

 



 

Chapter 6 111 Regular Expressions 

9) Consider the following FSM M: 

 

 
                a 

               a               b        a, b 

 

  q0 b q1 a q2   b q3   

 

 

a) Show a regular expression for L(M). 

b) Describe L(M) in English. 

 

10) Consider the FSM M of Example 5.3.  Use fsmtoregexheuristic to construct a regular expression that describes 

L(M).  

 

11) Consider the FSM M of Example 6.9.  Apply fsmtoregex to M and show the regular expression that results. 

 

12) Consider the FSM M of Example 6.8.  Apply fsmtoregex to M and show the regular expression that results.  (Hint: 

this one is exceedingly tedious, but it can be done.) 

 

13) Show a possibly nondeterministic FSM to accept the language defined by each of the following regular 

expressions: 

a) (((a  ba) b  aa)*. 

b) (b  )(ab)*(a ). 

c) (babb*  a)*. 

d) (ba  ((a  bb) a*b)). 

e) (a  b)* aa (b  aa) bb (a  b)*. 

 

14) Show a DFSM to accept the language defined by each of the following regular expressions: 

a) (aba  aabaa)*. 

b) (ab)*(aab)*. 

 

15) Consider the following DFSM M: 

 

  q0 a q1  b q3   

 
                               b                a      b 

 

 

   q2 

 

a) Write a regular expression that describes L(M). 

b) Show a DFSM that accepts L(M). 

 

16) Given the following DFSM M, write a regular expression that describes L(M): 

 

          0, 1                0  

 

  q0 0 q1  1 q2   

 

 

17) Add the keyword able to the set in Example 6.13 and show the FSM that will be built by buildkeywordFSM 

from the expanded keyword set. 

 



 

Chapter 6 112 Regular Expressions 

18) Let  = {a, b}.  Let L = {, a, b}. Let R be a relation defined on * as follows:  xy (xRy iff y = xb).  Let R be 

the reflexive, transitive closure of R.  Let L = {x : y  L (yRx)}.  Write a regular expression for L. 

 

19) In C 792, we summarize the main features of the regular expression language in Perl.  What feature of that regular 

expression language makes it possible to write regular expressions that describe languages that aren’t regular? 

 

20) For each of the following statements, state whether it is True or False.  Prove your answer. 

a) (ab)*a = a(ba)*. 

b) (a  b)* b (a  b)* = a* b (a  b)*. 

c) (a  b)* b (a  b)*  (a  b)* a (a  b)* = (a  b)*. 

d) (a  b)* b (a  b)*  (a  b)* a (a  b)* = (a  b)+. 

e) (a  b)* b a (a  b)*  a*b* = (a  b)*. 

f) a* b (a  b)* = (a  b)* b (a  b)*. 

g) If  and  are any two regular expressions, then (  )* = (  ). 

h) If  and  are any two regular expressions, then ()* = ()*. 

 

 

 



 

Chapter 7 113 Regular Grammars  

7 Regular Grammars  

So far, we have considered two equivalent ways to describe exactly the class of regular languages: 

 

• Finite state machines. 

• Regular expressions. 

 

We now introduce a third: 

 

• Regular grammars (sometimes also called right linear grammars). 

7.1 Definition of a Regular Grammar 
A regular grammar G is a quadruple (V, , R, S), where: 

 

• V is the rule alphabet, which contains nonterminals (symbols that are used in the grammar but that do not appear 

in strings in the language) and terminals (symbols that can appear in strings generated by G), 

•  (the set of terminals) is a subset of V, 

• R (the set of rules) is a finite set of rules of the form X → Y,  

• S (the start symbol) is a nonterminal. 

 

In a regular grammar, all rules in R must: 

 

• have a left-hand side that is a single nonterminal, and 

• have a right-hand side that is  or a single terminal or a single terminal followed by a single nonterminal. 

 

So S → a, S → , and T → aS are legal rules in a regular grammar.  S → aSa and aSa → T are not legal rules in a 

regular grammar. 

 

We will formalize the notion of a grammar generating a language in Chapter 11, when we introduce a more powerful 

grammatical framework, the context-free grammar.  For now, an informal notion will do.  The language generated by 

a grammar G = (V, , R, S), denoted L(G), is the set of all strings w in * such that it is possible to start with S, apply 

some finite set of rules in R, and derive w. 

 

To make writing grammars easy, we will adopt the convention that, unless otherwise specified, the start symbol of 

any grammar G will be the symbol on the left-hand side of the first rule in RG.   

Example 7.1 Even Length Strings 

 

Let L = {w  {a, b}* : |w| is even}. 

 

The following regular expression defines L: 

 

  ((aa)  (ab)  (ba)  (bb))*.               

 

The following regular grammar G also defines L:

The following DFSM  M accepts L: 

 

                              a, b 

                

                S                                  T 

 

                              a, b 

 

  S →   S → aT  S → bT 

  T → aS  T → bS 

   

In G, the job of the nonterminal S is to generate an even length string.  It does this either by generating the empty 

string or by generating a single character and then creating T.  The job of T is to generate an odd length string.  It does 

this by generating a single character and then creating S.  S generates , the shortest possible even length string.  So, 

if T can be shown to generate all and only the odd length strings, we can show that S generates all and only the 



 

Chapter 7 114 Regular Grammars  

remaining even length strings.  T generates every string whose length is one greater than the length of some string S 

generates.  So, if S generates all and only the even length strings, then T generates all and only the other odd length 

strings. 

 

Notice the clear correspondence between M and G, which we have highlighted by naming M’s states S and T.  Even 

length strings drive M to state S.  Even length strings are generated by G starting with S.  Odd length strings drive M 

to state T.  Odd length strings are generated by G starting with T. 

7.2 Regular Grammars and Regular Languages 

Theorem 7.1 Regular Grammars Define Exactly the Regular Languages 

Theorem: The class of languages that can be defined with regular grammars is exactly the regular languages.  

 

Proof:  We first show that any language that can be defined with a regular grammar can be accepted by some FSM 

and so is regular.  Then we must show that every regular language (i.e., every language that can be accepted by some 

FSM) can be defined with a regular grammar.  Both proofs are by construction.   

 

Regular grammar → FSM: The following algorithm constructs an FSM M from a regular grammar G = (V, , R, S) 

and assures that L(M) = L(G): 

 

     grammartofsm(G: regular grammar) =  

1. Create in M a separate state for each nonterminal in V. 

2. Make the state corresponding to S the start state. 

3. If there are any rules in R of the form X → w, for some w  , then create an additional state labeled #. 

4. For each rule of the form X → w Y, add a transition from X to Y labeled w. 

5. For each rule of the form X → w, add a transition from X to # labeled w. 

6. For each rule of the form X → , mark state X as accepting. 

7. Mark state # as accepting. 

8. If M is incomplete (i.e., there are some (state, input) pairs for which no transition is defined), M requires 

a dead state.  Add a new state D.  For every (q, i) pair for which no transition has already been defined, 

create a transition from q to D labeled i.  For every i in , create a transition from D to D labeled i. 

 

FSM → Regular grammar : The construction is effectively the reverse of the one we just did.  We leave this step as 

an exercise.     
◼ 

Example 7.2 Strings that End with aaaa 

Let L = {w  {a, b}* : w ends with the pattern aaaa}.  Alternatively, L = (a  b)* aaaa.  The following regular 

grammar defines L: 

 

  S → aS  /* An arbitrary number of a’s and b’s can be generated before the 

  S → bS      pattern starts. 

  S → aB  /* Generate the first a of the pattern. 

  B → aC  /* Generate the second a of the pattern. 

  C → aD  /* Generate the third a of the pattern. 

  D → a  /* Generate the last a of the pattern and quit. 

 



 

Chapter 7 115 Regular Grammars  

Applying grammartofsm to this grammar, we get: 

 

           a, b  

 

                              

                

                S a B a C a D   

 
                                      a    

                                                

 

       #  

                            

 

Notice that the machine that grammartofsm builds is not necessarily deterministic. 

 

Example 7.3 The Missing Letter Language 

Let  = {a, b, c}.  Let L be LMissing = {w : there is a symbol ai   not appearing in w}, which we defined in Example 

5.12.  The following grammar G generates LMissing: 

 

S →  

S → aB 

S → aC 

S → bA 

S → bC 

S → cA 

S → cB 

A → bA 

A → cA 

A →  

B → aB 

B → cB 

B →  

 

C → aC 

C → bC 

C →  

 

 

 
 

 

 

The job of S is to generate some string in LMissing.  It does that by choosing a first character of the string and then 

choosing which other character will be missing.  The job of A is to generate all strings that do not contain any a’s.  

The job of B is to generate all strings that do not contain any b’s.  And the job of C is to generate all strings that do 

not contain any c’s.   

 

If we apply grammartofsm to G, we get M = 

 

                                            

                                                                                        b,c 

                                            b,c                     

                                                                  A 

 

 

                                                                                        a,c 

                S                          a,c                 

                                                                 B 

 

 

                                                                                        a,b 

                                                                 C 

                                            a,b                    

 

 



 

Chapter 7 116 Regular Grammars  

M is identical to the NDFSM we had previously built for LMissing except that it waits to guess whether to go to A, B or 

C until it has seen its first input character. 

 

Our proof of the first half of Theorem 7.1 clearly describes the correspondence between the nonterminals in a regular 

grammar and the states in a corresponding FSM.  This correspondence suggests a natural way to think about the design 

of a regular grammar.  The nonterminals in such a grammar need to “remember” the relevant state of a left-to-right 

analysis of a string. 

Example 7.4 Satisfying Multiple Criteria 

Let L = {w  {a, b}* : w contains an odd number of a’s and w ends in a}.  We can write a regular grammar G that 

defines L.  G will contain four nonterminals, each with a unique function (corresponding to the states of a simple FSM 

that accepts L).  So, in any derived string, if the remaining nonterminal is: 

 

• S, then the number of a’s so far is even.  We don’t have worry about whether the string ends in a since, to derive 

a string in L, it will be necessary to generate at least one more a anyway.  

• T, then the number of a’s so far is odd and the derived string ends in a. 

• X, then the number of a’s so far is odd and the derived string does not end in a. 

 

Since only T captures the situation in which the number of a’s so far is odd and the derived string ends in a, T is the 

only nonterminal that can generate .  G contains the following rules: 

 

  S → bS  /* Initial b’s don’t matter.  

  S → aT  /* After this, the number of a’s is odd and the generated string ends in a. 

  T →   /* Since the number of a’s is odd, and the string ends in a, it’s okay to quit. 

  T → aS  /* After this, the number of a’s will be even again. 

  T → bX  /* After this, the number of a’s is still odd but the generated string no 

         longer ends in a. 

  X → aS  /* After this, the number of a’s will be even. 

  X → bX  /* After this, the number of a’s is still odd and  the generated string still does  

        not end in a. 

 

To see how this grammar works, we can watch it generate the string baaba: 

 

            S   bS  /* Still an even number of a’s. 

     baT  /* Now an odd number of a’s and ends in a.  The process could quit now since 

        the derived string, ba, is in L. 

     baaS  /* Back to having an even number of a’s, so it doesn’t matter what the last 

        character is. 

     baabS /* Still even a’s. 

     baabaT /* Now an odd number of a’s and ends in a.  The process can quit, by applying 

         the rule T → . 

     baaba  

 

So now we know that regular grammars define exactly the regular languages.  But regular grammars are not often 

used in practice.  The reason, though, is not that they couldn’t be.  It is simply that there is something better.  Given 

some regular language L, the structure of a reasonable FSM for L very closely mirrors the structure of a reasonable 

regular grammar for it.  And FSMs are easier to work with.  In addition, there exist regular expressions.  In Parts III 

and IV, as we move outward to larger classes of languages, there will no longer exist a technique like regular 

expressions.  At that point, particularly as we are considering the context-free languages, we will see that grammars 

are a very important and useful way to define languages.   



 

Chapter 7 117 Regular Grammars  

7.3 Exercises 
1) Show a regular grammar for each of the following languages: 

a) {w  {a, b}* : w contains an even number of a’s and an odd number of b’s}. 

b) {w  {a, b}* : w does not end in aa}. 

c) {w  {a, b}* : w contains the substring abb}. 

d) {w  {a, b}* : if w contains the substring aa then |w| is odd}. 

e) {w  {a, b}* : w does not contain the substring aabb}. 

 

2) Consider the following regular grammar G: 

S → aT 

T → bT 

T → a 

T → aW 

W →  

W → aT 

a) Write a regular expression that generates L(G). 

b) Use grammartofsm to generate an FSM M that accepts L(G). 

 

3) Consider again the FSM M shown in Exercise 5.1).  Show a regular grammar that generates L(M). 

 

4) Show by construction that, for every FSM M there exists a regular grammar G such that L(G) = L(M). 

 

5) Let L = {w  {a, b}* : every a in w is immediately followed by at least one b}. 

a) Write a regular expression that describes L. 

b) Write a regular grammar that generates L. 

c) Construct an FSM that accepts L. 

 

 



 

Chapter 8     118   Regular and Nonregular Languages 

8 Regular and Nonregular Languages 

The language a*b* is regular.  The language AnBn = {anbn : n ≥ 0} is not regular (intuitively because it is not possible, 

given some finite number of states, to count an arbitrary number of a’s and then compare that count to the number of 

b’s).  The language {w  {a, b}* : every a is immediately followed by a b} is regular.  The similar sounding language 

{w  {a, b}* : every a has a matching b somewhere and no b matches more than one a} is not regular (again because 

it is now necessary to count the a’s and make sure that the number of b’s is at least as great as the number of a’s.) 

 

Given a new language L, how can we know whether or not it is regular?  In this chapter, we present a collection of 

techniques that can be used to answer that question. 

8.1 How Many Regular Languages Are There? 
First, we observe that there are many more nonregular languages than there are regular ones:   

Theorem 8.1 The Regular Languages are Countably Infinite 

Theorem: There is a countably infinite number of regular languages. 

 

Proof: We can lexicographically enumerate all the syntactically legal DFSMs with input alphabet .  Every regular 

language is accepted by at least one of them.  So there cannot be more regular languages than there are DFSMs.  Thus 

there are at most a countably infinite number of regular languages.  There is not a one-to-one relationship between 

regular languages and DFSMs since there is an infinite number of machines that accept any given language.  But the 

number of regular languages is infinite because it includes the following infinite set of languages: 

 

{a}, {aa}, {aaa}, {aaaa}, {aaaaa}, {aaaaaa}, … 

◼ 

 

But, by Theorem 2.3, there is an uncountably infinite number of languages over any nonempty alphabet .  So there 

are many more nonregular languages than there are regular ones. 

8.2 Showing That a Language Is Regular 
But many languages are regular.  How can we know which ones?  We start with the simplest cases. 

Theorem 8.2 The Finite Languages 

Theorem: Every finite language is regular. 

 

Proof: If L is the empty set, then it is defined by the regular expression  and so is regular.  If it is any finite language 

composed of the strings s1, s2, … sn for some positive integer n, then it is defined by the regular expression: 

 

 s1  s2  …  sn  

 

So it too is regular.   
◼ 

Example 8.1 The Intersection of Two Infinite Languages  

Let L = L1  L2, where L1 = {anbn : n  0} and L2 = {bnan : n  0}.  As we will soon be able to prove, neither L1 nor 

L2 is regular.  But L is.  L = {}, which is finite. 

 

Example 8.2 A Finite Language We May Not Be Able to Write Down 

Let L = {w   {0 - 9}*: w is the social security number of a living US resident}.  L is regular because it is finite.  It 

doesn’t matter that no individual or organization happens, at any given instant, to know what strings are in L. 



 

Chapter 8     119   Regular and Nonregular Languages 

 

Note, however, that although the language in Example 8.2 is formally regular, the techniques that we have described 

for recognizing regular languages would not be very useful in building a program to check for a valid social security 

number.  Regular expressions are most useful when the elements of L match one or more patterns.  FSMs are most 

useful when the elements of L share some simple structural properties.  Other techniques, like hash tables, are better 

suited to handling finite languages whose elements are chosen by our world, rather than by rule. 

Example 8.3 Santa Clause, God, and the History of the Americas 

Let: 

• L1 = {w  {0 - 9}*: w is the social security number of the current US president}. 

• L2 = {1 if Santa Claus exists and 0 otherwise}. 

• L3 = {1 if God exists and 0 otherwise}. 

• L4 = {1 if there were people in North America more than 10,000 years ago and 0 otherwise}. 

• L5 = {1 if there were people in North America more than 15,000 years ago and 0 otherwise}. 

• L6 = {w  {0 - 9}+ : w is the decimal representation, without leading 0’s, of a prime Fermat number}. 

 

L1 is clearly finite, and thus regular.  There exists a simple FSM to accept it, even though none of us happens to know 

what that FSM is.  L2 and L3 are perhaps a little less clear, but that is because the meanings of “Santa Claus” and 

“God” are less clear.  Pick a definition for either of them.  Then something that satisfies that definition either does or 

does not exist.  So either the simple FSM that accepts {0} and nothing else or the simple FSM that accepts {1} and 

nothing else accepts L2.  And one of them (possibly the same one, possibly the other one) accepts L3.  L4 is clear.  It is 

the set {1}.  L5 is also finite, and thus regular.  Either there were people in North America by 15,000 years ago or 

there were not, although the currently available fossil evidence  is unclear as to which.  So we (collectively) just 

don’t know yet which machine to build.  L6 is similar, although this time what is lacking is mathematics, as opposed 

to fossils.  Recall from Section 4.1 that the Fermat numbers are defined by 

   Fn = 2
2n

+ 1, n  0. 

 

The first five elements of Fn are {3, 5, 17, 257, 65,537}.  All of them are prime.  It appears likely  that no other 

Fermat numbers are prime.  If that is true, then L6 is finite and thus regular.  If it turns out that the set of Fermat 

numbers is infinite, then it is almost surely not regular. 

 

Not every regular language is computationally tractable.  Consider the Towers of Hanoi language. 

C 798. 

 

But, of course, most interesting regular languages are infinite.  So far, we’ve developed four techniques for showing 

that a (finite or infinite) language L is regular: 

 

• Exhibit a regular expression for L. 

• Exhibit an FSM for L. 

• Show that the number of equivalence classes of L is finite. 

• Exhibit a regular grammar for L. 

8.3 Some Important Closure Properties of Regular Languages 
We now consider one final technique, which allows us, when analyzing complex languages, to exploit the other 

techniques as subroutines.  The regular languages are closed under many common and useful operations.  So, if we 

wish to show that some language L is regular and we can show that L can be constructed from other regular languages 

using those operations, then L must also be regular. 

Theorem 8.3 Closure under Union, Concatenation and Kleene Star 

Theorem: The regular languages are closed under union, concatenation and Kleene star.  

 



 

Chapter 8     120   Regular and Nonregular Languages 

Proof: By the same constructions that were used in the proof of Kleene’s theorem.  
◼ 

Theorem 8.4 Closure under Complement, Intersection, Difference, Reverse and Letter 
Substitution 

Theorem: The regular languages are closed under complement, intersection, difference, reverse, and letter 

substitution. 

 

Proof:   

• The regular languages are closed under complement. If L1 is regular, then there exists a DFSM M1 = (K, , , s, A) 

that accepts it.  The DFSM M2 = (K, , , s, K - A), namely M1 with accepting and nonaccepting states swapped, 

accepts (L(M1)) because it rejects all string that M1 accepts and rejects all strings that M1 accepts.   

 

Given an arbitrary (possibly nondeterministic) FSM M1 = (K1, , 1, s1, A1), we can construct a DFSM M2 = (K2, 

, 2, s2, A2) such that L(M2) = (L(M1)).  We do so as follows: From M1, construct an equivalent deterministic 

FSM M = (KM, , M, sM, AM), using the algorithm ndfsmtodfsm, presented in the proof of Theorem 5.3.  (If M1 

is already deterministic, M = M1.)  M must be stated completely, so if it is described with an implied dead state, 

add the dead state and all required transitions to it.  Begin building M2 by setting it equal to M.  Then swap the 

accepting and the nonaccepting states.  So M2 = (KM, , M, sM, KM - AM).  

 

• The regular languages are closed under intersection.  We note that:  

 

L(M1)  L(M2) = (L(M1)  L(M2)). 

 

We have already shown that the regular languages are closed under both complement and union.  Thus they are 

also closed under intersection. 

 

It is also possible to prove this claim by construction of an FSM that accepts L(M1)  L(M2).  We leave that proof 

as an exercise. 

 

• The regular languages are closed under set difference (subtraction).  We note that: 

 

L(M1) - L(M2) = L(M1)  L(M2). 

 

We have already shown that the regular languages are closed under both complement and intersection.  Thus they 

are also closed under set difference. 

 

This claim too can also be proved by construction, which we leave as an exercise. 

 

• The regular languages are closed under reverse.  Recall that LR = {w  * : w = xR for some x  L}.  We leave the 

proof of this as an exercise.   

 

• The regular languages are closed under letter substitution, defined as follows: consider any two alphabets, 1 and 

2.  Let sub be any function from 1 to 2*.  Then letsub is a letter substitution function from L1 to L2 iff letsub(L1) 

= {w  2* : y  L1 (w = y except that every character c of y has been replaced by sub(c))}.  For example, suppose 

that 1 = {a, b}, 2 = {0, 1}, sub(a) = 0, and sub(b) = 1.  Then letsub({anbn : n  0}) = {0n12n : n  0}.   We leave 

the proof that the regular languages are closed under letter substitution as an exercise.      
◼ 



 

Chapter 8     121   Regular and Nonregular Languages 

Example 8.4 Closure Under Complement 

Consider the following NDFSM M = 

 
          b 

 

  1 a 2 b 3 

 
                                     a 

 

    4 

 

 

If we use the algorithm that we just described to convert M to a new machine M that accepts L(M), the last step is 

to swap the accepting and the nonaccepting states.  A quick look at M makes it clear why it is necessary first to make 

M deterministic and then to complete it by adding the dead state.  M accepts the input a in state 4.  If we simply 

swapped accepting and nonaccepting states, without making the other changes, M would also accept a.  It would do 

so in state 2.  The problem is that M is nondeterministic, and has one path along which a is accepted and one along 

which it is rejected.  

 

To see why it is necessary to add the dead state, consider the input string aba.  M rejects it since the path from state 

3 dies when M attempts to read the final a and the path from state 4 dies when it attempts to read the b.  But, if we 

don’t add the dead state, M will also reject it since, in it too, both paths will die.   

 

The closure theorems that we have now proved make it easy to take a divide-and-conquer approach to showing that a 

language is regular.  They also let us reuse proofs and constructions that we’ve already done. 

Example 8.5 The Divide-and-Conquer Approach 

Let L = {w  {a, b}* : w contains an even number of a’s and an odd number of b’s and all a’s come in runs of three}.  

L is regular because it is the intersection of two regular languages.  L = L1  L2, where: 

 

• L1 = {w  {a, b}* : w contains an even number of a’s and an odd number of b’s}, and  

• L2 = {w  {a, b}* : all a’s come in runs of three}. 

 

We already know that L1 is regular, since we showed an FSM that accepts it in Example 5.9: 

 
              a 

  even a’s         odd a’s 

  even b’s         even b’s 
                      a 

    b                 b 
                              b         b 

    a 

  even a’s          odd a’s 

  odd b’s          odd b’s 
    a 

     

Of course, we could start with this machine and modify it so that it accepts L.  But an easier approach is exploit a 

divide-and-conquer approach.  We’ll simply use the machine we have and then build a second simple machine, this 

one to accept L2.  Then we can prove that L is regular by exploiting the fact that the regular languages are closed under 

intersection.  The following machine accepts L2: 

 



 

Chapter 8     122   Regular and Nonregular Languages 

 
  b          a 

                 
   a  a   

        

        

 

The closure theorems are powerful, but they say only what they say.  We have stated each of the closure theorems in 

as strong a form as possible.  Any similar claims that are not implied by the theorems as we have stated them are 

almost certainly false, which can usually be shown easily by finding a simple counterexample.   

Example 8.6 What the Closure Theorem for Union Does Not Say 

The closure theorem for union says that:  

 

if    L1 and L2 are regular    then    L = L1  L2 is regular.   

 

The theorem says nothing, for example, about what happens if L is regular.  Does that mean that L1 and L2 are also?  

The answer is maybe.  We know that a+ is regular.  We will consider two cases for L1 and L2.  First, let them be:  

 

 a+ = {ap : p > 0 and p is prime}  {ap : p > 0 and p is not prime}. 

 

 a+ =   L1             L2. 

 

As we will see in the next section, neither L1 nor L2 is regular.  But now consider: 

 

a+ = {ap: p > 0 and p is even}  {ap: p > 0 and p is odd}.  

 

 a+ =   L1           L2. 

 

In this case, both L1 and L2 are regular.  

 

Example 8.7 What the Closure Theorem for Concatenation Does Not Say 

The closure theorem for concatenation says that:  

 

if    L1 and L2 are regular    then    L = L1 L2 is regular.   

 

But the theorem says nothing, for example, about what happens if L2 is not regular.  Does that mean that L isn’t regular 

either?  Again, the answer is maybe.  We first consider the following example: 

 

 {abanbn : n  0} = {ab} {anbn : n  0}. 

 

    L =   L1        L2. 

 

As we’ll see in the next section, L2 is not regular.  And, in this case, neither is L.  But now consider: 

 

  {aaa*} = {a*} {ap: p is prime}. 

 

     L =   L1        L2. 

 

While again L2 is not regular, now L is. 



 

Chapter 8     123   Regular and Nonregular Languages 

8.4 Showing That a Language is Not Regular 
We can show that a language is regular by exhibiting a regular expression or an FSM or a finite list of the equivalence 

classes of L or a regular grammar, or by using the closure properties that we have proved hold for the regular 

languages.  But how shall we show that a language is not regular?  In other words, how can we show that none of 

those descriptions exists for it?  It is not sufficient to argue that we tried to find one of them and failed.  Perhaps we 

didn’t look in the right place.  We need a technique that does not rely on our cleverness (or lack of it). 

 

What we can do is to make use of the following observation about the regular languages: every regular language L 

can be accepted by an FSM M with a finite number of states.  If L is infinite, then there must be at least one loop in 

M.  All sufficiently long strings in L must be characterized by one or more repeating patterns, corresponding to the 

substrings that drive M through its loops.  It is also true that, if L is infinite, then any regular expression that describes 

L must contain at least one Kleene star, but we will focus here on FSMs. 

 

To help us visualize the rest of this discussion, consider the FSM MLOOP, shown in Figure 8.1 (a).  MLOOP has 5 states.  

It can accept an infinite number of strings.  But the longest one that it can accept without going through any loops is 

4.  Now consider the slightly different FSM M, shown in Figure 8.1 (b).  M also has 5 states and one loop.  But it 

accepts only one string, aab.  The only string that can drive M through its loop is .  No matter how many times M 

goes through the loop, it cannot accept any longer strings. 

 

 
                                                        b 

                     b                     a                         a                         b 

          (a) 

 

 

 

                                                         

                                          a                         a                         b 

 

                  (b) 

 

 

Figure 8.1 What is the longest string that a 5-state FSM can accept? 

 

 

To simplify the following discussion, we will consider only DFSMs, which have no -transitions.  Each transition step 

that a DFSM takes corresponds to exactly one character in its input.  Since any language that can be accepted by an 

NDFSM can also be accepted by a DFSM, this restriction will not affect our conclusions. 

Theorem 8.5 Long Strings Force Repeated States 

Theorem: Let M = (K, , , s, A) be any DFSM.  If M accepts any string of length |K| or greater, then that string will 

force M to visit some state more than once (thus traversing at least one loop).   

 

Proof:  M must start in one of its states.  Each time it reads an input character, it visits some state.  So, in processing 

a string of length n, M creates a total of n + 1 state visits (the initial one plus one for each character it reads).  If n+1 

> |K|, then, by the pigeonhole principle, some state must get more than one visit.  So, if n  |K|, then M must visit at 

least one state more than once.   
◼ 

 

Let M = (K, , , s, A) be any DFSM.  Suppose that there exists some “long” string w (i.e., |w|  |K|) such that w  L(M).  

Then M must go through at least one loop when it reads w.  So there is some substring y of w that drove M through at 

least one loop.  Suppose we excise y from w.  The resulting string must also be in L(M) since M can accept it just as it 

accepts w but skipping one pass through one loop.  Further, suppose that we splice in one or more extra copies of y, 

immediately adjacent to the original one.  All the resulting strings must also be in L(M) since M can accept them by 



 

Chapter 8     124   Regular and Nonregular Languages 

going through its loop one or more additional times.  Using an analogy with a pump, we’ll say that we can pump y 

out once or in an arbitrary number of times and the resulting string must still be in L. 

 

To make this concrete, let’s look again at MLOOP, which accepts, for example, the string babbab.  babbab is “long” 

since its length is 6 and |K| = 5.  The second b drove MLOOP through its loop.  Call the string (in this case b) that drove 

MLOOP through its loop y.  We can pump it out, producing babab, which is also accepted by MLOOP.  Or we can pump 

in as many copies of b as we like, generating such strings as babbbab, babbbbbab, and so forth.  MLOOP also 

accepts all of them.  Returning to the original string babbab, the third b also drove MLOOP through its loop.  We could 

also pump it (in or out) and get a similar result.  

 

This property of FSMs, and the languages that they can accept, is the basis for a powerful tool for showing that a 

language is not regular.  If a language contains even one long (to be defined precisely below) string that cannot be 

pumped in the fashion that we have just described, then it is not accepted by any FSM and so is not regular.  We 

formalize this idea, as the Pumping Theorem, in the next section. 

8.4.2 The Pumping Theorem for Regular Languages 

Theorem 8.6 The Pumping Theorem for Regular Languages  

Theorem: If L is a regular language, then: 

 

         k  1 ( strings w  L, where |w|  k ( x, y, z (w = xyz, 

       |xy|  k, 

        y  , and 

       q  0 (xyqz  L)))). 

 

Proof:  The proof is the argument that we gave above:  If L is regular then it is accepted by some DFSM M = (K, , 

, s, A).  Let k be |K|.  Let w be any string in L of length k or greater.  By Theorem 8.5, to accept w, M must traverse 

some loop at least once.  We can carve w up and assign the name y to the first substring to drive M through a loop.  

Then x is the part of w that precedes y and z is the part of w that follows y.  We show that each of the last three 

conditions must then hold: 

 

• |xy|  k : M must not only traverse a loop eventually when reading w, it must do so for the first time by at least the 

time it has read k characters.  It can read k-1 characters without revisiting any states.  But the kth character must, if 

no earlier character already has, take M to a state it has visited before.  Whatever character does that is the last in 

one pass through some loop.  

• y  : since M is deterministic, there are no loops that can be traversed by . 

• q  0 (xyqz  L): y can be pumped out once (which is what happens if q = 0) or in any number of times (which 

happens if q is greater than 1) and the resulting string must be in L since it will be accepted by M.  It is possible that 

we could chop y out more than once and still generate a string in L, but without knowing how much longer w is 

than k, we don’t know any more than that it can be chopped out once. 
◼ 

 

The Pumping Theorem tells us something that is true of every regular language.  Generally, if we already know that 

a language is regular, we won’t particularly care about what the Pumping Theorem tells us about it.  But suppose that 

we are interested in some language L and we want to know whether or not it is regular.  If we could show that the 

claims made in the Pumping Theorem are not true of L, then we would know that L is not regular.  It is in arguments 

such as this that we will find the Pumping Theorem very useful.  In particular, we will use it to construct proofs by 

contradiction.  We will say, “If L were regular, then it would possess certain properties.  But it does not possess those 

properties.  Therefore, it is not regular.” 

Example 8.8 AnBn is not Regular 

Let L be AnBn = {anbn : n  0}.  We can use the Pumping Theorem to show that L is not regular.  If it were, then there 

would exist some k such that any string w, where |w|  k, must satisfy the conditions of the theorem.  We show one 

string w that does not.  Let w = akbk.  Since |w| = 2k, w is long enough and it is in L, so it must satisfy the conditions 



 

Chapter 8     125   Regular and Nonregular Languages 

of the Pumping Theorem.  So there must exist x, y, and z, such that w = xyz, |xy|  k, y  , and q  0 (xyqz  L).  But 

we show that no such x, y, and z exist.  Since we must guarantee that |xy|  k, y must occur within the first k characters 

and so y = ap for some p.  Since we must guarantee that y  , p must be greater than 0.  Let q = 2. (In other words, 

we pump in one extra copy of y.)  The resulting string is ak+pbk.  The last condition of the Pumping Theorem states 

that this string must be in L, but it is not since it has more a’s than b’s.  Thus there exists at least one long string in L 

that fails to satisfy the conditions of the Pumping Theorem.  So L = AnBn is not regular. 

 

The Pumping Theorem is a powerful tool for showing that a language is not regular.  But, as with any tool, using it 

effectively requires some skill.  To see how the theorem can be used, let’s state it again in its most general terms: 

 

For any language L, if L is regular, then every “long” string in L is pumpable. 

 

So, to show that L is not regular, it suffices to find a single long string w that is in L but is not pumpable.  To show 

that a string is not pumpable, we must show that there is no way to carve it up into x, y, and z in such a way that all 

three of the conditions of the theorem are met.  It is not sufficient to pick a particular y and show that it doesn’t work.  

(We focus on y since, once it has been chosen, everything to the left of it is x and everything to the right of it is z).  We 

must show that there is no value for y that works.  To do that, we consider all the logically possible classes of values 

for y (sometimes there is only one such class, but sometimes several must be considered).  Then we show that each of 

them fails to satisfy at least one of the three conditions of the theorem.  Generally we do that by assuming that y does 

satisfy the first two conditions, namely that it occurs within the first k characters and is not .  Then we consider the 

third requirement, namely that, for all values of q, xyqz is in L.  To show that it is not possible to satisfy that requirement, 

it is sufficient to find a single value of q such that the resulting string is not in L.  Typically, this can be done by setting 

q to 0 (thus pumping out once) or to 2 (pumping in once), although sometimes some other value of q must be 

considered.   

 

In a nutshell then, to use the Pumping Theorem to show that a language L is not regular, we must: 

 

1. Choose a string w, where w  L and |w|  k.  Note that we do not know what k is; we know only that it exists.  So 

we must state w in terms of k. 

2. Divide the possibilities for y into a set of equivalence classes so that all strings in a class can be considered 

together.  

3. For each such class of possible y values, where |xy|  k and y  : 

     Choose a value for q such that xyqz is not in L.  

 

In Example 8.8, y had to fall in the initial a region of w, so that was the only case that needed to be considered.  But, 

had we made a less judicious choice for w, our proof would not have been so simple.  Let’s look at another proof, with 

a different w: 

Example 8.9 A Less Judicious Choice for w 

Again let L be AnBn = {anbn : n  0}.  If AnBn were regular, then there would exist some k such that any string w, 

where |w|  k, must satisfy the conditions of the theorem.  Let w = ak/2bk/2.  (We must use k/2, i.e., the smallest 

integer greater than k/2, rather than truncating the division, since k might be odd.)  Since |w|  k and w is in L, w must 

satisfy the conditions of the Pumping Theorem.  So, there must exist x, y, and z, such that w = xyz, |xy|  k, y  , and 

q  0 (xyqz  L).  We show that no such x, y, and z exist.  This time, if they did, y could be almost anywhere in w 

(since all the Pumping Theorem requires is that it occur in the first k characters and there are only at most k+1 

characters).  So we must consider three cases and show that, in all three, there is no y that satisfies all conditions of 

the Pumping Theorem.  A useful way to describe the cases is to imagine w divided into two regions: 

 

           aaaaa…..aaaaaa | bbbbb…..bbbbbb 

           1             |              2                     

 



 

Chapter 8     126   Regular and Nonregular Languages 

Now we see that y can fall: 

 

• Exclusively in region 1: in this case, the proof is identical to the proof we did for Example 8.8.   

• Exclusively in region 2: then y = bp for some p.  Since y  , p must be greater than 0.  Let q = 2.  The resulting 

string is akbk+p.  But this string is not in L, since it has more b’s than a’s.   

• Straddling the boundary between regions 1 and 2: then y = apbr for some non-zero p and r.  Let q = 2.  The resulting 

string will have interleaved a’s and b’s, and so is not in L. 

 

There exists at least one long string in L that fails to satisfy the conditions of the Pumping Theorem.  So L = AnBn is 

not regular. 

 

To make maximum use of the Pumping Theorem’s requirement that y fall in the first k characters, it is often a good 

idea to choose a string w that is substantially longer than the k characters required by the theorem.  In particular, if w 

can be chosen so that there is a uniform first region of length at least k, it may be possible to consider just a single 

case for where y can fall. 

 

The Pumping Theorem inspires poets , as we’ll see in Chapter 10. 

 

AnBn is a simple language that illustrates the kind of property that characterizes languages that aren’t regular.  It isn’t 

of much practical importance, but it is typical of a family of languages, many of which are of more practical 

significance.  In the next example, we consider Bal, the language of balanced parentheses.  The structure of Bal is 

very similar to that of AnBn.  Bal is important because most languages for describing arithmetic expressions, Boolean 

queries, and markup systems require balanced delimiters. 

Example 8.10 The Balanced Parenthesis Language is Not Regular 

Let L be Bal = {w  {), (}* : the parentheses are balanced}.  If L were regular, then there would exist some k such 

that any string w, where |w|  k, must satisfy the conditions of the theorem.  Bal contain complex strings like (())(()()).  

But it is almost always easier to use the Pumping Theorem if we pick as simple a string as possible.  So, let w = (k)k.  

Since |w| = 2k and w is in L, w must satisfy the conditions of the Pumping Theorem.  So there must exist x, y, and z, 

such that w = xyz, |xy|  k, y  , and q  0 (xyqz  L).  But we show that no x, y, and z exist.  Since |xy|  k, y must 

occur within the first k characters and so y = (p for some p.  Since y  , p must be greater than 0.  Let q = 2. (In other 

words, we pump in one extra copy of y.)  The resulting string is (k+p)k.  The last condition of the Pumping Theorem 

states that this string must be in L, but it is not since it has more (’s than )’s.  There exists at least one long string in L 

that fails to satisfy the conditions of the Pumping Theorem.  So L = Bal is not regular. 

 

Example 8.11 The Even Palindrome Language is Not Regular 

Let L be PalEven = {wwR : w  {a, b}*}.  PalEven is the language of even-length palindromes of a’s and b’s.  We 

can use the Pumping Theorem to show that PalEven is not regular.  If it were, then there would exist some k such that 

any string w, where |w|  k, must satisfy the conditions of the theorem.  We show one string w that does not.  (Note 

here that the variable w used in the definition of L is different from the variable w mentioned in the Pumping Theorem.)  

We will choose w so that we only have to consider one case for where y could fall.  Let w = akbkbkak.  Since |w| = 4k 

and w is in L, w must satisfy the conditions of the Pumping Theorem.  So there must exist x, y, and z, such that w = 

xyz, |xy|  k, y  , and q  0 (xyqz  L).  Since |xy|  k, y must occur within the first k characters and so y = ap for 

some p.  Since y  , p must be greater than 0.  Let q = 2.  The resulting string is ak+pbkbkak.  If p is odd, then this 

string is not in PalEven because all strings in PalEven have even length.  If p is even then it is at least 2, so the first 

half of the string has more a’s than the second half does, so it is not in PalEven.  So L = PalEven is not regular. 

 

The Pumping Theorem says that, for any language L, if L is regular, then all long strings in L must be pumpable.  Our 

strategy in using it to show that a language L is not regular is to find one string that fails to meet that requirement.  

Often, there are many long strings that are pumpable.  If we try to work with them, we will fail to derive the 

contradiction that we seek.  In that case, we will know nothing about whether or not L is regular.  To find a w that is 

not pumpable, think about what property of L is not checkable by an FSM and choose a w that exhibits that property.  



 

Chapter 8     127   Regular and Nonregular Languages 

Consider again our last example.  The thing that an FSM cannot do is to remember an arbitrarily long first half and 

check it against the second half.  So we chose a w that would have forced it to do that.  Suppose instead that we had 

let w = akak.  It is in L and long enough.  But y could be aa and we could pump it out or in and all the resulting strings 

would be in L.   

 

So far, all of our Pumping Theorem proofs have set q to 2.  But that is not always the thing to do.  Sometimes it will 

be necessary to set it to 0.  (In other words, we will pump y out). 

Example 8.12 The Language with More a’s Than b’s is Not Regular 

Let L = {anbm : n > m}.  We can use the Pumping Theorem to show that L is not regular.  If it were, then there would 

exist some k such that any string w, where |w|  k, must satisfy the conditions of the theorem.  We show one string w 

that does not.  Let w = ak+1bk.  Since |w| = 2k+1 and w is in L, w must satisfy the conditions of the Pumping Theorem.  

So there must exist x, y, and z, such that w = xyz, |xy|  k, y  , and q  0 (xyqz  L).  Since |xy|  k, y must occur 

within the first k characters and so y = ap for some p.  Since y  , p must be greater than 0.  There are already more 

a’s than b’s, as required by the definition of L.  If we pump in, there will be even more a’s and the resulting string 

will still be in L.  But we can set q to 0 (and so pump out).  The resulting string is then ak+1-pbk.  Since p > 0, k+1-p  

k, so the resulting string no longer has more a’s than b’s and so is not in L.  There exists at least one long string in L 

that fails to satisfy the conditions of the Pumping Theorem.  So L is not regular. 

 

Notice that the proof that we just did depended on our having chosen a w that is just barely in L.  It had exactly one 

more a than b.  So y could be any string of up to k a’s.  If we pumped in extra copies of y, we would have gotten 

strings that were still in L.  But if we pumped out even a single a, we got a string that was not in L, and so we were 

able to complete the proof..  Suppose, though, that we had chosen w = a2kbk.  Again, pumping in results in strings in 

L.  And now, if y were simply a, we could pump out and get a string that was still in L.  So that proof attempt fails.  

In general, it is a good idea to choose a w that barely meets the requirements for L.  That makes it more likely that 

pumping will create a string that is not in L. 

 

Sometimes values of q other than 0 or 2 may also be required. 

Example 8.13 The Prime Number of a’s Language is Not Regular 

Let L be Primea = {an : n is prime}.  We can use the Pumping Theorem to show that L is not regular.  If it were, then 

there would exist some k such that any string w, where |w|  k, must satisfy the conditions of the theorem.  We show 

one string w that does not.  Let w = aj, where j is the smallest prime number greater than k+1.  Since |w| > k, w must 

satisfy the conditions of the Pumping Theorem.  So there must exist x, y, and z, such that w = xyz, |xy|  k and y  .  y 

= ap for some p.  The Pumping Theorem further requires that q  0 (xyqz  L).  So, q  0 (a|x| + |z| +q|y| must be in L).  

That means that |x| + |z| +q|y| must be prime. 

 

But suppose that q = |x| + |z|.  Then:       |x| + |z| +q|y|  =  |x| + |z| + (|x| + |z|)y 

      = (|x| + |z|)(1 + |y|),  

 

which is composite (non-prime) if both factors are greater than 1.  (|x| + |z|) > 1 because |w| > k+1 and |y|  k.  (1 + |y|) 

> 1 because |y| > 0.  So, for at least that one value of q, the resulting string is not in L.  So L = Primea is not regular. 

 

When we do a Pumping Theorem proof that a language L is not regular, we have two choices to make: a value for w 

and a value for q.  As we have just seen, there are some useful heuristics that can guide our choices: 

 

• To choose w: 

• Choose a w that is in the part of L that makes it not regular.   

• Choose a w that is only barely in L.   

• Choose a w with as homogeneous as possible an initial region of length at least k. 

 



 

Chapter 8     128   Regular and Nonregular Languages 

• To choose q: 

• Try letting q be either 0 or 2. 

• If that doesn’t work, analyze L to see if there is some other specific value that will work. 

8.4.3 Using Closure Properties 
Sometimes the easiest way to prove that a language L is not regular is to use the closure theorems for regular languages, 

either alone or in conjunction with the Pumping Theorem.  The fact that the regular languages are closed under 

intersection is particularly useful.  

Example 8.14 Using Intersection to Force Order Constraints 

Let L = {w  {a, b}*: #a(w) = #b(w)}.  If L were regular, then L = L  a*b* would also be regular.  But L = {anbn: 

n  0}, which we have already shown is not regular.  So L isn’t either.   

 

Example 8.15 Using Closure Under Complement 

Let L = {aibj: i, j  0 and i  j}.  It seems unlikely that L is regular since any machine to accept it would have to count 

the a’s.  It is possible to use the Pumping Theorem to prove that L is not regular but it is not easy to see how.  Suppose, 

for example, that we let w = ak+1bk.  But then y could be aa and it would pump since ak-1bk is in L, and so is ak+1+2(q−1)bk, 

for all nonnegative values of q.  

 

Instead, let w = akbk+k!.  Then y = ap for some nonzero p.  Let q = (k!/p) + 1 (in other words, pump in (k!/p) times).  

Note that (k!/p) must be an integer because p < k.  The number of a’s in the resulting string is k + (k!/p)p = k + k!.  So 

the resulting string is ak+k!bk+k!, which has equal numbers of a’s and b’s and so is not in L.  

 

The closure theorems provide an easier way.  We observe that if L were regular, then L would also be regular, since 

the regular languages are closed under complement.  L = {anbn : n  0}  {strings of a’s and b’s that do not have 

all a’s in front of all b’s}.  If L is regular, then L  a*b* must also be regular.  But L  a*b* = {anbn : n  0}, 

which we have already shown is not regular.  So neither is L or L . 

 

Sometimes, using the closure theorems is more than a convenience.  There are languages that are not regular but that 

do meet all the conditions of the Pumping Theorem.  The Pumping Theorem alone is insufficient to prove that those 

languages are not regular, but it may be possible to complete a proof by exploiting the closure properties of the regular 

languages. 

Example 8.16 Sometimes We Must Use the Closure Theorems 

Let L = {aibjck : i, j, k ≥ 0 and (if i = 1 then j = k)}.  Every string of length at least 1 that is in L is pumpable.  It is 

easier to see this if we rewrite the final condition as (i  1) or (j = k).  Then we observe: 

 

• If i = 0 then: if j  0, let y be b; otherwise, let y be c.  Pump in or out.  Then i will still be 0 and thus not equal to 

1, so the resulting string is in L.   

• If i = 1 then: let y be a.  Pump in or out.  Then i will no longer equal 1, so the resulting string is in L.   

• If i = 2 then: let y be aa.  Pump in or out.  Then i cannot equal 1, so the resulting string is in L.   

• If i > 2 then: let y = a.  Pump out once or in any number of times.  Then i cannot equal 1, so the resulting string is 

in L.  

 

But L is not regular.  One way to prove this is to use the fact that the regular languages are closed under intersection.  

So, if L were regular, then L = L  ab*c* = {abjck : j, k ≥ 0 and j = k} would also be regular.  But it is not, which 

we can show using the Pumping Theorem.  Let w = abkck.  Then y must occur in the first k characters of w.  If y 

includes the initial a, pump in once.  The resulting string is not in L because it contains more than one a.  If y does 

not include the initial a, then it must be bp, where 0 < p < k.  Pump in once.  The resulting string is not in L because 

it contains more b’s than c’s.  Since L is not regular, neither is L. 



 

Chapter 8     129   Regular and Nonregular Languages 

 

Another way to show that L is not regular is to use the fact that the regular languages are closed under reverse.  

LR = {ckbjai : i, j, k ≥ 0 and (if i = 1 then j = k)}.  If L were regular then LR would also be regular.  But it is not, which 

we can show using the Pumping Theorem.  Let w = ckbka.  y must occur in the first k characters of w, so y = cp, where 

0 < p  k.  Set q to 0.  The resulting string contains a single a, so the number of b’s and c’s must be equal for it to be 

in LR.  But there are fewer c’s than b’s.  So the resulting string is not in LR.  LR is not regular.  Since LR is not regular, 

neither is L. 

8.5 Exploiting Problem-Specific Knowledge 
Given some new language L, the theory that we have been describing provides the skeleton for an analysis of L.  If L 

is simple, that may be enough.  But if L is based on a real problem, any analysis of it will also depend on knowledge 

of the task domain.  We got a hint of this in Example 8.13, where we had to use some knowledge about numbers and 

algebra.  Other problems also require mathematical facts.   

Example 8.17 The Octal Representation of a Number Divisible by 7 

Let L = {w  {0, 1, 2, 3, 4 ,5, 6, 7}*: w is the octal representation of a nonnegative integer that is divisible by 7}.  

The first several strings in L are: 0, 7, 16, 25, 34, 43, 52, and 61.  Is L regular?  Yes, because there is a simple, 7-

state DFSM M that accepts L.  The structure of M takes advantage of the fact that w is in L iff the sum of its digits, 

viewed as numbers, is divisible by 7.  So the states of M correspond to the modulo 7 sum of the digits so far.  We omit 

the details. 

 

Sometimes L corresponds to a problem from a domain other than mathematics, in which case facts from that domain 

will be important.  

Example 8.18 A Music Language 

Let  = {, , , , , , }.  Let L = {w : w represents a song written in 4/4 time}.  L is regular.  It can be accepted by 

an FSM that checks for 4 beats between measure bars, where  counts as 4,  counts as 2,  counts as 1,  counts as ½, 

 counts as ¼, and counts as 1/8.  

 

Other techniques described in this book can also be applied to the language of music.  C 776. 

 

Example 8.19 English 

Is English a regular language?  If we assume that there is a longest sentence, then English is regular because it is finite.  

If we assume that there is not a longest sentence and that the recursive constructs in English can be arbitrarily nested, 

then it is easy to show that English is not regular.  We consider a very small subset of English, sentences such as: 

 

• The rat ran. 

• The rat that the cat saw ran. 

• The rat that the cat that the dog chased saw ran. 

 

There is a limit on how deeply nested sentences such as this can be if people are going to be able to understand them 

easily.  But the grammar of English imposes no hard upper bound.  So we must allow any number of embedded 

sentences.  Let A = {cat, rat, dog, bird, bug, pony} and let V = {ran, saw, chased, flew, sang, 

frolicked}.  If English were regular, then L = English  {The A (that the A)* V* V} would also be regular.  

But every English sentence of this form has the same number of nouns as verbs.  So we have that: 

 

  L = {The A (that the A)n Vn V, n  0}.   



 

Chapter 8     130   Regular and Nonregular Languages 

 

We can show that L is not regular by pumping.  The outline of the proof is the same as the one we used in Example 

8.9 to show that AnBn is not regular.  Let w = The cat (that the rat)k sawk ran.  y must occur within the 

first k characters of w.  If y is anything other than (the A that)p, or (A that the)p, or (that the A)p, for 

some nonzero p, pump in once and the resulting string will not be of the correct form.  If y is equal to one of those 

strings, pump in once and the number of nouns will no longer equal the number of verbs.  In either case the resulting 

string is not in L.  So English is not regular. 

 

Is there a longest English sentence?  Are there other ways of showing that English isn’t regular?  

Would it be useful to describe English as a regular language even if we could?  C 743. 

8.6 Functions on Regular Languages 
In Section 8.3, we considered some important functions that can be applied to the regular languages and we showed 

that the class of regular languages is closed under them.  In this section, we will look at some additional functions and 

ask whether the regular languages are closed under them.  In some cases, we will see that the answer is yes.  We will 

prove that the answer is yes by showing a construction that builds one FSM from another.  In other cases, we will see 

that the answer is no, which we now have the tools to prove.   

Example 8.20 The Function firstchars 

Consider again the function firstchars, which we defined in Example 4.11.  Firstchars(L) = {w : yL (y = cx, c  

L, x  L*, and w  c*)}.  In other words, to compute firstchars(L), we find all the characters that can be initial 

characters of some string in L.  For each such character c, c*  firstchars(L).   

 

The regular languages are closed under firstchars.  The proof is by construction.  If L is a regular language, then there 

exists some DFSM M = (K, , , s, A) that accepts L.  We construct, from M, a new DFSM M = (K, , , s, A) that 

accepts firstchars(L).  The algorithm to construct M is: 

 

1. Mark all the states in M from which there exists some path to some accepting state. 

 

       /* Find all the characters that are initial characters in some string in L. 

2. clist = . 

3. For each character c in  do: 

       If there is a transition from s, with label c, to some state q, and q was marked in step 1 then:  

   clist = clist  {c}. 

 

/* Build M.   

4. If clist =  then construct M with a single state s, which is not accepting.   

5. Else do: 

       Create a start state s and make it the first state in A. 
       For each character c in clist do: 

            Create a new state qc and add it to A. 

            Add a transition from s to qc labeled c. 

            Add a transition from qc to qc labeled c. 

 

M accepts exactly the strings in firstchars(L), so firstchars(L) is regular. 

 

We can also prove that firstchars(L) must be regular by showing how to construct a regular expression that describes 

it.  We begin by computing clist = {c1, c2, …, cn} as described above.  Then a regular expression that describes 

firstchars(L) is: 

 

 c1*  c2*  …  cn*. 

 



 

Chapter 8     131   Regular and Nonregular Languages 

The algorithm that we just presented constructs one program (a DFSM), using another program (another DFSM) as a 

starting point.  The algorithm is straightforward.  We have omitted a detailed proof of its correctness, but that proof is 

also straightforward.  Suppose that, instead of representing an input language L as a DFSM, we had represented it as 

an arbitrary program (written in C++ or Java or whatever) that accepted it.  It would not have been as straightforward 

to have designed a corresponding algorithm to convert that program into one that accepted firstchars(L).  We have 

just seen another advantage of the FSM formalism.   

Example 8.21 The Function chop 

Consider again the function chop, which we defined in Example 4.10.  Chop(L) = {w : xL  (x = x1cx2, x1  L*, x2 

 L*, c  L, |x1| = |x2|, and w = x1x2)}.  In other words, chop(L) is all the odd length strings in L with their middle 

character chopped out. 

 

The regular languages are not closed under chop.  To show this, it suffices to show one counterexample, i.e., one 

regular language L such that chop(L) is not regular.  Let L = a*db*.  L is regular since it can be described with a 

regular expression. 

 

What is chop(a*db*)?  Let w be some string in a*db*.  Now we observe: 

 

• If |w| is even, then there is no middle character to chop so w contributes no string to (a*db*). 

• If |w| is odd and w has an equal number of a’s and b’s, then its middle character is d.  Chopping out the d 

produces, and contributes to chop(a*db*), a string in {anbn : n  0}. 

• If |w| is odd and w does not have an equal number of a’s and b’s, then its middle character is not d.  Chopping 

out the middle character produces a string that still contains one d.  Also note that, since |w| is odd and the number 

of a’s differs from the number of b’s, it must differ by at least two.  So, when w’s middle character is chopped 

out, the resulting string will still have different numbers of a’s and b’s.   

 

So chop(a*db*) contains all strings in {anbn : n  0} plus some strings in {w  a*db*: |w| is even and #a(w)  #b(w)}.  

We can now show that chop(a*db*) is not regular.  If it were, then the language L = chop(a*db*)  a*b*, would 

also be regular since the regular languages are closed under intersection.  But L = {anbn : n  0}, which we have 

already shown is not regular.  So neither is chop(a*db*).  Since there exists at least one regular language L with the 

property that chop(L) is not regular, the regular languages are not closed under chop. 

 

Example 8.22 The Function maxstring 

Define maxstring(L) = {w: w  L and z* (z   → wz  L)}.  In other words, maxstring(L) contains exactly those 

strings in L that cannot be extended on the right and still be in L.  Let’s look at maxstring applied to some languages: 

 

 

 

 

 

 
 

 



 

Chapter 8     132   Regular and Nonregular Languages 

Example 8.23 The Function mix 

Define mix(L) = {w: x, y, z (x  L, x = yz, |y| = |z|, w = yzR)}.  In other words, mix(L) contains exactly those strings 

that can be formed by taking some even length string in L and reversing the second half.  Let’s look at mix applied to 

some languages: 

 

 

 

 

 

 

 

The regular languages are closed under maxstring.  They are not closed under mix.  We leave the proof of these claims 

as an exercise. 

 

8.7 Exercises 
1) For each of the following languages L, state whether L is regular or not and prove your answer: 

a) {aibj : i, j ≥ 0 and i + j = 5}. 

b) {aibj : i, j ≥ 0 and i - j = 5}. 

c) {aibj : i, j ≥ 0 and |i – j| 5 0}. 

d) {w  {0, 1, #}* : w = x#y, where x, y  {0, 1}* and |x||y| 5 0}.  (Let  mean integer multiplication). 

e) {aibj : 0  i < j < 2000}. 

f) {w  {Y, N}* : w contains at least two Y’s and at most two N’s}. 

g) {w = xy : x, y  {a, b}* and |x| = |y| and #a(x)  #a(y)}. 

h) {w = xyzyRx : x, y, z  {a, b}*}. 

i) {w = xyzy : x, y, z  {0, 1}+}. 

j) {w  {0, 1}* : #0(w)  #1(w)}. 

k) {w  {a, b}* : w = wR}. 

l) {w  {a, b}* : x  {a, b}+ (w = x xR x)}. 

m) {w  {a, b}* : the number of occurrences of the substring ab equals the number of occurrences of the 

substring ba}. 

n) {w  {a, b}* : w contains exactly two more b's than a's}. 

o) {w  {a, b}* : w = xyz, |x| = |y| = |z|, and z = x with every a replaced by b and every b replaced by a}.  

Example: abbbabbaa  L, with x = abb, y = bab, and z = baa. 

p) {w: w  {a - z}* and the letters of w appear in reverse alphabetical order}.  For example, spoonfeed  

L. 

q) {w: w  {a - z}* every letter in w appears at least twice}.  For example, unprosperousness  L. 

r) {w : w is the decimal encoding of a natural number in which the digits appear in a non-decreasing order 

without leading zeros}. 

s) {w of the form: <integer1>+<integer2>=<integer3>, where each of the substrings <integer1>, <integer2>, and 

<integer3> is an element of {0 - 9}* and integer3 is the sum of integer1 and integer2}.  For example, 

124+5=129  L.  

t) L0*, where L0 = {baibjak, j  0, 0  i  k}. 

u) {w : w is the encoding of a date that occurs in a year that is a prime number}.  A date will be encoded as a 

string of the form mm/dd/yyyy, where each m, d, and y is drawn from {0-9}.   

v) {w  {1}* : w is, for some n  1, the unary encoding of 10n}.  (So L = {1111111111, 1100, 11000, …}.)  

 

2) For each of the following languages L, state whether L is regular or not and prove your answer: 

a) {w  {a, b, c}* : in each prefix x of w, #a(x) = #b(x) = #c(x))}. 

b) {w  {a, b, c}* :  some prefix x of w (#a(x) = #b(x) = #c(x))}. 

c) {w  {a, b, c}* :  some prefix x of w (x   and #a(x) = #b(x) = #c(x))}. 



 

Chapter 8     133   Regular and Nonregular Languages 

 

3) Define the following two languages: 

La = {w  {a, b}* : in each prefix x of w, #a(x)  #b(x)}.  

Lb = {w  {a, b}* : in each prefix x of w, #b(x)  #a(x)}.  

a) Let L1 = La  Lb.  Is L1 regular?  Prove your answer. 

b) Let L2 = La  Lb.  Is L2 regular?  Prove your answer. 

 

4) For each of the following languages L, state whether L is regular or not and prove your answer: 

a) {uwwRv : u, v, w  {a, b}+}. 

b) {xyzyRx : x, y, z  {a, b}+}. 

 

5) Use the Pumping Theorem to complete the proof, given in C 743, that English isn’t regular. 

 

6) Prove by construction that the regular languages are closed under: 

a) intersection. 

b) set difference.  

 

7) Prove that the regular languages are closed under each of the following operations: 

a) pref(L) = {w: x  * (wx  L)}.  

b) suff(L) = {w: x  * (xw  L)}.  

c) reverse(L) = {x  * : x = wR for some w  L}.  

d) letter substitution (as defined in Section 8.3). 

 

8) Using the defintions of maxstring and mix given in Section 8.6, give a precise definition of each of the following 

languages: 

a) maxstring(AnBn). 

b) maxstring(aibjck, 1  k  j  i). 

c) maxstring(L1L2), where L1 = {w  {a, b}* : w contains exactly one a} and L2 = {a}. 

d) mix((aba)*). 

e) mix(a*b*). 

 

9) Prove that the regular languages are not closed under mix. 

 

10) Recall that maxstring(L) = {w: w  L and z* (z   → wz  L)}. 

a) Prove that the regular languages are closed under maxstring. 

b) If maxstring(L) is regular, must L also be regular?  Prove your answer. 

 

11) Define the function midchar(L) = {c : wL (w = ycz, c  L, y  L*, z  L*, |y| = |z|)}.  Answer each of the 

following questions and prove your answer: 

a) Are the regular languages closed under midchar? 

b) Are the nonregular language closed under midchar? 

 

12) Define the function twice(L) = {w : x  L (x can be written as c1c2 …cn, for some n  1, where each ci  L, and 

w =  c1c1c2c2 …cncn)}.  

a) Let L = (1  0)*1.  Write a regular expression for twice(L). 

b) Are the regular languages closed under twice?  Prove your answer. 

   

13) Define the function shuffle(L) = {w : x  L (w is some permutation of x)}.  For example, if L = {ab, abc}, then 

shuffle(L) = {ab, abc, ba, acb, bac, bca, cab, cba}.  Are the regular languages closed under shuffle?  Prove 

your answer. 

 

14) Define the function copyreverse(L) = {w : x  L (w = xxR)}.  Are the regular languages closed under 

copyandreverse?  Prove your answer. 

 



 

Chapter 8     134   Regular and Nonregular Languages 

15) Let L1 and L2 be regular languages.  Let L be the language consisting of strings that are contained in exactly one 

of L1 and L2.  Prove that L is regular. 

 

16) Define two integers i and j to be twin primes  iff both i and j are prime and |j - i| = 2. 

a) Let L = {w  {1}* : w is the unary notation for a natural number n such that there exists a pair p and q of 

twin primes, both > n.}  Is L regular? 

b) Let L = {x, y : x is the decimal encoding of a positive integer i, y is the decimal encoding of a positive integer 

j, and i and j are twin primes}.  Is L regular? 

 

17) Consider any function f(L1) = L2, where L1 and L2 are both languages over the alphabet  = {0, 1}.  A function f 

is nice iff whenever L2 is regular, L1 is regular.  For each of the following functions, f, state whether or not it is 

nice and prove your answer.   

a) f(L) = LR. 

b) f(L) = {w: w is formed by taking a string in L and replacing all 1’s with 0’s and leaving the 0’s unchanged}. 

c) f(L) = L  0*. 

d) f(L) = {w: w is formed by taking a string in L and replacing all 1’s with 0’s and all 0’s with 1’s 

(simultaneously)}. 

e) f(L) = {w: x  L ( w = x00)}. 

f) f(L) = {w: w is formed by taking a string in L and removing the last character}. 

 

18) We’ll say that a language L over an alphabet  is splitable iff the following property holds:  Let w be any string 

in L that can be written as c1c2 …c2n, for some n  1, where each ci  .  Then x = c1c3 …c2n-1 is also in L. 

a) Give an example of a splitable regular language. 

b) Is every regular language splitable? 

c) Does there exist a nonregular language that is splitable? 

 

19) Define the class IR to be the class of languages that are both infinite and regular.  Is the class IR closed under: 

a) union. 

b) intersection. 

c) Kleene star. 

 

20) Consider the language L = {x0ny1nz : n  0, x  P, y  Q, z  R}, where P, Q, and R are nonempty sets over the 

alphabet {0, 1}.  Can you find regular sets P, Q, and R such that L is not regular?  Can you find regular sets P, 

Q, and R such that L is regular? 

 

21) For each of the following claims, state whether it is True or False.  Prove your answer. 

a) There are uncountably many non-regular languages over  = {a, b}. 

b) The union of an infinite number of regular languages must be regular. 

c) The union of an infinite number of regular languages is never regular. 

d) If L1 and L2 are not regular languages, then L1  L2 is not regular. 

e) If L1 and L2 are regular languages, then L1  L2 = {w : w  (L1 - L2) or w  (L2 - L1)} is regular. 

f) If L1 and L2 are regular languages and L1  L  L2, then L must be regular. 

g) The intersection of a regular language and a nonregular language must be regular. 

h) The intersection of a regular language and a nonregular language must not be regular. 

i) The intersection of two nonregular languages must not be regular. 

j) The intersection of a finite number of nonregular languages must not be regular. 

k) The intersection of an infinite number of regular languages must be regular. 

l) It is possible that the concatenation of two nonregular languages is regular. 

m) It is possible that the union of a regular language and a nonregular language is regular.  

n) Every nonregular language can be described as the intersection of an infinite number of regular languages. 

o) If L is a language that is not regular, then L* is not regular. 

p) If L* is regular, then L is regular. 

q) The nonregular languages are closed under intersection. 

r) Every subset of a regular language is regular. 



 

Chapter 8     135   Regular and Nonregular Languages 

s) Let L4 = L1L2L3.  If L1 and L2 are regular and L3 is not regular, it is possible that L4 is regular. 

t) If L is regular, then so is {xy : x  L and y  L}. 

u) Every infinite regular language properly contains another infinite regular language. 

 

 



 

Chapter 9                                             136                    Algorithms and Decision Procedures for Regular Languages 

9 Algorithms and Decision Procedures for Regular 
Languages 

So far, we have considered five important properties of regular languages: 

 

1. FSMs and regular expressions are useful design tools. 

2. The fact that nondeterminism can be “compiled out” of an FSM makes it even easier, for many kinds of tasks, to 

design a simple machine that can relatively easily be shown to be correct. 

3. DFSMs run in time that is linear in the length of the input. 

4. There exists an algorithm to minimize a DFSM. 

5. The regular languages are closed under many useful operators, so we can talk about programs that manipulate 

FSMs to construct new ones.   

 

And now we will consider a sixth: 

 

6. There exist decision procedures for many questions that we would like to ask about FSMs and regular expressions.  

9.1 Fundamental Decision Procedures 
Recall from Section 4.1 that a decision procedure is an algorithm whose result is a Boolean value.  A decision 

procedure must be guaranteed to halt on all inputs and to return the correct value. 

 

In this section, we describe some of the most useful decision procedures for regular languages: 

9.1.1 Membership 
Given an FSM M and a string w, does M accept w?  This is the most basic question we can ask about an FSM.  It can 

be answered by running M on w, provided that we do so in a fashion that guarantees that the simulation halts.  Recall 

that the simulation of an NDFSM M might not halt if M contains -loops that are not handled properly by the simulator.   

Example 9.1 -Loops Can Cause Trouble in NDFSMs 

If we are not careful, the simulation of the following NDFSM on input aa might get stuck chasing the -loop between 

q0 and q1, never reading any input characters: 

 

 

                                                                  q1 

 

                                                                      a,  

                                

              q0                                     b           q2 

 
           a                                                          b 

Theorem 9.1  Decidability of Regular Languages 

Theorem: Given a regular language L (represented as an FSM or a regular expression or a regular grammar) and a 

string w, there exists a decision procedure that answers the question, is w  L? 

 

Proof: If L is represented as an FSM, we can answer the question using either of the simulation techniques described 

in Section 5.6.  We’ll choose to use ndfsmsimulate:  

 

     decideFSM(M: FSM, w: string) =  

If ndfsmsimulate(M, w) accepts then return True else return False. 

 



 

Chapter 9                                             137                    Algorithms and Decision Procedures for Regular Languages 

Any question that can be answered about an FSM can be answered about a regular expression by first converting the 

regular expression into an FSM.  So if L is represented as a regular expression , we can answer the question, “Does 

 generate w?” using the procedure decideregex defined as follows: 

 

     decideregex(: regular expression, w: string) =  

1. From , use regextofsm to construct an FSM M such that L() = L(M). 

2. Return decideFSM(M, w).  

 

The same is true of regular grammars: any regular grammar G can be converted to an FSM that accepts L(G).   
◼ 

 

While the solution to this problem was simple, the question itself is very important.  We will see later that, in the case 

of some more powerful computational models (in particular the Turing machine), the basic membership question is 

not decidable.  This fact is yet another powerful argument for the use of an FSM whenever one exists. 

 

In the remainder of this discussion, we will focus on answering questions about FSMs.  Each question that is decidable 

for FSMs is also decidable for regular expressions and for regular grammars because a regular expression or a regular 

grammar can be converted to an equivalent FSM. 

9.1.2 Emptiness and Totality 

The next question we will consider is, “Given an FSM M, is L(M) = ?”  There are two approaches that we could take 

to answering a question like this about the overall behavior of M: 

 

1. View M as a directed graph in which the states are the vertices and the transitions are directed edges.  Find some 

property of the graph that corresponds to the situation in which L(M) = . 

2. Run M on some number of strings and observe its behavior. 

 

Both work.  We’ll first consider the approach in which we do a static analysis of M, without running it on any strings.  

We observe that L(M) will be empty if KM contains no accepting states.  But then we realize that, for L(M) not to be 

empty, it is not sufficient for there to be at least one accepting state.  That state must be reachable, via some path, from 

the start state.  So we can state the following algorithm for testing whether L(M) = : 

 

     emptyFSMgraph(M: FSM) =  

1. Mark all states that are reachable via some path from the start state of M. 

2. If at least one marked state is an accepting state, return False.  Else return True. 

 

Another way to use the graph-testing method is to exploit the fact there exists a canonical form for FSMs.  Recall that, 

in Section 5.8, we described the algorithm buildFSMcanonicalform, which built, from any FSM M, an equivalent 

unique minimal DFSM whose states are named in a standard way so that all equivalent FSMs will generate the same 

minimal deterministic machine.  We can use that canonical form as the basis for a simple emptiness checker, since we 

note that L(M) is empty iff the canonical form of M is the one-state FSM that accepts nothing.  So we can define: 

 

     emptyFSMcanonicalgraph(M: FSM) =  

1. Let M# = buildFSMcanonicalform(M). 

2. If M# is the one-state FSM that accepts nothing, return True.  Else return False. 

 

A very different approach we could take to answering the emptiness question is to run M on some strings and see 

whether or not it accepts.  We might start by running M on all strings in * to see if it accepts any of them.  But there 

is an infinite number of possible strings (assuming that M is not empty).  A decision procedure must be guaranteed 

to halt in a finite number of steps, even if the answer is False.  But we make the same observation here that we used 

as the basis for the Pumping Theorem: if a DFSM M accepts any “long” strings, then it also accepts the strings that 

result from pumping out from those long strings the substrings that drove M through a loop.  More precisely, if a 

DFSM M accepts any strings of length greater than or equal to |KM|, then it must also accept at least one string of 

length less than |KM|.  In other words, it must accept at least one string without going through any loops.  So we can 

define emptyFSMsimulate: 



 

Chapter 9                                             138                    Algorithms and Decision Procedures for Regular Languages 

 

     emptyFSMsimulate(M: FSM) = 

1. Let M = ndfsmtodfsm(M). 

2. For each string w in * such that |w| < |KM| do: 

        Run decideFSM(M, w).  

3. If M accepts at least one such string, return False; else return True. 

 

This definition of emptyFSMsimulate exploits a powerful technique that we’ll use in other decision procedures.  We’ll 

call it bounded simulation.  It answers a question about L(M) by simulating the execution of M.  For bounded 

simulation to serve as the basis of a decision procedure, two things must be true: 

 

• The simulation of M on a particular input string must be guaranteed to halt.  DFSMs always halt, so this 

requirement is easily met.  We’ll see later, however, that when we are considering more powerful machines, such 

as pushdown automata and Turing machines, this condition may not be satisfied. 

 

• It must be possible to determine the answer we seek by simulating M on some finite number strings.  So we need 

to be able to do an analysis, of the sort we did above, that shows that once we know how M works on some 

particular finite set of strings, we can conclude some more general property of its behavior. 

 

The algorithms that we have just presented enable us to prove the following theorem: 

Theorem 9.2  Decidability of Emptiness 

Theorem: Given an FSM M, there exists a decision procedure that answers the question, is L(M) = ? 

 

Proof: All three algorithms, emptyFSMgraph, emptyFSMcanonicalgraph, and emptyFSMsimulate, can easily be 

shown to be correct.  We can pick any one of them and use it to define the procedure emptyFSM.  We’ll use 

emptyFSMsimulate: 

 

     emptyFSM(M: FSM) =  

Return emptyFSMsimulate(M). 
◼ 

 

At the other extreme, we might like to ask the question, “Given an FSM M, is L(M) = *?”  In other words, does M 

accept everything?  The answer is yes iff L(M) = .  So we have the following theorem: 

Theorem 9.3 Decidability of Totality 

Theorem: Given an FSM M, there exists a decision procedure that answers the question, is L(M) = *? 

 

Proof: The following procedure answers the question: 

 

     totalFSM(M: FSM) =  

1. Construct M to accept L(M). 

2. Return emptyFSM(M). 
◼ 

9.1.3 Finiteness 
Suppose that L(M) is not empty.  Then we might like to ask, “Is L(M) finite?”  Again, we can attempt to answer the 

question either by analyzing M as a graph or by running it on strings.  

 

Let’s consider the graph approach first.  L(M) is clearly finite if M contains no loops.  But the mere presence of a loop 

does not guarantee that L(M) is infinite.  The loop might be: 

 

• labeled only with , 

• unreachable from the start state, or 



 

Chapter 9                                             139                    Algorithms and Decision Procedures for Regular Languages 

• not on a path to an accepting state. 

 

In any of those cases, the loop will not force M to accept an infinite number of strings.  Taking all of those issues into 

account, we can build the following correct graph-based algorithm to answer the question: 

 

     finiteFSMgraph(M: FSM) =  

1. M = ndfsmtodfsm(M). 

2. M = minDFSM(M).  /* At this point, there are no -transitions and no unreachable states. 

3. Mark all states in M that are on a path to an accepting state. 

4. Considering only marked states, determine whether there are any cycles in M. 
5. If there are cycles, return True.  Else return False. 

 

While it is possible, as we have just seen, to design algorithms to answer questions about FSMs by analyzing them as 

graphs, it is quite easy to make mistakes, as we would have done had we not considered the three cases in which a 

loop does not mean that an infinite number of strings can be accepted. 

 

It is often easier to design an algorithm and prove its correctness by appealing to the simulation strategy instead.  

Pursuing that approach, it may be tempting to try to answer the finiteness question by running M on all possible strings 

to see if it ever stops accepting.  But, again, we can only use simulation in a decision procedure if we can put an upper 

bound on the amount of simulation that is required.  Fortunately, we can do that in this case.  Again we appeal to the 

argument that we used to prove the Pumping Theorem.  We begin by making M deterministic so that we do not have 

to worry about -loops.  Then observe that L(M) is infinite iff it contains any strings that force M through some loop.  

Any string of length greater than |KM| must force M through a loop.  So, if M accepts even one string of length greater 

than |KM|, then L(M) is infinite.  Note also that if L(M) is infinite then it contains no longest string.  So it must contain 

an infinite number of strings of length greater than |KM|.  So L(M) is infinite iff M accepts even one string of length 

greater than |KM|. 

 

Unfortunately, there is an infinite number of such long strings.  So we cannot try them all.  But suppose that M accepts 

some “very long” string, i.e., one that forces M through a loop twice.  Then we could pump out the substring that 

corresponds to the first time through the loop.  We’d then have a shorter string that is also accepted by M.  So if M 

accepts any strings that force it through a loop twice, it must also accept at least one string that forces it through a loop 

only once.  The longest loop M could contain would be one that drives it through all its states a second time.  So, L(M) 

is infinite iff M accepts at least one string w where: 

 

|KM|  |w|  2|KM| - 1. 

 

We can now define a simulation-based procedure to determine whether L(M) is finite: 

 

     finiteFSMsimulate(M: FSM) =  

1. M = ndfsmtodfsm(M).  

2. For each string w in * such that |KM|  w  2|KM| - 1 do 

     Run decideFSM(M, w).  

3. If M accepts at least one such string, return False (since L is infinite and thus not finite); else return True. 

Theorem 9.4  Decidability of Finiteness 

Theorem: Given an FSM M, there exists a decision procedure that answers the questions, “Is L(M) finite?” and “Is 

L(M) infinite?”   

 

Proof: We can pick either finiteFSMgraph or finiteFSMsimulate and use it to define the procedure finiteFSM: 

 

     finiteFSM(M: FSM) =  

          Return finiteFSMsimulate(M). 

 

Of course, if we can decide whether L(M) is finite, we can decide whether it is infinite: 

 



 

Chapter 9                                             140                    Algorithms and Decision Procedures for Regular Languages 

     infiniteFSM(M: FSM) =  

          Return (finiteFSMsimulate(M)). 
◼ 

9.1.4 Equivalence 
Given two FSMs M1 and M2,, are they equivalent?  In other words, is L(M1) = L(M2)?  We can describe two different 

algorithms for answering this question.   

 

The first algorithm takes advantage of the existence of a canonical form for FSMs.  It works as follows:  

 

     equalFSMs1(M1: FSM, M2: FSM) =  

1. M1 = buildFSMcanonicalform(M1). 

2. M2 = buildFSMcanonicalform(M2). 

3. If M1 and M2 are equal, return True, else return False. 

 

The second algorithm depends on the following observation:  Let L1 and L2 be the languages accepted by M1 and M2.  

Then M1 and M2 are equivalent iff (L1 - L2)  (L2 - L1) = .  Since the regular languages are closed under difference 

and union, we can build an FSM to accept (L1 - L2)  (L2 - L1).  We can then test to see whether that FSM accepts any 

strings.  So we have: 

 

     equalFSMs2(M1: FSM, M2: FSM) = 

1. Construct MA to accept L(M1) - L(M2).   

2. Construct MB to accept L(M2) - L(M1). 

3. Construct MC to accept L(MA)  L(MB). 

4. Return emptyFSM(MC). 

Theorem 9.5  Decidability of Equivalence 

Theorem: Given two FSMs M1 and M2, there exists a decision procedure that answers the questions, “Is L(M1) = 

L(M2)?”  

 

Proof: We can pick the approach of either equalFSMs1 or equalFSMs2 and use it to define the procedure equalFSMs.  

Choosing equalFSMs2, we get: 

 

     equalFSMs(M1: FSM, M2: FSM) =  

 Return equalFSMs2(M1, M2) . 
◼ 

9.1.5 Minimality 

Theorem 9.6  Decidability of Minimality 

Theorem: Given a DFSM M, there exists a decision procedure that answers the question, “Is M minimal?”   

 

Proof: The proof is by construction.  We define: 

 

     minimalFSM(M: FSM) =  

1. M = minDFSM(M).   

2. If |KM| = |KM| return True; else return False. 
◼ 

 

Note that it is easy to modify minimalFSM so that, if M is not minimal, it returns |KM| - |KM|. 



 

Chapter 9                                             141                    Algorithms and Decision Procedures for Regular Languages 

9.1.6 Combining the Basics to Ask Specific Questions 
With these fundamental decision algorithms in hand, coupled with the other functions (such as ndfsmtodfsm and 

minDFSM) that we have also defined, it is possible to answer a wide range of specific questions that might be of 

interest in a particular context. 

Example 9.2 Combining Algorithms and Decision Procedures 

Suppose that we would like to know, for two arbitrary patterns, whether there are any nontrivial (which we may define, 

for example, as not equal to ) strings that could match both patterns.  This might come up if we are attempting to 

categorize strings in such a way that no string falls into more than one category.  We can formalize that question as, 

“Given two regular expressions 1 and 2, is (L(1)  L(2)) – {}  ?”  An algorithm to answer that question is: 

 

1. From 1, construct an FSM M1 such that L(1) = L(M1). 

2. From 2, construct an FSM M2 such that L(2) = L(M2). 

3. Construct M such that L(M) = L(M1)  L(M2). 

4. Construct M such that L(M) = {}. 

5. Construct M such that L(M) = L(M) - L(M). 

6. If L(M) is empty return False; else return True. 

9.2 Summary of Algorithms and Decision Procedures for Regular 
Languages 

Sprinkled throughout our discussion of regular languages has been a collection of algorithms that can be applied to 

FSMs, regular expressions, and regular grammars.  Together, those algorithms make it possible to: 

 

• Optimize FSMs. 

• Construct new FSMs and regular expressions from existing ones, thus enabling us to decompose complex problems 

into simpler ones and to reuse code that has already been written. 

• Answer a wide variety of questions about any regular language or about the class of regular languages. 

 

Because there are so many of these algorithms and they have been spread out over several chapters, we present a 

concise list of them here: 

 

• Algorithms that operate on FSMs without altering the language that is accepted: 

• Ndfsmtodfsm: Given an NDFSM M, construct a DFSM M such that L(M) = L(M). 

• MinDFSM: Given a DFSM M, construct a minimal DFSM M, such that L(M) = L(M). 
 

• Algorithms that compute functions of languages defined as FSMs: 

• Given two FSMs M1 and M2, construct a new FSM M3 such that L(M3) = L(M2)  L(M1). 

• Given two FSMs M1 and M2, construct a new FSM M3 such that L(M3) = L(M2) L(M1) (i.e., the concatenation 

of L(M2) and L(M1)). 

• Given an FSM M, construct a new FSM M such that L(M) = (L(M))*. 

• Given an FSM M, construct a new FSM M such that L(M) = L(M). 

• Given two FSMs M1 and M2, construct a new FSM M3 such that L(M3) = L(M2)  L(M1). 

• Given two FSMs M1 and M2, construct a new FSM M3 such that L(M3) = L(M2) - L(M1). 

• Given an FSM M, construct a new FSM M such that L(M) = (L(M))R (i.e., the reverse of L(M)). 

• Given an FSM M, construct an FSM M that accepts letsub(L(M)), where letsub is a letter substitution function. 

 

• Algorithms that convert between FSMs and regular expressions: 

• Given a regular expression , construct an FSM M such that L() = L(M). 

• Given an FSM M, construct a regular expression  such that L() = L(M). 

 

• Algorithms that convert between FSMs and regular grammars: 

• Given a regular grammar G, construct an FSM M such that L(G) = L(M). 



 

Chapter 9                                             142                    Algorithms and Decision Procedures for Regular Languages 

• Given an FSM M, construct a regular grammar G such that L(G) = L(M). 

 

• Algorithms that implement operations on languages defined by regular expressions or regular grammars: any 

operation that can be performed on languages defined by FSMs can be implemented by converting all regular 

expressions or regular grammars to equivalent FSMs and then executing the appropriate FSM algorithm. 

 

• Decision procedures that answer questions about languages defined by FSMs: 

• Given an FSM M and a string w, is w is accepted by M? 

• Given an FSM M, is L(M) = ? 

• Given an FSM M, is L(M) = *? 

• Given an FSM M, is L(M) finite (or infinite)? 

• Given two FSMs, M1 and M2, is L(M1) = L(M2)?   

• Given a DFSM M, is M minimal? 

 

• Decision procedures that answer questions about languages defined by regular expressions or regular grammars: 

Again, convert the regular expressions or regular grammars to FSMs and apply the FSM algorithms. 

 

This list is important and it represents a strong argument for describing problems as regular languages and solutions 

as FSMs or regular expressions.  As we will soon see, a few of these algorithms (but not most) exist for context-free 

languages and their associated representations (as pushdown automata or as context-free grammars).  None of them 

exists for general purpose programming languages or Turing machines.   

 

At this point, we are concerned primarily with the existence of the algorithms that we need.  In 

Part V, we’ll expand our inquiry to include the complexity of the algorithms that we have found.  

But we can note here that not all of the algorithms that we have presented so far are efficient in 

the common sense of running in time that is polynomial in the length of the input.  For example, 

ndfsmtodfsm may construct a DFSM whose size grows exponentially in the size of the input 

NDFSM.  Thus its time requirement (in the worst case) is also exponential. 

 

9.3 Exercises 
1) Define a decision procedure for each of the following questions.  Argue that each of your decision procedures 

gives the correct answer and terminates. 

a) Given two DFSMs M1 and M2, is L(M1) = L(M2)R? 

b) Given two DFSMs M1 and M2 is |L(M1)| < |L(M2)|? 

c) Given a regular grammar G and a regular expression , is L(G) = L()? 

d) Given two regular expressions,  and , do there exist any even length strings that are in L() but not L()? 

e) Let  = {a, b} and let  be a regular expression.  Does the language generated by  contains all the even 

length strings in *.   

f) Given an FSM M and a regular expression , does M accept exactly two more strings than  generates? 

g) Let  = {a, b} and let  and  be regular expressions.  Is the following sentence true: 

 

(L() = a*)  (w (w  {a, b}*  |w| even) → w  L()).  

 

h) Given a regular grammar G, is L(G) regular? 

i) Given a regular grammar G, doesG generate any odd length strings? 

 

 



 

Chapter 10                                            143                    Summary and References 

10 Summary and References 

Theoretically, every machine we build is a finite state machine.  There is only a finite number (probably about 1079) 

of atoms in the causal universe  (that part of the universe that is within a distance of the speed of light times the age 

of the universe).  So we have access to only a finite number of molecules with which to build computer memories, 

hard drives, and external storage devices.  That doesn’t mean that every real problem should be described as a regular 

language or solved with an FSM.  FSMs and regular expressions are powerful tools for describing problems that 

possess the kind of repetitive patterns that FSMs and regular expressions can capture.  To handle other problems and 

languages, we will need the more powerful models that we will introduce in Parts III and IV.  The abstract machines 

that are built using those models will be equipped with infinite storage devices.  Describing problems using those 

devices may be useful even if there exists some practical upper bound on the size of the actual inputs that need to be 

considered (and so some bound on the amount of memory required to solve the problem).   

 

A lighthearted view of the theory of automata and computability has inspired a collection of poems  by Martin Cohn 

and Harry Mairson.    We include one of the poems here.  Unfortunately, the names of the important concepts aren’t 

standard and the poem uses some that are different from ours.  So: 

 

• DFA (Deterministic Finite Automaton)  is equivalent to DFSM. 

• The symbol p is used as we used k in the Pumping Theorem. 

• The term r.e. (recursively enumerable), in the last line, refers to the class of languages we are calling 

semidecidable.   

 

The Pumping Lemma for DFAs  By Martin Cohn   

 

Any regular language L has a magic number p 

And any long-enough 'word' in L has the following property: 

Amongst its first p symbols is a segment you can find 

Whose repetition or omission leaves 'word' amongst its kind. 

 

So if you find a language L which fails this acid test, 

And some long word you pump becomes distinct from all the rest, 

By contradiction you have shown that language L is not 

A regular L, resilient to the damage you have wrought.  

 

But if, upon the other hand, 'word' stays within L, 

Then either L is regular, or else you chose not well. 

For 'word' is parsed as xyz, and y cannot be null, 

And y must come before p symbols have been read in full. 

 

You cannot choose the length of y, nor can you specify 

Just where within the word you chose it happens just to lie. 

The DFA locates string y to your discomfiture. 

Recall this moral to the grave: You can't fool Mother Nature. 

 

As postscript mathematical, addendum to the wise: 

The basic proof we outlined here does surely generalize. 

So there's a pumping lemma for languages context-free, 

But sadly we don't have the same for those that are r.e. 

References 
The idea of a finite state computer grew out of an early (i.e., predating modern computers) attempt [McCulloch and 

Pitts 1943] to describe the human brain as a logical computing device.  The artificial neuron model  described in 

that paper inspired the development of the modern neural networks that play an important role in artificial intelligence 

systems today.  It also laid the groundwork for the development of the general model of finite state computing that we 



 

Chapter 10                                            144                    Summary and References 

have discussed.  About a decade after the McCulloch and Pitts paper, several independent formulations of finite state 

computers appeared.  Mealy and Moore machines were defined in [Mealy 1955] and [Moore 1956], respectively.  

[Kleene 1956] described the McCulloch and Pitts neurons as FSMs.  It also defined regular expressions and then 

proved the result that we state as Theorem 6.3 and call Kleene’s Theorem, namely that the class of languages that can 

be defined by regular expressions is identical to the class that can be accepted by finite state machines.   

 

Many of the early results in finite automata, including Theorem 5.3 (that, for every nondeterministic FSM there exists 

an equivalent deterministic one) were given in [Rabin and Scott 1959].  For this work, Rabin and Scott received the 

1976 Turing Award.  The citation read, “For their joint paper "Finite Automata and Their Decision Problem," which 

introduced the idea of nondeterministic machines, which has proved to be an enormously valuable concept.  Their 

classic paper has been a continuous source of inspiration for subsequent work in this field.”   

 

The definition of the missing letter language that we discussed in Example 5.12 and Example 5.15 and the proof given 

in B 627 for the correctness of ndfsmtodfsm were taken from [Lewis and Papadimitriou 1998].  

 

[Aho and Corasick 1975] presents a set of algorithms for building a finite state transducer that finds and reports all 

instances of a set of keywords in a target string.  The algorithm buildkeywordFSM is derived from those algorithms, 

so the details of how it words can be found in the original paper. 

 

The Myhill-Nerode Theorem was proved in [Myhill 1957] and [Nerode 1958]. 

 

Markov chains were first described (in Russian) by A. A. Markov in 1906.  The mathematical theory of Hidden 

Markov models was described in [Baum, Petrie, Soules and Weiss 1970].  The Viterbi algorithm was presented in 

[Viterbi 1967]. 

 

Büchi automata were described in [Büchi 1960a] and [Büchi 1960b].   For a comprehensive discussion of them, as 

well as other automata on infinite strings, see [Thomas 1990] or [Khoussainov and Nerode, 2001].  The Büchi 

automaton that describes the mutual exclusion property and that we presented in Example 5.39 is taken from [Clarke, 

Grumberg and Peled 2000], which is a good introduction to model checking.  The proof we presented for Theorem 

5.7 is taken from [Roggenbach 2002], which presents a comprehensive discussion of nondeterminism in -automata, 

including a discussion of alternative models, including Muller and Rabin automata.  Theorem 5.8 was stated in [Büchi 

1960a].  Our presentation of it and of Theorem 5.9 and Theorem 5.10 is taken from [Thomas 1990], which supplies 

more details. 

 

Regular grammars were defined as part of what we now call the Chomsky hierarchy (see Section Error! Reference 

source not found.) in [Chomsky 1959].  The equivalence of FSMs and regular grammars was shown in [Chomsky 

and Miller 1958]. 

 

The Pumping Theorem for regular languages (along with one for context-free languages that we will discuss in Section 

13.3) was stated and proved in [Bar-Hillel, Perles and Shamir 1961]. The Pumping Theorem proof in Example 8.15 

was taken from [Sipser 2006]. 

 


	AutomataTheoryBook-toSplit_Part2
	AutomataTheoryBook-toSplit_Part3

