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32 Logic, Sets, Relations, Functions, and Proof 
Techniques 

Throughout this book, we rely on a collection of important mathematical concepts and notations.  We summarize them 

here.  For a deeper introduction to these ideas, see any good discrete mathematics text, for example [Epp 2003] or 

[Rosen 2003]. 

32.1 Logic 
We assume familiarity with the standard systems of both Boolean and quantified logic, so this section is just a review 

of the definitions and notations that we will use, along with some of the most useful inference rules. 

32.1.1 Boolean (Propositional) Logic 
A proposition is a statement that has a truth value.  The language of well-formed formulas (wffs) allows us to define 

propositions whose truth can be determined from the truth of other propositions.  A wff is any string that is formed 

according to the following rules: 

 

• A propositional symbol (e.g., P) is a wff.  (Propositional symbols are also called variables, primarily because the 

term is shorter.  We will generally find it convenient to do that, but this use of the term should not be confused 

with its use in the definition of first-order logic.) 

• If P is a wff, then P is a wff. 

• If P and Q are wffs, then so are P  Q, P  Q, P → Q, and P  Q. 

• If P is a wff, then (P) is a wff. 

 

Other binary operators, such as XOR (exclusive or) and NAND (not and), can also be defined, but we will not need 

them. 

 

The definitions of the operators are given by the truth table shown as Table 32.1.  It shows how the truth value of a 

proposition can be computed from the truth values of its components.  (Note that the symbol  means inclusive or.) 

 

 

 

P Q P P  Q P  Q P → Q P  Q 

True True False True True True True 

True False False True False False False 

False True True True False True False 

False False True False False True True 

  

Table 32.1  A truth table for the common Boolean operators 

 

 

We can divide the set of all Boolean wffs into three useful categories, as a function of when they are true: 

 

• A Boolean wff is valid if and only if it is true for all assignments of truth values to the variables it contains.  A 

valid wff is also called a tautology.   

• A Boolean wff is satisfiable if and only if it is true for at least one assignment of truth values to the variables it 

contains.   

• A Boolean wff is unsatisfiable if and only if it is false for all assignments of truth values to the variables it 

contains.     
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Example 32.1 Using a Truth Table 

The wff P  P is a tautology (i.e., it is valid).  We can easily prove this by extending the truth table shown above 

and considering the only two possible cases (P is True or P is False): 

 

P P P  P 

True False True 

False True True 

 

The wff P  Q is satisfiable.  It is True if either P is True or Q is False.  It is not a tautology, however. 

 

The wff P  P is unsatisfiable.  It is False both in case P is True and in case P is False. 

 

We’ll say that two wffs P and Q are equivalent, which we will write as P  Q, iff they have the same truth values 

regardless of the truth values of the variables they contain.  So, for example, (P → Q)  (P  Q).   

 

In interpreting wffs, we assume that  has the highest precedence, followed by , then , then →, then .  So: 

 

(P  Q  R)  (P  (Q  R)).   

 

Parentheses can be used to force different interpretations. 

 

The following properties (defined in Section 32.4.3) of the Boolean operators follow from their definitions in the truth 

table given above: 

 

• The operators  and  are commutative and associative.   

• The operator  is commutative but not associative. 

• The operators  and  are idempotent (e.g., (P  P)  P).   

• The operators  and  distribute over each other: 

• P  (Q  R)  (P  Q)  (P  R). 

• P  (Q  R)  (P  Q)  (P  R). 

• Absorption laws:  

• P  (P  Q)  P.  

• P  (P  Q)  P. 

• Double negation: P  P. 

• de Morgan’s laws:  

• (P  Q)  (P  Q). 

• (P  Q)  (P  Q). 

 

We’ll say that a set A of wffs logically implies or entails a conclusion Q iff, whenever all of the wffs in A are true, Q 

is also true.   

 

An axiom is a wff that is asserted a priori to be true.  Given a set of axioms, rules of inference can be applied to create 

new wffs, to which the inference rules can then be applied, and so forth.  Any statement so derived is called a theorem.  

Let A be a set of axioms plus zero or more theorems that have already been derived from those axioms.  Then a proof 

is a finite sequence of applications of inference rules, starting from A. 

 

A proof is a syntactic object.  It is just a sequence of applications of rules.  We would like, however, for proofs to tell 

us something about truth.  They can do that if we design our inference rules appropriately.  We’ll say that an inference 

rule is sound iff, whenever it is applied to a set A of axioms, any conclusion that it produces is entailed by A (i.e., it 

must be true whenever A is).  An entire proof is sound iff it consists of a sequence of inference steps each of which 

was constructed using a sound inference rule.  A set of inference rules R is complete iff, given any set A of axioms, 

all statements that are entailed by A can be proved by applying the rules in R.  If we can define a set of inference rules 

that is both sound and complete then the set of theorems that can be proved from A will exactly correspond to the set 

of statements that must be true whenever A is.    
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The truth table we presented above is the basis for the construction of sound and complete inference rules in Boolean 

logic.  Some useful rules are: 

 

• Modus ponens:  From the premises (P → Q) and P, conclude Q. 

• Modus tollens:  From the premises (P → Q) and Q, conclude P. 

• Or introduction:  From the premise P, conclude (P  Q).  

• And introduction: From the premises P and Q, conclude (P  Q). 

• And elimination:  From the premise (P  Q), conclude P or conclude Q. 

 

Any two statements of the form P and P form a contradiction.    

32.1.2 First-Order Logic 
The primitives in Boolean logic are predicates of no arguments (i.e., Boolean constants).  It is useful to extend our 

logical system to allow predicates of one or more arguments and to allow the use of variables.  So, for example, we 

might like to write P(China) or Q(x, y).  First-order logic, often called simply FOL (or sometimes first-order predicate 

logic, first-order predicate calculus, or FOPC), allows us to do that.   

 

We will use symbols that start with lower-case letters as variables and symbols that start with upper-case letters as 

constants, predicates, and functions. 

 

An expression that describes an object is a term.  So a variable is a term and an n-ary function whose arguments are 

terms is also a term.  Note that if n is 0, we have a constant.  

 

We define the language of well-formed formulas (wffs) in first-order logic to be the set of expressions that can be 

formed according to the following rules: 

 

• If P is an n-ary predicate and each of the expressions x1, x2, … , xn is a term, then an expression of the form P(x1, 

x2, … , xn) is a wff.  If any variable occurs in such a wff, then that variable is free (alternatively, it is not bound).   

• If P is a wff, then P is a wff. 

• If P and Q are wffs, then so are P  Q, P  Q, P → Q, and P  Q. 

• If P is a wff, then (P) is a wff. 

• If P is a wff, then x (P) and x (P) are wffs.  Any free instance of x in P is bound by the quantifier and is then 

no longer free.   is called the universal quantifier and  is called the existential quantifier.  In the wff x (P) or 

x (P), we’ll call P the scope of the quantifier.  It is important to note that when an existentially quantified variable 

y occurs inside the scope of a universally quantified variable x (as, for example, in statement 4 below), the meaning 

of the wff is that for every value of x there exists some value of y but it need not be the same value of y for every 

value of x.  So, for example, the following wffs are not equivalent: 

• x (y (Father-of(y, x))), and  

• y (x (Father-of(y, x))). 

 

For convenience, we will extend this syntax slightly.  When no confusion will result, we will allow the following 

additional forms for wffs: 

 

• x < c (P(x)) is equivalent to x (x < c → P(x)).  

• x  S (P(x)) is equivalent to x (x  S → P(x)). 

• x, y, z (P(x, y, z)) is equivalent to x (y (z (P(x, y, z)))). 

• x, y, z  S (P(x, y, z)) is equivalent to x  S (y  S (z  S (P(x, y, z)))). 

 

The logical framework that we have just defined is called first-order because it allows quantification over variables 

but not over predicates or functions.  It is possible to define higher-order logics that do permit such quantification.  

For example, in a higher-order logic we might be able to say something like P (P(John) → P(Carey)).  In other 

words, anything that is true of John is also true of Carey.  While it is sometimes useful to be able to make statements 
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such as this, the computational and logical properties of higher-order systems make them very hard to use except in 

some restricted cases. 

 

A wff with no free variables is called a sentence or a statement.  All of the following are sentences: 

 

1. Bear(Smoky). 

2. x (Bear(x) → Animal(x)). 

3. x (Animal(x) → Bear(x)). 

4. x (Animal(x) → y (Mother-of(y, x))). 

5. x ((Animal(x)  Dead(x)) → Alive(x)). 

 

A ground instance is a sentence that contains no variables.  All of the following are ground instances: Bear(Smoky), 

Animal(Smoky), and Mother-of(BigEyes, Smoky).  In computational logic systems, it is common to store the ground 

instances in a different form than the one that is used for other sentences.  They may be contained in a table or a 

database, for example.  

 

Returning to sentences 1-5 above, 1, 2, and 4, and 5 are true in our everyday world (assuming the obvious referent for 

the constant Smoky and the obvious meanings of the predicates Bear, Animal, and Mother-of).  On the other hand, 3 

is not true.   

 

As these examples show, determining whether or not a sentence is true requires appeal to the meanings of the 

constants, functions, and predicates that it contains.  An interpretation for a sentence w is a pair (D, I).  D is a universe 

of objects.  I assigns meaning to the symbols of w: it assigns values, drawn from D, to the constants in w and it assigns 

functions and predicates (whose domains and ranges are subsets of D) to the function and predicate symbols of w.  A 

model of a sentence w is an interpretation that makes w true.  For example, let w be the sentence, x (y (y < x)).  The 

integers (along with the usual meaning of <) are a model of w since, for any integer, there exists some smaller integer.  

The positive integers, on the other hand, are an interpretation for w but not a model of it.  The sentence w is false for 

the positive integers since there is no positive integer that is smaller than 1. 

 

A sentence w is valid iff it is true in all interpretations.  In other words, w is valid iff it is true regardless of what the 

constant, function, and predicate symbols “mean”.  A sentence w is satisfiable iff there exists some interpretation in 

which w is true.  A sentence is unsatisfiable iff it is not satisfiable (in other words, there exists no interpretation in 

which it is true).  Any sentence w is valid iff w is unsatisfiable.  

Example 32.2 Valid, Satisfiable, and Unsatisfiable Wffs 

Let w1 be the wff: 

 

 x ((P(x)  Q(Smoky)) → P(x)). 

 

The wff w1 is valid because it is true regardless of what the predicates P and Q are or what object Smoky refers to.  It 

is also satisfiable since it is true in at least one interpretation.  

 

Let w2 be the wff: 

 

 (x (P(x)  (P(x))).  

 

The wff w2 is not valid.  It is also unsatisfiable since it is false in all interpretations, which follows from the fact that 

w2 is valid. 

 

Finally, let w3 be the wff: 

 

 x (P(x, x)). 

 

The wff w3 is not valid but it is satisfiable.  Suppose that the universe is the integers and P is the predicate 

LessThanOrEqualTo.  Then P is true for all values of x.  But, again with the integers as the universe, suppose that P 
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is the predicate LessThan.  Now P is false for all values of x.  Finally, let the universe be the set of all people and let 

P be the predicate HasConfidenceInTheAbilityOf.  Now P is true of some values of x (i.e., of those people who have 

self confidence) and false of others.  

 

A set A of axioms logically implies or entails a conclusion c iff, in every interpretation in which A is true (i.e., in every 

model of A), and for all assignments of values to the free variables of c, c must be true.   

 

As in Boolean logic, a proof in first-order logic starts with a set A of axioms and theorems that have already been 

proved from those axioms.  Rules of inference are then applied, creating new statements.  Any statement derived in 

this way is called a theorem.  A proof is a finite sequence of applications of inference rules, starting from the axioms 

and given theorems. 

 

As in Boolean logic, we will say that an inference rule is sound iff, whenever it is applied to a set A of statements 

(axioms and given theorems), any conclusion that it produces is entailed by A (i.e., it must be true whenever A is).  A 

set of inference rules R is complete iff, given any set A of statements, all statements that are entailed by A can be 

proved by applying the rules in R.  As in Boolean logic, we seek a set of inference rules that is both sound and 

complete. 

 

Resolution is a single inference rule that is used as the basis for many automatic theorem 

proving and reasoning programs.  It is sound and refutation-complete.  By the latter, we 

mean that if ST is inconsistent with the axioms and if both the axioms andST have 

been converted to a restricted syntax called clause form, resolution will find the 

inconsistency and thus prove ST.  B 620. 

 

For Boolean logic, truth tables provide a basis for defining a set of sound and complete inference rules.  It is less 

obvious that such a set exists for first-order logic.  But it does, as was first shown by Kurt Gödel in his Completeness 

Theorem [Gödel 1929].  More specifically, Gödel showed that there exists some set of inference rules R such that, 

given any set of axioms A and a sentence c, there is a proof of c, starting with A and applying the rules in R, iff c is 

entailed by A.  Note that all that we are claiming here is that, if there is a proof, there is a procedure for finding it.  We 

are not claiming that there exists a procedure that decides whether or not a proof exists.  In fact, as we show in Section 

22.4.2, for first-order logic no such decision procedure can exist. 

 

All of the inference rules that we have and will present are sound.  The individual inference rules that we have so far 

considered are not, however, complete.  For example, modus ponens is incomplete.  But a complete procedure can be 

constructed by including all of the rules we listed above for Boolean logic, plus new ones, including, among others: 

 

• Quantifier exchange: 

• From x (P), conclude x (P). 

• From x (P), conclude x (P). 

• From x (P), conclude x (P). 

• From x (P), conclude x (P) . 

• Universal instantiation: For any constant C, from x (P(x)), conclude P(C). 

• Existential generalization: For any constant C, from P(C) conclude x (P(x)). 

Example 32.3 A Simple Proof 

Assume the following three axioms: 

[1] x (P(x)  Q(x) → R(x)). 

[2] P(X1). 

[3] Q(X1).  

 

We prove R(X1) as follows: 

[4] P(X1)  Q(X1) → R(X1).  (Universal instantiation, [1].) 

[5] P(X1)  Q(X1).   (And introduction, [2], [3].) 

[6] R(X1).    (Modus ponens, [5], [4].) 
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A first-order theory is a set of axioms and the set of all theorems that can be proved, using a set of sound and complete 

inference rules, from those axioms.  A theory is logically complete iff, for every sentence P, either P or P is a 

theorem.  A theory is consistent iff there is no sentence P such that both P and P are theorems.  If, on the other hand, 

there is such a sentence, then the theory contains a contradiction and is inconsistent.   

 

We are often interested in the relationship between a theory and some set of facts that are true in some view we may 

have of the world (for example the facts of arithmetic or the facts a robot needs in order to move around).  Let W be a 

world plus an interpretation (that maps logical objects to objects in the world).  Now we can say that a theory is sound 

with respect to W iff every theorem (in the theory) corresponds to a fact that is true (in W).  We say that a theory is 

complete with respect to W iff every fact that is true (in W) corresponds to a theorem (in the theory).  We will assume 

that any first-order logic statement in the language of W is either true or false in the world that W describes.  So, if a 

theory is complete with respect to W it must be the case that, for any sentence P, either P corresponds to a sentence 

that is true in W, in which case it is a theorem, or P corresponds to a sentence that is false in W, in which case P is a 

theorem.  So any theory that is complete with respect to an interpretation and a set of facts is also logically complete. 

 

By the way, while the language of first-order logic has the property that every statement is either true or false in any 

world, not all languages share that property.  For example, English doesn’t.  Consider the English sentence, “The king 

of France has red hair.”  Is it true or false (in the world as we know it, given the standard meanings of the words)?  

The answer is neither.  It carries the (false) presupposition that there is a king of France and then makes a claim about 

that individual.  This problem disappears, however, when we convert the English sentence into a related sentence in 

first order logic.  We might try: 

 

• x (King-of(x, France)  Haircolor-of(x, Red)): This sentence is false in the world. 

• x (King-of(x, France) → Haircolor-of(x, Red)): This sentence is true in the world (trivially, since there are no 

values of x for which King-of(x, France) is true). 

 

There are interesting first-order theories that are both consistent and complete with respect to particular interpretations 

of interest.  One example is Presburger arithmetic, in which the universe is the natural numbers and there is a single 

function, plus, whose properties are axiomatized.  There are other theories that are incomplete because we have not 

yet added enough axioms.  But it might be possible, eventually, to find a set of axioms that does the job. 

 

However, many interesting and powerful theories are not both consistent and complete and they will never become 

so.  For example, Gödel’s Incompleteness Theorem [Gödel 1931] , one of the most important results in modern 

mathematics, shows that any theory that is derived from a decidable (a notion that we explain in Chapter 17) set of 

axioms and that characterizes the standard behavior of the constants 0 and 1, plus the functions plus and times on the 

natural numbers, cannot be both consistent and complete.  In other words, if any such theory is consistent (and it is 

generally assumed that the standard theory of arithmetic is), then there must be some statements that are true (in 

arithmetic) but not provable (in the theory).  While it is of course possible to add new axioms and thus make more 

statements provable, there will always remain some true but unprovable statements unless either the set of axioms 

becomes inconsistent or it becomes infinite and undecidable.  In the latter case, the fact that a proof exists is not very 

useful since it has become impossible to tell whether or not a statement is an axiom and thus can be used in a proof. 

 

Do not be confused by the fact that there exists both a Completeness Theorem and an Incompleteness Theorem.  The 

terminology is unfortunate since it is based on two different notions of completeness.  The Completeness Theorem 

states a fact about the framework of first-order logic itself.  It says that there exists a set of inference rules (and, in 

fact, more than one such set happens to exist) such that, given any set A of axioms, the theorems that are provable 

from A are exactly the set of sentences that are entailed by A.  The Incompleteness Theorem states a fact about theories 

that can be built within any logical framework.  It says that there exist theories (the standard one about arithmetic with 

plus and times being one example) that, assuming consistency, are incomplete in the sense that there are sentences 

that are true in the world but that are not theorems.  Such theories are also logically incomplete: there exist sentences 

P such that neither P nor P is a theorem.   
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32.2 Sets 
Most of the structures that we will consider are based on the fundamental notion of a set. 

32.2.1 What is a Set? 
A set is simply a collection of objects.  The objects (which we call the elements or members of the set) can be anything: 

numbers, people, strings, fruits, whatever.  For example, all of the following are sets: 

 

• S1 = {13, 11, 8, 23}. 

• S2 = {8, 23, 11, 13}. 

• S3 = {8, 8, 23, 23, 11, 11, 13, 13}. 

• S4 = {apple, pear, banana, grape}. 

• S5 = {January, February, March, April, May, June, July, August, September, October, November, December}. 

• S6 = {x : x  S5 and x has 31 days}. 

• S7 = {January, March, May, July, August, October, December}. 

• ℕ = the nonnegative integers   (also called the natural numbers). 

• S8 = {i : x  ℕ (i = 2x)}. 

• S9 = {0, 2, 4, 6, 8, …}.  

• S10 = the even natural numbers. 

• S11 = the syntactically valid C programs.  

• S12 = {x : x  S11 and x never gets into an infinite loop}. 

• S13 = finite length strings of a’s and b’s}. 

• Z = the integers ( … -3, -2, -1, 0, 1, 2, 3, …). 

 

In the definitions of S6, S8, and S12, we have used the colon notation.  Read it as "such that".  So, for example, read the 

definition of S6 as, “the set of all values x such that x is an element of S5 and x has 31 days”.  We have used the standard 

symbol  for "element of".  We will also use  for "not an element of".  So, for example, 17  S1 is true. 

 

Remember that a set is simply a collection of elements.  So if two sets contain precisely the same elements (regardless 

of the way we actually defined the sets), then they are identical.  Thus S6 and S7 are the same set, as are S8, S9, and S10.   

 

Since a set is defined only by what elements it contains, the order in which we list its elements does not matter.  Thus 

S1 and S2 are the same set.  Also note that a given element is either in a set or it isn’t.  Duplicates do not matter.  So 

sets S1, S2, and S3 are equal. 

 

One useful technique for describing a set S that is a subset of an existing set D is to define a function (we’ll define 

formally what we mean by a function in Section 32.4) that can be used to determine whether or not a given element 

is in S.  Such a function is called a characteristic function.  Formally, a function f with domain D is a characteristic 

function for a set S iff f(x) = True if x is an element of S and False otherwise.  For example, we used this technique to 

define set S6. 

 

We can use programs to define sets.  There are two ways to use a program to define a set S: 

 

• Write a program that generates the elements of S.  We call the output of such a program an enumeration of S.  

• Write a program that decides S by implementing the characteristic function of S.  Such a program returns True if 

run on some element that is in S and False if run on an element that is not in S. 

 

It seems natural to ask, given some set S, “What is the size of S?” or “How many elements does S contain?”  We will 

use the term cardinality to describe the way we answer such questions.  So we’ll reply that the cardinality of S, written 

|S|, is n, for some appropriate value of n.  For example, |{2, 7, 11}| = 3.  In simple cases, determining the cardinality 

of a set is straightforward.  In other cases, it is more complicated.  For our purposes, however, we can get by with 

three different kinds of answers:  

 

• a natural number (if S is finite),  
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• “countably infinite” (if S has the same number of elements as there are integers), or  

• “uncountably infinite” (if S has more elements than there are integers). 

 

We will formalize these ideas in Section 32.6.8. 

 

The smallest set is the unique set that contains no elements.  It is called the empty set, and is written  or {}.  The 

cardinality of the empty set, written ||, is 0. 

 

When we are working with sets, it is very important to keep in mind the difference between a set and the elements of 

a set.  Given a set that contains more than one element, this distinction is usually obvious.  It is clear that {1, 2} is 

distinct from either the number 1 or the number 2.  It sometimes becomes a bit less obvious, though, with singleton 

sets (sets that contain only a single element).  But it is equally true for them.  So, for example, {1} is distinct from the 

number 1.  As another example, consider {}.  This is a set that contains one element.  That element is in turn a set 

that contains no elements (i.e., the empty set). {{1, 2, 3}} is also a set that contains one element. 

32.2.2 Relating Sets to Each Other 

We say that A is a subset of B (which we write as A  B) iff every element of A is also an element of B.  Formally, A 

 B iff x  A (x  B). 

 

The symbol we use for subset () looks somewhat like .  This is no accident.  If A  B, then there is a sense in which 

the set A is “less than or equal to” the set B, since all the elements of A must be in B, but there may be elements of B 

that are not in A. 

 

Given this definition, notice that every set is a subset of itself.  This fact turns out to offer a useful way to prove that 

two sets A and B are equal: First prove that A is a subset of B.  Then prove that B is a subset of A.  We will have more 

to say about this later in Section 32.6.7. 

 
 

Figure 32.1  Venn diagrams that illustrate relations and functions on sets 
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We say that A is proper subset of B (written A  B) iff A  B and A  B.  The Venn diagram shown in Figure 32.1 

(a) illustrates the proper subset relationship between A and B.  Notice that the empty set is a subset of every set (since, 

trivially, every element of , all none of them, is also an element of every other set).  And the empty set is a proper 

subset of every set other than itself. 

 

It is useful to define some basic operations that can be performed on sets.   

 

The union of two sets A and B (written A  B) contains all elements that are contained in A or B (or both).  Formally, 

A  B = {x: (x  A)  (x  B)}.  We can easily visualize union using a Venn diagram, as shown in Figure 32.1 (b).  

The union of sets A and B is the entire hatched area in the diagram. 

 

The intersection of two sets A and B (written A  B) contains all elements that are contained in both A and B.  Formally, 

A  B = {x: (x  A)  (x  B)}.  In the Venn diagram shown in Figure 32.1 (b), the intersection of A and B is the 

double hatched area in the middle. 

 

The difference of two sets A and B (written A - B or A/B) contains all elements that are contained in A but not in B.  

Formally, A/B = {x: (x  A)  (x  B)}.  In both of the Venn diagrams shown in Figure 32.1 (c) and (d), the hatched 

region represents A/B. 

 

The complement of a set A with respect to a specific universe U (written as A) contains exactly those elements of U 

that are not contained in A (i.e., A = U - A).  Formally, A = {x: (x  U)  (x  A)}.  For example, if U is the set of 

residents of Austin and A is the set of Austin residents who like barbeque, then A is the set of Austin residents who 

don't like barbeque.  The complement of A is shown as the hatched region of the Venn diagram shown in Figure 32.1 

(e). 

 

Two sets are disjoint iff they have no elements in common (i.e., their intersection is empty).  Formally, A and B are 

disjoint iff A  B = .  In the Venn diagram shown in Figure 32.1 (f), A and B are disjoint: 

 

Given a set A, we can consider the set of all subsets of A.  We call this set the power set of A, and we write it P(A).  

For example, let A = {1, 2, 3}.  Then:  

 

  P(A) = {, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. 

 

The power set of A is interesting because, if we're working with the elements of A, we may well care about all the 

ways in which we can combine those elements. 

 

Now for one final property of sets.  Again consider the set A above.  But this time, rather than looking for all possible 

subsets, let’s just look for a single way to carve A up into subsets such that each element of A is in precisely one subset.  

For example, we might choose any of the following sets of subsets: 

 

  {{1}, {2, 3}}  or {{1, 3}, {2}}  or {{1, 2, 3}}. 

 

We call any such set of subsets a partition of A.  Partitions are very useful.  For example, suppose we have a set S of 

students in a school.  We need for every student to be assigned to precisely one lunch period.  Thus we must construct 

a partition of S: a set of subsets, one for each lunch period, such that each student is in precisely one subset.  More 

formally, we say that   P(A) is a partition of a set A iff: 

 

• no element of  is empty, 

• all pairs of elements of  are disjoint (alternatively, each element of A is in at most one element of ), and 

• the union of all the elements of  equals A (alternatively, each element of A is in some element of  and no element 

not in A is in any element of ). 

 

This notion of partitioning a set is fundamental to programming.  Every time we analyze the set of possible inputs to 

a program and consider the various cases that must be dealt with, we are forming a partition of the set of inputs: each 
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input must fall through precisely one path in your program.  So it should come as no surprise that, as we build formal 

models of computational devices, we will rely heavily on the idea of a partition of a set of inputs as an analytical 

technique. 

32.3 Relations 
In the last section, we introduced some simple relations that can hold between sets (subset and proper subset) and we 

defined some operations (functions) on sets (union, intersection, difference, and complement).  But we haven't yet 

defined formally what we mean by a relation or a function.  We will do that now.  (By the way, the reason we 

introduced relations and functions on sets in the last section is that we are going to use sets as the basis for our formal 

definitions of relations and functions and we will need the simple operations we just described as part of our 

definitions.) 

32.3.1 What is a Relation? 
An ordered pair is a sequence of two objects.  Given any two objects, x and y, there are two ordered pairs that can be 

formed.  We write them as (x, y) and (y, x).  As the name implies, in an ordered pair (as opposed to in a set), order 

matters (unless x and y happen to be equal).   

 

The Cartesian product of two sets A and B (written A  B) is the set of all ordered pairs (a, b) such that a  A and 

b  B.  For example, let A be a set of people: {Dave, Sara, Billy}, and let B be a set of desserts: {cake, pie, ice cream}.  

Then: 

 

           A  B = { (Dave, cake), (Dave, pie), (Dave, ice cream), 

  (Sara, cake), (Sara, pie), (Sara, ice cream), 

  (Billy, cake), (Billy, pie), (Billy, ice cream)}. 

 

As you can see from this example, the Cartesian product of two sets contains elements that represent all the ways of 

pairing some element from the first set with some element from the second.  Note that A  B is not the same as B  A.  

In our example:  

 

           B  A = { (cake, Dave), (pie, Dave), (ice cream, Dave), 

  (cake, Sara), (pie, Sara), (ice cream, Sara), 

  (cake, Billy), (pie, Billy), (ice cream, Billy)}. 

 

If A and B are finite, then the cardinality of their Cartesian product is given by: 

 

|A  B| = |A||B|.   

 

A binary relation over two sets A and B is a subset of A  B.  For example, let’s consider the problem of choosing 

dessert.  We could define a relation that tells us, for each person, what desserts he or she likes.  We might write the 

Dessert relation, for example as: 

 

 Dessert = {(Dave, cake), (Dave, ice cream), (Sara, pie), (Sara, ice cream)}. 

 

In other words, Dave likes cake and ice cream, Sara likes pie and ice cream, and Billy seems not to like sinful treats. 

 

Not all relations are binary.  We define an n-ary relation over sets A1, A2, … An to be a subset of A1  A2  …  An.  

The n sets may be different, or they may be the same.  For example, let A be a set of people: 

 

 A = {Dave, Sara, Billy, Beth, Mark, Cathy, Pete}. 

 

Now suppose that Sara and Dave are the parents of Billy, Beth and Mark are the parents of Cathy, and Billy and Cathy 

are the parents of Pete.  Then we could define a 3-ary (or ternary) relation Child-of, where the first element of each 3-

tuple is the mother, the second is the father, and the third is the child.  So we would have the following subset of A  

A  A: 
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 {(Sara, Dave, Billy), (Beth, Mark, Cathy), (Cathy, Billy, Pete)}. 

 

Notice a couple of important properties of relations as we have defined them.  First, a relation may be equal to the 

empty set.  For example, if Dave, Sue, and Billy all hate dessert, then the Dessert relation would be {} or . 

 

Second, there are no constraints on how many times a particular element may occur in a relation.  In the Dessert 

example, Dave occurs twice, Sue occurs twice, Billy doesn’t occur at all, cake occurs once, pie occurs once, and ice 

cream occurs twice.  Given an n-ary relation R, we’ll use the notation R(x1, …, xn-1) for the set that contains those 

elements with the property that (x1, …, xn-1, xn)  R.  So, for example Dessert(Dave) = {cake, ice cream}.  

 

An n-ary relation R is a subset of the cross product of n sets.  The sets may all be different, or some of them may be 

the same.  In the specific case in which all the sets are the same, we will say that R is a relation on the set A.   

 

Binary relations are particularly useful and are often written in the form x1 R x2.  Common binary relations include = 

(equality, defined on many domains), < (defined on numbers and some other domains), and  (also defined on numbers 

and some other domains).  For example, the relation < on the integers contains an infinite number of elements drawn 

from the Cartesian product of the set of integers with itself.  For instance, 2 < 7.   

 

The inverse of a binary relation R, written R-1, is simply the set of ordered pairs in R with the elements of each pair 

reversed.  Formally, if R   A  B, then R-1  B  A = {(b, a): (a, b)  R}.  If a relation is a way of associating with 

each element of A with a corresponding element of B, then think of its inverse as a way of associating with elements 

of B their corresponding elements in A.  Every relation has an inverse.  For example, the inverse of < (in the usual 

sense, defined on numbers) is .   

 

If we have two or more binary relations, we may be able combine them via an operation we'll call composition.  For 

example, if we knew the number of fat grams in a serving of each kind of dessert, we could ask for the number of fat 

grams in a particular person’s dessert choices.  To compute this, we first use the Dessert relation to find all the desserts 

each person likes.  Next we get the bad news from the Fatgrams relation, which probably looks something like this: 

 

 {(cake, 30), (pie, 25), (ice cream, 15)}. 

 

Finally, we see that the composed relation that relates people to fat grams is {(Dave, 30), (Dave, 15), (Sara, 25), (Sara, 

15)}.  Of course, this only worked because, when we applied the first relation, we got back desserts.  Then our second 

relation has desserts as its first component.  We couldn't have composed Dessert with Less than, for example.   

 

Formally, we say that the composition of two relations R1  A  B and R2  B  C, written R2  R1, is:  

 

R2  R1 = {(a, c) : b ((a, b)  R1  ((b, c)  R2)}.   

 

Note that this definition tells us that, to compute R2  R1, we first apply R1, then R2.  In other words we go right to left.  

Some definitions go the other way.  Obviously we can define it either way, but it is important to be consistent.  Using 

the notation we have just defined, we can represent the people to fat grams composition described above as Fatgrams 

 Dessert. 

32.3.2 Representing Binary Relations 
Binary relations are particularly important.  If we're going to work with them, and, in particular, if we are going to 

compute with them, we need some way to represent them.  We have several choices.  To represent some binary relation 

R, we could: 

  

1) List the elements of R.  For example, consider the Mother-of relation in a family in which Doreen is the mother 

of Ann, Ann is the mother of Catherine, and Catherine is the mother of Allison.  Then we can write: 

 

 Mother-of = {(Doreen, Ann), (Ann, Catherine), (Catherine, Allison)}.  

 



  

Appendix A     567            Review of Mathematical Background 

Clearly, this approach only works for finite relations. 

 

2) Encode R as a computational procedure.  As with any set, there are at least two ways in which a computational 

procedure can define R.  It may: 

• enumerate the elements of R, or 

• implement the characteristic function for R by returning True when given a pair that is in R and False when 

given anything else. 

 

3) Encode R as an adjacency matrix.  Assuming a finite relation R  A  B, we can build an adjacency matrix to 

represent R as follows: 

3.1. Construct a Boolean matrix M (i.e., a matrix all of whose values are True or False) with |A| rows and |B| 

columns. 

3.2. Label each row for one element of A and each column for one element of B. 

3.3. For each element (p, q) of R, set M[p, q] to True.  Set all other elements of M to False. 

 

If we let 1 represent True and blank represent False, the adjacency matrix shown in Table 32.2 represents the 

relation Mother-of defined above. 

 

 

 

 Doreen Ann Catherine Allison 

Doreen  1   

Ann   1  

Catherine    1 

Allison     

 

Table 32.2  Representing a relation as an adjacency matrix 

 

 

4) Encode R as a directed graph.  If R is a relation on the set A, we can build a directed graph to represent R as 

follows: 

4.1. Construct a set of vertices (often called nodes), one for each element of A that appears in any element of R. 

4.2. For each ordered pair in R, draw an edge from the first element of the pair to the second.  

 

The directed graph shown in Figure 32.2 (a) represents our example relation Mother-of defined above.  If there 

are two elements x and y, and both (x, y) and (y, x) are in R, we will usually draw the graph as shown in Figure 

32.2 (b).  The directed graph technique can also be used if R is a relation over two different sets A and B.  But, in 

this case, we must construct vertices for elements of A and for elements of B.  So, for example, we could represent 

the Fatgrams relation as shown in Figure 32.2 (c). 
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  Doreen   Ann   Catherine      Allison 

 

 

(a) 

 

 

 

          x   y   

 

 (b) 

 

 

 

  ice cream  pie   cake   streudel 

 

 

 

   15   25   30 

 (c) 

 

 

Figure 32.2  Representing relations as graphs 

 

 

32.3.3 Properties of Binary Relations on Sets 
Many useful binary relations have some kind of structure.  For example, it might be the case that every element of the 

underlying set is related to itself.  Or it might happen that if x is related to y, then y must necessarily be related to x.  

There is one special kind of relation, called an equivalence relation that is particularly useful.  But before we can 

define it, we need first to define each of the individual properties that equivalence relations possess. 

 

A relation R  A  A is reflexive iff, x  A ((x, x)  R).  For example, consider the relation Address defined as “lives 

at same address as”.  We will make the simplifying assumption that everyone has only one address.  Address is a 

relation over a set of people.  Clearly every person lives at the same address as him or herself, so Address is reflexive.  

So is the  relation on the integers.  For every integer x, x  x.  But the < relation is not reflexive: in fact, for no integer 

x, is x < x.  Both the directed graph and the matrix representations make it easy to tell if a relation is reflexive.  In the 

graph representation, every vertex will have, at a minimum, an edge looping back to itself.  In the adjacency matrix 

representation, there will be ones all along the major diagonal, and possibly elsewhere as well.  Figure 32.3 illustrates 

both cases. 

 

 

 

 

     Figure 32.3  Representing a reflexive relation 

 

 

 

A relation R  A  A is symmetric iff x, y ((x, y)  R → (y, x)  R).  The Address relation we described above is 

symmetric.  If Joanna lives with Ann, then Ann lives with Joanna.  The  relation is not symmetric (since, for example, 

2  3, but it is not true that 3  2).  The graph representation of a symmetric relation has the property that, between 

any two vertices, either there is an arrow going in both directions or there is no arrow going in either direction.  So we 

get graphs with components that look like the one shown in Figure 32.4 (a).  If we choose the matrix representation, 



  

Appendix A     569            Review of Mathematical Background 

we will end up with a symmetric matrix (i.e., if you flip it on its major diagonal, you'll get the same matrix back 

again).  In other words, if we have a matrix with 1’s as shown in the matrix of Figure 32.4 (b), then there must also be 

1’s in all the squares marked with an * in that matrix. 

 

 

 

      (a) 

 

 

      (b) 

 * *   

1    1 

1     

     

 *    

 

Figure 32.4  Representing a symmetric relation 

 

 

A relation R  A  A is antisymmetric iff x, y (((x, y)  R  x  y) → (y, x)  R).  The Mother-of relation we described 

above is antisymmetric: if Ann is the mother of Catherine, then one thing we know for sure is that Catherine is not 

also the mother of Ann.  Our Address relation is clearly not antisymmetric.  There are, however, relations that are 

neither symmetric nor antisymmetric.  One example is the Likes relation on the set of people: if Joe likes Bob, then it 

is possible that Bob likes Joe; it is also possible that he doesn’t.  Note that antisymmetric is not the same as not 

symmetric.  The relation  is both symmetric and antisymmetric. 

 

A relation R  A  A is transitive iff x, y, z (((x, y)  R  (y, z)  R) → (x, z)  R).  A simple example of a transitive 

relation is <.  Address is another one: if Bill lives with Stacy and Stacy lives with Lee, then Bill lives with Lee.  

Mother-of is not transitive.  But if we change it slightly to Ancestor-of, then we get a transitive relation.  If Doreen is 

an ancestor of Ann and Ann is an ancestor of Catherine, then Doreen is an ancestor of Catherine. 

 

The three properties of reflexivity, symmetry, and transitivity are almost logically independent of each other.  We can 

find simple, potentially useful relations that possess seven of the eight possible combinations of these properties.  We 

show them in Table 32.3 (which we’ll extend to include antisymmetry in Exercise 32.10): 

 

Properties Domain Example 

None People  Mother-of 

Just reflexive People who can see Would-recognize-picture-of 

Just symmetric People Has-ever-been-married-to 

Just transitive People Ancestor-of 

Just reflexive and symmetric People Hangs-out-with (assuming we can say one hangs out 

with oneself) 

Just reflexive and transitive Numbers  

Just symmetric and transitive Anything  

All three Numbers = 

       People  Address 

 

Table 32.3  Important properties of relations 

 

 

To see why we can’t find a nontrivial (i.e., different from ) example of a relation that is symmetric and transitive 

but not reflexive, consider a simple relation R on {1, 2, 3, 4}.  As soon as R contains a single element that relates two 

unequal objects (e.g., (1, 2)), it must, for symmetry, contain the matching element (2, 1).  So now we have R = {(1, 

2), (2, 1)}.  To make R transitive, we must add (1, 1) and (2, 2).  Call the resulting relation R.  Then R would be 
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reflexive, except that neither 3 nor 4 is related to itself.  In fact, they are related to nothing.  We cannot find an example 

of a relation R that is symmetric and transitive but not reflexive if we insist that all elements of the domain be related 

under R to something. 

32.3.4 Equivalence Relations 
Although all but one of the combinations we just described are reasonable, one combination is of such great importance 

that we give it a special name.  Given a domain A, a relation R  A  A is an equivalence relation iff it is reflexive, 

symmetric and transitive.  Equality (for numbers, strings, or whatever) is an equivalence relation (no coincidence, 

given the name).  So is our Address (lives at same address) relation. 

 

 
 

Figure 32.5  Building an equivalence relation 

 

 

Equality is a very special sort of equivalence relation because it relates an object only to itself.  It doesn’t help us much 

to carve up a large set into useful subsets.  But other equivalence relations may serve as very useful ways to carve up 

a set.  To see why, consider a set A, with five elements, which we can draw as a set of vertices as shown in Figure 

32.5 (a).  Having done that, we can build an equivalence relation R on A.  First, we’ll relate each vertex to itself.  That 

will make the relation reflexive.  Once that is done, we’ll have the relation shown in Figure 32.5 (b).   
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Now let’s add one additional element, (1, 2), to R.  As soon as we do that, we must also add (2, 1), since R must be 

symmetric.  At this point, we have the relation shown in Figure 32.5 (c).  Suppose we now add (2, 3).  We must also 

add (3, 2) to maintain symmetry.  In addition, because we have (1, 2) and (2, 3), we must add (1, 3) for transitivity.  

And then we need (3, 1) to restore symmetry.  That gives us the relation shown in Figure 32.5 (d). 

 

Notice what happened here.  As soon as we related 3 to 2, we were also forced to relate 3 to 1.  If we hadn’t, we would 

no longer have had an equivalence relation.  See what happens now if you add (3, 4) to R.  

 

What we’ve seen in this example is that an equivalence relation R on a set S carves S up into a set of clusters or islands, 

which we’ll call equivalence classes.  This set of equivalence classes has the following key property: 

 

 s, t  S ((s  classi  (s, t)  R) → t  classi). 

 

In other words, all elements of S that are related under R are in the same equivalence class.  To describe equivalence 

classes, we’ll use the notation [x] to mean the equivalence class to which x belongs.  Or we may just write [description], 

where description is some clear property shared by all the members of the class.  Notice that, in general, there may be 

lots of different ways to describe the same equivalence class.  In our example, for instance, [1], [2], and [3] are different 

names for the same equivalence class, which includes the elements 1, 2, and 3.  In this example, there are two other 

equivalence classes as well: [4] and [5]. 

 

Recall that  is a partition of a set A iff (a) no element of  is empty; (b) all members of  are disjoint; and (c) the 

union of all the elements of  equals A.  If R is an equivalence relation on a nonempty set A, then the set of equivalence 

classes of R constitutes a partition of A.  In other words, if we want to take a set A and carve it up into a set of subsets, 

an equivalence relation is a good way to do it. 

Example 32.4 Some Equivalence Relations 

All of the following relations are equivalence relations: 

 

• The Address relation carves up a set of people into subsets of people who live together. 

 

• Let A be the set of all strings of letters.  Let Samelength  A  A relate strings whose lengths are the same.  

Samelength is an equivalence relation that carves up the universe of all strings into a collection of subsets, one for 

each natural number (i.e., strings of length 0, strings of length 1, etc.). 

 

• Let Z be the set of integers.  Let 3  Z  Z relate integers that are equivalent modulo 3.  In other words, they have 

the same remainder when divided by 3.  3 is an equivalence relation with three equivalence classes, [0], [1], and 

[2].  [0] includes 0, 3, 6, etc.  [1] includes 1, 4, 7, etc.  And [2] includes 2, 5, 8, etc.  We will use the notation n for 

positive integer values of n to mean equivalent modulo n. 

 

• Let CP be the set of C programs, each of which accepts an input of variable length.  We will call the length of any 

specific input n.  Let Samecomplexity  CP  CP relate two programs iff their running-time complexity is the same.  

More, precisely, let Runningtime(c, n) be the maximum time required for program c to run on an input of length n.  

Then (c1, c2)  Samecomplexity iff there exist natural numbers m1, m2, k  such that: 

 

    n>k (Runningtime(c1, n)  m1Runningtime(c2, n)  Runningtime(c2, n)  m2Runningtime(c1, n)). 

 

    Samecomplexity is an equivalence relation.  We will have a lot more to say about relations like it in Part V. 

 

Not every relation that connects “similar” things is an equivalence relation.  For example, define Similarcost(x, y) to 

hold if the price of x is within $1 of the price of y.  Suppose X1 costs $10, X2 costs $10.50, and X3 costs $11.25.  Then 

Similarcost(X1, X2) and Similarcost(X2, X3), but not Similarcost(X1, X3).  Similarcost is not transitive, although it is 

reflexive and symmetric.  So Similarcost is not an equivalence relation. 
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32.3.5 Orderings 
Important as equivalence relations are, they are not the only special kind of relation worth mentioning.  Let’s consider 

two more. 

 

A partial order is a relation that is reflexive, antisymmetric, and transitive.  Let R be a partial order defined on a set 

A.  Then the pair (A, R) is a partially ordered set.  If we write out any partial order as a graph, we’ll see a structure 

like the ones in the following examples.  Notice that, to make the graph relatively easy to read, we’ll adopt the 

convention that we don’t write in the links that are required by reflexivity and transitivity.  But, of course, they are 

there in the relations themselves. 

Example 32.5 Subset-of is a Partial Order 

Consider the relation Subset-of, defined on the set of all sets.  Subset-of is a partial order, since it is reflexive (every 

set is a subset of itself), transitive (if A  B and B  C, then A  C) and antisymmetric (if A  B and A  B, then it 

must not be true that B  A).  A small piece of Subset-of can be drawn as:  

 

        The set of all sets 

 

 

     Z  (the integers)   P (the set of people on earth) 

 

 

                     Odd numbers   Even numbers 

 

 

   Prime numbers excluding 2 

 

 

      {3, 5}                    {2, 4, 8} 

 

 

{1} {3}  {5}  {2}                           {4} 

 

 

       (the empty set) 

 

Read an arrow from x to y as meaning that (x, y) is an element of Subset-of.  So, in this example, {3} is a subset of {3, 

5}.  Note that in a partial order, it is often the case that there are some elements (such as {3, 5} and {2}) that are not 

related to each other at all (since neither is a subset of the other).  Remember in reading this picture that we have 

omitted the reflexive and transitive arrows.  

 

Example 32.6 Proper-subset-of is not a Partial Order 

Now consider the relation Proper-subset-of.  It is not a partial order because it is not reflexive.  For example {1}  

{1}. 

 

In many kinds of applications, it is useful to organize the objects we are dealing with by defining a partial order that 

corresponds to the notion of one object being more or less general than another.  Such a relation may be called a 

subsumption relation.   

Example 32.7 Concepts Form a Subsumption Relation 

Consider a set of concepts, each of which corresponds to some significant set of entities in the world.  Some concepts 

are more general than others.  We’ll say that a concept x is subsumed by a concept y (written x  y) iff every instance 
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of x is also an instance of y.  Alternatively, y is at least as general as x.  A small piece of this subsumption relation for 

some concepts that might be used to model the meanings of common English words is: 

 

     Thing 

 

 

   Animal    Machine 

 

 

 Mammal   Pet  Vehicle   

 

 

  Cat   

 

 

        Pet Cat 

 

Concept subsumption is a partial order.  It is very similar to the Subset-of relation except that it is defined only on the 

specific subsets that have been defined as concepts.   

 

Subsumption relations are useful because they tell us when we have new information.  If we already know that some 

object X1 is a cat, we learn nothing new when told that it is an animal.    

Example 32.8 Logical Statements Form a Subsumption Lattice 

A first-order logic sentence P is subsumed by another sentence Q (written P  Q) iff, whenever Q is true P must be 

true, regardless of the values assigned to the variables, functions, and predicates of P and Q.  For example: x (P(x)) 

subsumes P(X1), since, regardless of what the predicate P is and what axioms we have about it, and regardless of what 

object X1 represents, if x (P(x)) is true, then P(X1) must be true.  Why is this a useful notion?  Suppose that we are 

building a theorem-proving or reasoning program.  If we already know x P(x), and we are then told P(X1), we can 

throw away this new fact.  It doesn’t add to our knowledge (except perhaps to focus our attention on the object X1), 

since it is subsumed by something we already knew.  A small piece of the subsumption relation on sentences is shown 

in the following graph:   

 

               False 

 

 

                     x (P(x))   x (R(x)  S(x))         x (R(x)  T(x)) 

 

 

  P(X1)       P(X2) 

 

 

   P(X2)  Q(X2)         x (R(x))  

 

 

                True 

 

The subsumption relation on sentences is a partial order. 

 

The symbol  is often used to denote a partial order.  Let  be an arbitrary partial order defined on some domain A.  

Any element x of A such that y  A ((y  x) → (y = x)) is a minimal element of A with respect to .  In other words, 

x is a minimal element if there are no other elements less than or equal to it.  Similarly, any element x of A such that 

y  A (x  y → y = x) is a maximal element of A with respect to .  There may be more than one minimal (or 

maximal) element in a partially ordered set.  For example, the partially ordered set of concepts in Example 32.7 has 

two minimal elements, Pet Cat and Vehicle.  If there is a unique minimal element it is called the least element.  If 
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there is a unique maximal element it is called the greatest element.  The set of logical sentences ordered by 

subsumption has a greatest element, False, which subsumes everything.  It makes the strongest, and in fact, 

unsatisfiable claim.  There is also a least element, True, which makes the weakest possible claim, and is subsumed by 

all other sentences. 

 

A total order R  A  A is a partial order that has the additional property that x, y  A ((x, y)  R  (y, x)  R).  In 

other words, every pair of elements must be related to each other one way or the other.  The classic example of a total 

order is  (or , if you prefer) on the integers.  The  relation is a partial order and, given any two integers x and y, 

either x  y or y  x.  If we draw any total order as a graph, we’ll get something that looks like the graph in Figure 32.6 

(again without the reflexive and transitive links shown). 

 

 

     6 

 

     5 

 

     4 

     

     3    Figure 32.6  Drawing a total order as a graph 

 

 

This is only a tiny piece of the graph, of course.  It continues infinitely in both directions.  But notice that, unlike our 

earlier examples of partial orders, there is no splitting in this graph.  For every pair of elements, one is above and one 

is below.  If R is a total order defined on a set A, then the pair (A, R) is a totally ordered set.  Of course, not all partial 

orders are also total.  For example, the Subset-of relation we described in Example 32.5 is not a total order. 

 

Given a partially ordered set (A, R), an infinite descending chain is a totally ordered, with respect to R, subset B of A 

that has no minimal element.  If (A, R) contains no infinite descending chains then it is called a well-founded set.  An 

equivalent definition is the following:  A partially ordered set (A, R) is a well-founded set iff every subset of A has at 

least one minimal element with respect to R.  If (A, R) is a well-founded set and R is a total order, then (A, R) is called 

a well-ordered set.  Every well-ordered set has a least element.  For example, consider the sets ℕ (the natural numbers) 

and Z (the integers).  The totally ordered set (ℕ, ) is well-founded and well-ordered.  Its least element is 0.  The 

totally ordered set (Z, ) is neither well-founded nor well-ordered, since it contains an infinite number of infinite 

descending chains, such as 3, 2, 1, 0, -1, -2, …. 

 

Table 32.4 reviews some of our examples. 

 

 

(A, R) Well-founded? Well-ordered? 

The set of sets with respect to the subset-of relation Yes No 

The set of concepts with respect to subsumption Yes No 

The set of first-order sentences with respect to subsumption Yes No 

The set of natural numbers under   Yes Yes 

The set of integers under  No No 

 

Table 32.4  Checking for well-foundedness and well-orderedness 

 

 

Well-founded and well-ordered sets are important.  Well-ordered sets provide the basis for proofs by induction (as 

we’ll see in Section 32.6.6).  Well-founded sets (that are often also well-ordered) provide the basis for proofs that 

loops and recursively defined functions halt (as we’ll see in Section 32.7.1).   
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32.4 Functions 
Relations are very general.  They allow an object to be related to any number of other objects at the same time (as 

they are, for example, in our Dessert relation).  Sometimes we want a more restricted notion, in which each object is 

related to a unique other object.  For example, (at least in an ideal world without criminals or incompetent bureaucrats) 

each American resident is related to a unique social security number.  To capture this idea we need functions.   

32.4.1 What is a Function? 
We begin with the common definition of a function: A function f from a set A to a set B is a binary relation that is a 

subset of A  B, with the additional property that: 

 

x  A ((((x, y)  f  (x, z)  f) → y = z)  y  B ((x, y)  f )).   

 

In other words, each element of A is related to exactly one element of B.   

 

The Dessert relation we defined earlier is not a function since Dave and Sara each occur twice.  We haven't restricted 

each person to precisely one dessert.  A simple relation that is a function is the successor function succ defined on the 

integers: 

 

  succ(n) = n + 1. 

 

Of course, we cannot write out all the elements of succ (since there are an infinite number of them), but succ includes: 

  {…, (-3, -2), (-2, -1), (-1, 0), (0, 1), (1, 2), (2, 3)…}. 

 

It is useful to define some additional terms to make it easy to talk about functions.  We start by writing: 

 

  f : A → B,  

 

which means that f is a function from the set A to the set B.  We call A the domain of f and B the codomain or range 

of f.  We may also say that f is a function from A to B.  Using this notation, we can write function definitions that have 

two parts, the first of which specifies the domain and range and the second of which defines the way in which the 

elements of the range are related to the elements of the domain.  So, for example, we define the successor function on 

the integers (denoted as Z) by writing: 

 

  succ: Z → Z, 

  succ(n) = n + 1. 

 

If x  A, then we write: 

 

  f(x), 

 

which we read as, “f of x”, to indicate the element of B to which x is related.  We call this element the image of x under 

f or the value of f for x.  Note that, given the definition of a function, there must be exactly one such element.  We will 

also call x the argument of f.  For example we have that: 

  

  succ(1) = 2,  succ (2) = 3, ... 

 

Thus 2 is the image (or the value) of the argument 1 under succ.    

 

We will also use the notation f(x) to refer to the function f (as opposed to f’s value at a specific point x) whenever we 

need a way to refer to f’s argument.  So, for example, we’ll write, as we did above, succ(n) = n + 1. 

 

The function succ is a unary function.  It maps from a single element (a number) to another element.  We are also 

interested in functions that map from ordered pairs of elements to a value.  We call such functions binary functions.  

For example, integer addition is a binary function: 
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  +: (Z  Z) → Z. 

 

Thus + includes elements such as ((2, 3), 5), since 2 + 3 is 5.  We could also write: 

 

  +((2, 3)) = 5. 

 

We have used double parentheses here because we are using the outer set to indicate function application (as we did 

above without confusion for succ) and the inner set to define the ordered pair to which the function is being applied.  

But this is confusing.  So, generally, when the domain of a function is the Cartesian product of two or more sets, as it 

is here, we drop the inner set of parentheses and simply write: 

 

  +(2, 3) = 5. 

 

The prefix notation that we have used so far, in which we write the name of the function first, followed by its 

arguments, can be used for functions of any number of arguments.  For the specific, common case of binary functions, 

it is often convenient to use an alternative: infix notation in which the function name (often called the operator) is 

written between its two arguments.  

 

  2 + 3 = 5. 

 

So far, we have considered unary functions and binary functions.  But just as we could define n-ary relations for 

arbitrary values of n, we can define n-ary functions.  For any positive integer n, an n-ary function f is a function that 

is defined as: 

 

  f : (S1  S2 …  Sn) → R. 

 

For example, let Z be the set of integers.  Then:  

 

  quadraticequation : (Z  Z  Z) → F. 

 

is a function whose domain is an ordered triple of integers and whose range is a set of functions.  The definition of 

quadraticequation is: 

 

  quadraticequation(a, b, c) = ax2 + bx + c. 

 

What we did here is typical of function definition.  First we specify the domain and the range of the function.  Then 

we define how the function is to compute its value (an element of the range) given its arguments (an element of the 

domain).   

 

Whenever the domain of a function f is an ordered n-tuple of elements drawn from a single set S, we may (loosely) 

say that the domain of f is S.  In this case, we may also say that f is a function of n arguments.  So, for example, we 

may talk about the binary function + on the domain ℕ (when, properly, its domain is ℕ  ℕ).  

 

Recall that, in the last section, we said that we could compose binary relations to derive new relations.  Clearly, since 

functions are just special kinds of binary relations, if we can compose binary relations we can certainly compose 

binary functions.  Because a function returns a unique value for each argument, it generally makes a lot more sense to 

compose functions than it does relations, and you’ll see that although we rarely compose relations that aren’t functions, 

we compose functions all the time.  So, following our definition above for relations, we define the composition of two 

functions f  A  B and g  B  C, written g  f, as: 

 

g  f = {(a, c) : b ((a, b)  f and (b, c)  g)}.   

 

Notice that the composition of two functions must necessarily also be a function.  We mentioned above that there is 

sometimes confusion about the order in which relations (and now functions) should be applied when they are 
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composed.  To avoid this problem, we will introduce a new notation g(f(x)).  We use the parentheses here to indicate 

function application, just as we did above.  So g  f(x) = g(f(x)).  This notation is clear.  Apply g to the result of first 

applying f to x.  This notation reads right to left as does our definition of the  notation.   

32.4.2 Properties of Functions 
Some functions possess properties that may make them particularly useful for certain tasks. 

 

The definition that we gave for a function at the beginning of this section required that, for f : A → B to be a function, 

it must be defined for every element of A (i.e., every element of A must be related to some element of B).  This is the 

standard mathematical definition of a function.  But, as we pursue the idea of “computable functions” (i.e., functions 

that can be implemented on some reasonable computing platform), we’ll see that there are functions whose domains 

cannot be effectively defined.  For example, consider a function steps whose input is a Java program and whose result 

is the number of steps that are executed by the program on the input 0.  This function is undefined for programs that 

do not halt on the input 0.  As we’ll see in Chapter 19, there can exist no program that can check a Java program and 

determine whether or not it will halt on the input 0.  So there is no program that can look at a possible input to steps 

and determine whether that input is in steps’s domain.  In Chapter 25, we will consider two approaches to fixing this 

problem.  One is to extend the range of steps, for example by adding a special value, Error, that can be the result of 

applying steps to a program that doesn’t halt on input 0.  The difficulty with this approach is that steps becomes 

uncomputable since there exists no algorithm that can know when to return Error.  Our alternative is to expand the 

domain of steps, for example to the set of all Java programs.  Then we must acknowledge that if steps is applied to 

certain elements of its domain (i.e., programs that don’t halt), its value will be undefined.   

 

In order to be able to talk about functions like steps, we’ll introduce two new terms.  We’ll say that f : A → B is a total 

function on A iff it is a function that is defined on all elements of A (i.e., it is a function in the standard mathematical 

sense).  We’ll say that f : A → B is a partial function on A iff f is a subset of A  B and every element of A is related 

to no more than one element of B.  In Chapter 25 we will return to a discussion of partial functions.  Until then, when 

we say that f is a function, we will mean that it is a total function. 

 

A function f : A → B is one-to-one iff no two elements of A map to the same element of B.  Succ is one-to-one.  For 

example, the only number to which we can apply succ and derive 2 is 1.  Quadraticequation is also one-to-one.  But 

+ isn’t.  For example, both +(2, 3) and +(4, 1) equal 5. 

 

A function f : A → B is onto iff every element of B is the value of some element of A.  Another way to think of this is 

that a function is onto iff all of the elements of B are "covered" by the function.  As we defined it above, succ is onto.  

But let’s define a different function succ' on ℕ (the natural numbers) (rather than the integers).  So we define:  

 

  succ' : ℕ → ℕ. 

  succ'(n) = n + 1. 

 

Succ' is not onto because there is no natural number i such that succ'(i) = 0. 

 

The easiest way to envision the differences between an arbitrary relation, a function, a one-to-one function, and an 

onto function is to make two columns (the first for the domain and the second for the range) and think about the kind 

of matching problems you probably had on tests in elementary school.   

 

Consider the six matching problems shown in Figure 32.7.  In each, we’ll consider ways of relating the elements of 

the first column  (the domain) to the elements of the second column (the range).  Example 1 describes a relation that 

is not a (total) function because C is an element of its domain that is not related to any element of its range.  Example 

2 describes a relation that is not a function because there are three values associated with A.  The third example is a 

function since, for each object in the first column, there is a single value in the second column.  But this function is 

neither one-to-one (because X is derived from both A and B) nor onto (because Z is not the image of anything).  The 

fourth example is a function that is one-to-one (because no element of the second column is related to more than one 

element of the first column).  But it still isn’t onto because Z has been skipped: nothing in the first column derives it.  

The fifth example is a function that is onto (since every element of column two has an arrow coming into it), but it 
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isn’t one-to-one, since Z is derived from both C and D.  The sixth and final example is a function that is both one-to-

one and onto.  By the way, see if you can modify either example 4 or example 5 to make it both one-to-one and onto.  

You’re not allowed to change the number of elements in either column, just the arrows.  You’ll notice that you can’t 

do it.  In order for a function to be both one-to-one and onto, there must be equal numbers of elements in the domain 

and the range. 

 

 

      1           2          3          4             5         6 

 

A X      A X  A X  A X  A X  A         X 

 

B Y  B Y  B Y  B Y  B Y  B         Y 

 

C Z  C Z  C Z  C Z  C Z  C         Z 

 

          Q  D 

 

Figure 32.7  Kinds of relations and functions 

 

The inverse of a binary function f is the relation that contains exactly the ordered pairs in f with the elements of each 

pair reversed.  We’ll write the inverse of f as f -1.  Formally, if f  A  B, then f -1  B  A = {(b, a): (a, b)  f}.  Since 

every function is a relation, every function has a relational inverse, but that relational inverse may or may not also be 

a function.  For example, look again at example 3 of the matching problem above.  Although it is a function, its inverse 

is not.  Given the argument X, should we return the value A or B?  Now consider example 4.  Its inverse is also not a 

function, since there is no value to be returned for the argument Z.  Example 5 has the same problem example 3 does.  

Now look at example 6.  Its inverse is a function.  Whenever a function is both one-to-one and onto, its inverse will 

also be a function and that function will be both one-to-one and onto.  Such functions are called bijections. Bijections 

are useful because they enable us to move back and forth between two sets without loss of information.  Look again 

at example 6.  We can think of ourselves as operating in the {A, B, C} universe or in the {X, Y, Z} universe 

interchangeably since we have a well defined way to move from one to the other.  And if we move from column one 

to column two and then back, we’ll be exactly where we started. 

 

It is sometimes useful to talk about functions that map one object to another but, in so doing, do not fundamentally 

change the way that the objects behave with respect to some structure (i.e., some set of functions that we care about).  

A homomorphism is a function that maps the elements of its domain to the elements of its range in such a way that 

some structure of the original set is preserved.  So, considering just binary functions, if f is a homomorphism and # is 

a binary function in the structure that we are considering, then it must be case that x, y (f(x) # f(y) = f(x # y)).  The 

structure of unary and higher order functions must also be preserved in a similar way. 

 

Given a particular function f, whether or not it is a homomorphism depends on the structure that we are considering.  

So, for example, consider the integers, along with one function, addition.  Then the function f(x) = 2x is a 

homomorphism because 2x + 2y = 2(x + y).  But, if the structure we are working with also contains a second function, 

multiplication, then f is no longer a homomorphism because, unless x or y is 0, 2x2y  2(xy).  

 

If a homomorphism f is also a bijection, then it is called an isomorphism.  If two objects are isomorphic to each other, 

then they are indistinguishable with respect to the defining structure.  For example, consider the set of undirected 

graphs, along with all of the standard graph operations that determine size and paths.  If G is an arbitrary graph, let 

f(G) be exactly G except that the symbol # is appended to the name of every vertex.  This function f is an isomorphism.  

The two graphs shown in Figure 30.8 are isomorphic. 

 

 

  1    2     1#    2#  

 

         3            4            3#           4# 

 

Figure 32.8  Two isomorphic graphs 
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When the intersection of the domain and the range of a function f is not empty, it is sometimes useful to find elements 

of the domain that are unchanged by the application of f.  A fixed point of a function f is an element x of f’s domain 

with the property that f(x) = x.  For example, 1 and 2 are fixed points of the factorial function since 1! = 1 and 2! = 2.  

The factorial function has no other fixed points.  

32.4.3 Properties of Binary Functions 
Any relation that uniquely maps from each element of its domain to some element of its range is a function.  The two 

sets involved can be anything and the mapping can be arbitrary.  However, most of the functions we actually care 

about behave in some sort of regular fashion.  It is useful to articulate a set of properties that many of the functions 

that we'll study have.  When these properties are true of a function, or a set of functions, they give us techniques for 

proving additional properties of the objects involved.  In the following definitions, we will consider an arbitrary binary 

function # defined over a set A.  As examples, we’ll consider functions whose actual domains are ordered pairs of sets, 

integers, strings, and Boolean expressions. 

 

A binary function # is commutative iff x, y  A (x # y = y # x). 

 

 Examples: i + j = j + i.    (integer addition) 

   A  B = B  A.    (set intersection) 

   P  Q  Q  P.    (Boolean and) 

 

A binary function # is associative iff x, y, z  A ((x # y) # z = x # (y # z)). 

 

 Examples: (i + j) + k = i + (j + k).   (integer addition) 

   (A  B)  C = A  (B  C).  (set intersection) 

   (P  Q)  R  P  (Q  R).  (Boolean and) 

   (s || t) || w = s || (t || w).   (string concatenation) 

 

A binary function # is idempotent iff x  A (x # x = x). 

 

 Examples:  min(i, i) = i.    (integer minimum) 

   A  A = A.    (set intersection) 

   P  P  P.    (Boolean and) 

 

The distributivity property relates two binary functions:  A function # distributes over another function % iff x, y, z 

 A (x # (y % z) = (x # y) % (x # z)). 

 

 Examples: i(j + k) = (ij) + (ik).   (integer multiplication over addition) 

   A  (B  C) = (A  B)  (A  C).  (set union over intersection) 

   P  (Q  R)  (P  Q)  (P  Q).  (Boolean and over or) 

 

Absorption laws also relate two binary functions to each other:  A function # absorbs another function % iff x, y  

A (x # (x % y) = x)). 

 

 Examples: A  (A  B) = A.    (Set intersection absorbs union.) 

   P  (P  Q)  P.    (Boolean or absorbs and.) 

   P  (P  Q)  P.    (Boolean and absorbs or.) 

 

It is often the case that when a function is defined over some set A, there are special elements of A that have particular 

properties with respect to that function.  In particular, it is worth defining what it means to be an identity and to be a 

zero: 

 

An element a is an identity for the function # iff x  A ((x # a = x)  (a # x = x)). 
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 Examples: i1 = i.     (1 is an identity for integer multiplication.) 

   i + 0 = i.     (0 is an identity for integer addition.) 

   A   = A.    ( is an identity for set union.) 

   P  False  P.    (False is an identity for Boolean or..) 

   s || "" = s .    ("" is an identity for string concatenation) 

 

Sometimes it is useful to differentiate between a right identity (one that satisfies the first requirement above) and a 

left identity (one that satisfies the second requirement above).  But for all the functions we’ll be concerned with, if 

there is a left identity, it is also a right identity and vice versa, so we will talk simply about an identity. 

 

An element a is a zero for the function # iff x  A ((x # a = a)  (a # x = a)). 

 

 Examples: i0 = 0.     (0 is a zero for integer multiplication.) 

   A   = .    ( is a zero for set intersection.) 

   P  False  False.   (False is a zero for Boolean and.) 

 

Just as with identities, it is sometimes useful to distinguish between left and right zeros, but we won’t need to. 

 

Although we’re focusing here on binary functions, there’s one important property that unary functions may have that 

is worth mentioning here: 

 

A unary function $ is a self inverse iff x ($($(x)) = x).  In other words, if we compose the function with itself (apply 

it twice), we get back the original argument.   

 

 Examples: -(-(i)) = i.   (Multiplying by -1 is a self inverse for integers.) 

   1/(1/i) = i if i  0.   (Dividing into 1 is a self inverse for integers.) 

   A = A.   (Complement is a self inverse for sets.) 

   ( P) = P.   (Negation is a self inverse for Booleans.) 

   (sR)R = s.   (Reversal is a self inverse for strings.) 

32.4.4 Properties of Functions on Sets 
The functions that we have defined on sets satisfy most of the properties that we have just considered.  Further, as we 

saw above, some set functions have a zero or an identity.  We’ll summarize here (without proof) the most useful 

properties that hold for the functions we have defined on sets: 

 

Commutativity:   A  B = B  A. 

    A  B = B  A. 

 

Associativity:   (A  B)  C  = A  (B  C). 

    (A  B)  C = A  (B  C). 

 

Idempotency:   A  A = A. 

    A  A = A. 

 

Distributivity:   A  (B  C) = (A  B)  (A  C). 

    A  (B  C) = (A  B)  (A  C). 

 

Absorption:   (A  B)  A = A. 

    (A  B)  A = A. 

 

Identity:    A   = A. 

 

Zero:    A   = . 



  

Appendix A     581            Review of Mathematical Background 

 

Self Inverse:   A = A. 

 

In addition, we will want to make use of the following theorems that can be proven to apply specifically to sets and 

their operations (as well as to Boolean expressions, with  substituted for  and  substituted ): 

 

De Morgan’s laws:  (A  B) = A  B. 

    (A  B) = A  B. 

32.5 Closures 
We say that a binary relation R on a set A is closed under property P iff R possesses P.  For example, the relation  as 

generally defined on the integers is closed under transitivity.    

 

Sometimes, if a relation R is not closed under P we may want to ask what elements would have to be added to R so 

that it would possess P.  So, let R be a binary relation on a set A.  A relation R' is a closure of R with respect to some 

property P iff: 

 

• R  R', 

• R' is closed under P, and 

• There is no smaller relation R'' that contains R and is closed under P.  (One relation R1 is smaller than another 

relation R2 iff |R1| < |R2|.   

 

In other words, to form the closure of R with respect to P we add to R the minimum number of elements required to 

establish P.  So, for example, the transitive closure of a binary relation R is the smallest relation R' that contains R but 

is transitive.  Thus, if R contains the elements (x, y) and (y, z), the transitive closure of R must also contain the element 

(x, z).  

Example 32.9 Forming Transitive and Reflexive Closures 

Let R = {(1, 2), (2, 3), (3, 4)}.   

 

• The transitive closure of R is {(1, 2), (2, 3), (3, 4), (1, 3), (1, 4), (2, 4)}. 

• The reflexive closure of R is {(1, 2), (2, 3), (3, 4), (1, 1), (2, 2), (3, 3), (4, 4)}. 

 

Example 32.10 The Transitive Closure of Parent-of 

The transitive closure of Parent-of is Ancestor-of. 

 

Under some conditions (which will hold in all the cases we consider), it is possible to prove that a relation R has a 

unique closure under the property P.  (See Section 32.8 for a discussion of this issue.)   

 

We can define the closure of a set with respect to a function in a similar manner.  Let f be a function of n arguments.  

We say that a set A is closed under f iff, whenever all n of f’s arguments are elements of A, the value of f is also in A.  

For example, the positive integers are closed under addition.  The positive integers are not closed under subtraction 

since, for example 7-10 = -3. 

 

As we did for relations, we may again want to consider, whenever a set A is not closed under some function f: X → Y, 

how A could be augmented (with additional elements drawn from X) so that it would be closed.  Let f  be function of 

n arguments drawn from a set A.  A set A' is a closure of A under f iff: 

 

• A  A', 

• A' is closed under f, and 

• There is no smaller set A'' that contains A and is closed under f. 
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Example 32.11 Closures under Functions 

• {0} is not closed under the successor function succ, since succ(0) = 1.  The closure of {0} under succ is ℕ (the 

natural numbers). 

• ℕ is closed under addition (since the sum of any two natural numbers is a natural number).  So the closure of ℕ 

under addition is simply ℕ. 

• ℕ is not closed under subtraction.  For example, 5 - 7 is not a natural number.  The closure of ℕ under subtraction 

is Z (the integers). 

• Z is not closed under division.  Its closure under division is Q (the rational numbers) plus a special element that 

is the result of dividing by 0. 

• Q is not closed under limits.  Its closure under limits is R (the real numbers). 

• R is not closed under square root.  Its closure under square root is C (the complex numbers). 

• The set of even length strings of a’s and b’s is closed under concatenation. 

• The set of odd length strings of a’s and b’s is not closed under concatenation.  For example the string aaa 

concatenated with the string aaa is aaaaaa, whose length is not odd.  The closure of the odd length strings of 

a’s and b’s under concatenation is the set of all strings of a’s and b’s. 

• Let A be the set of all strings of a’s.  So A = {a, aa, aaa, aaaa, aaaaa, …}.  Let S be the set that contains all 

subsets SS of A where SS contains an odd number of elements.  So S = {{a}, {aa}, {aaa}, …, {a, aa, aaa}, 

…}.  S is not closed under union, since, for example {a}  {aa} = {a, aa}, which is not in S, since it contains 

an even number of elements.  The closure of S under union is the set of all finite sets in P(A). 

 

Given a set S and a property P, we may want to compute the closure of S with respect to P.   For example, we will 

often want to compute the transitive closure of a binary relation R on a set A.  This is harder than it seems.  We can’t 

just add a fixed number of elements to R and then quit.  Every time we add a new element, such as (x, y), we have to 

look to see whether there is some element (y, z).  If so, we also have to add (x, z).  And, similarly, we must check for 

any element (w, x) that would force us to add (w, y).  If R is infinite, there is no guarantee that this process will ever 

terminate.  Theorem 32.5 (presented in Section 32.8) guarantees that a unique closure exists but it does not guarantee 

that the closure will contain a finite number of elements and thus be computable in a finite amount of time. 

 

We can, however, guarantee that the transitive closure of any finite binary relation is computable.  How?  A very 

simple approach is the following algorithm for computing the transitive closure of a binary relation R with n elements 

on a set A.  If t is an ordered pair, then t.first will refer to the first element of the pair and t.second will refer to the 

second element. 

 

     computetransitiveclosure(R: relation) =  

1. trans = R.     /* Initially trans is just the original relation. 

/* We need to find all cases where (x, y) and (y, z) are in trans.  Then we must insert (x, z) into trans if 

/*  it isn’t already there. 

2. addedSomething = True.   /* Keep going until we make one whole pass. 

           without adding any new elements to trans. 

3. While addedSomething = True do: 

3.1. addedSomething = False. 

3.2. For each element t1 of trans do: 

For each element t2 of trans do: /* Compare t1 to every other element of trans. 

If t1.second = t2.first then do:   /* We have(x, y) and (y, z). 

If (t1.first, t2.second)  trans then do:  /* We have to add (x, z). 

Insert(trans, (t1.first, t2.second)). 

addedSomething = True. 

 

This algorithm is straightforward and correct, but it may be inefficient.  There are more efficient algorithms.  In 

particular, if we represent a relation as an adjacency matrix, we can do better using Warshall’s algorithm , which 

finds the transitive closure of a relation over a set of n elements using approximately 2n3 bit operations.   
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In Section 32.8, we present a more general definition of closure that includes, as special cases, the two specific 

definitions presented here.  We also elaborate on some of the claims that we have just made. 

32.6 Proof Techniques 
In this section we summarize the most important proof techniques that we will use in the rest of this book. 

32.6.1 Proof by Construction 

Suppose that we want to prove an assertion of the form x (Q(x)) or x (y (P(x, y))).   One way to prove such a claim 

is to show a (provably correct) algorithm that finds the value that we claim must exist.  We call that technique proof 

by construction.    

 

For example, we might wish to prove that every pair of integers has a greatest common divisor.  We could prove that 

claim by exhibiting a correct greatest common divisor algorithm.  In exhibiting such an algorithm, we show not only 

that the greatest common divisor exists (since the algorithm provably finds one for every input pair), we show 

something more: a method to determine the greatest common divisor for any pair of integers.  While this is a stronger 

claim than the one we started with, it is often the case that such stronger claims are easier to prove.   

32.6.2 Proof by Contradiction 

Suppose that we want to prove some assertion P.  One approach is to assume, to the contrary, that P were true.  We 

then show, with that assumption, that we can derive a contradiction.  The law of the excluded middle says that (P  

P).  If we accept it, and we shall, then, since P cannot be true, P must be.   

Example 32.12 There is an Infinite Number of Primes 

Consider the claim that there is an infinite number of prime numbers.  Following Euclid, we prove this claim by 

assuming, to the contrary, that the set P of prime numbers is finite.  So there exists some value of n such that P = {p1, 

p2, p3, … pn}.  Let: 

 

q = (p1p2p3 … pn) + 1. 

 

Since q is greater than each pi, it is not on the list of primes.  So it must be composite.  In that case, it must have at 

least one prime factor, which must then be an element of P.  Suppose that factor is pk, for some k  n.  Then q must 

have at least one other factor, some integer i such that: 

 

  q  = ipk. 

 (p1p2p3 … pn) + 1 = ipk. 

 (p1p2p3 … pn) - ipk = -1. 

 

Now observe that pk divides both terms on the left since it is prime and so must be in the set {p1, p2, p3, … pn}.  

Factoring it out, we get: 

 

 pk(p1p2pk-1pk+1 … pn - i)  = -1. 

pk    = -1/(p1p2pk-1pk+1 … pn - i). 

 

But, since (p1p2pk-1pk+1 … pn - i) is an integer, this means that |pk| < 1.  But that cannot be true since pk is prime and 

thus greater than 1.  So q is not composite.  Since q is greater than 1 and not composite, it must be prime, contradicting 

the assumption that all primes are in the set {p1, p2, p3, … pn}. 
◼ 

 

Notice that this proof, in addition to being a proof by contradiction, is constructive.  It exhibits a specific example that 

contradicts the initial assumption. 
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Example 32.13 2  is Irrational 

Consider the claim that 2 is irrational.  We prove this claim by assuming, to the contrary, that 2  is rational.  In that 

case, it is the quotient of two integers, i and j.  So we have: 

 

 2  = i/j. 

 

If i and j have any common factors, then reduce them by those factors.  Now we have: 

 

 2  = k/n, where k and n have no common factors. 

    2  = k2/n2. 

  2n2 = k2. 

 

Since 2 is a factor of k2, k2 must be even and so k is even.  Since k is even, we can rewrite it as 2m for some integer m.  

Substituting 2m for k, we get: 

 

  2n2 = (2m)2. 

  2n2 = 4m2. 

    n2 = 2m2. 

 

So n2 is even and thus n is even.  But now both k and n are even and so have 2 as a common factor.  But we had 

reduced them until they had no common factors.  The assumption that 2 is rational has led to a contradiction.  So 

2 cannot be rational.  

◼ 

32.6.3 Proof by Counterexample 

Consider any claim of the form x (P(x)).  Such a claim is false iff x (P(x)).  We can prove that it is false by finding 

such an x. 

Example 32.14 Mersenne Primes 

Let M be the set of numbers of the form 12 −n  for some positive integer n.  M is also called the set of Mersenne 

numbers .  Now consider only those cases in which n is prime.  (In fact, some authors restrict the term Mersenne 

number only to those cases.)  Consider two statements: 

 

1. If n is prime, then 12 −n  is prime. 

2. If 12 −n  is prime, then n is prime.   

 

Statement 2 is true .  But what about statement 1?  Hundreds of years ago, some mathematicians believed that it 

was true, although they had no proof of it.  Then, in 1536, Hudalricus Regius refuted the claim by showing a 

counterexample: 211-1 = 2047 is not prime.  But that was not the end of false conjectures about these numbers.  The 

elements of M that are also prime are called Mersenne primes , after the monk Marin Mersenne, who, in 1644, 

made the claim that numbers of the form 12 −n  are prime if n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and 257, but are 

composite for all other positive integers n  257.  Mersenne’s claim was shown to be false by counterexample, over 

two hundred years later, when it was discovered that 261-1 is also prime.  Later discoveries showed other ways in 

which Mersenne was wrong.  The correct list of values of n  257 such that 12 −n  is prime is 2, 3, 5, 7, 13, 17, 19, 31, 

61, 89, 107 and 127.    

 

Example 32.15 All it Takes is One Counterexample 

Consider the following claim:  

 

  Let A, B, and C be any sets.  If A - C = A - B then B = C.   
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We show that this claim is false with a counterexample:  Let A = , B = {1}, and C = {2}.  A - C =  A - B = .  But 

B  C. 
◼ 

32.6.4 Proof by Case Enumeration 

Consider a claim of the form x  A (P(x)).  Sometimes the most straightforward way to prove that P holds for all 

elements of A is to divide A into two or more subsets and then to prove P separately for each subset. 

Example 32.16 The Postage Stamp Problem 

Suppose that the postage required to mail a letter is always at least 6¢.  Prove that it is possible to apply any required 

postage to a letter given only 2¢ and 7¢ stamps. 

 

We prove this general claim by dividing it into two cases, based on the value of n, the required postage: 

 

1. If n is even (and 6¢ or more), apply n/2 2¢ stamps. 

2. If n is odd (and 6¢ or more), then n  7 and n-7  0 and is even.  7¢ can be applied with one 7¢ stamp.  Apply one 

7¢ stamp and (n-7)/2 2¢ stamps. 
◼ 

32.6.5 Mathematical Induction 
The principle of mathematical induction states: 

 

If: P(b) is true for some integer base case b, and 

 For all integers n ≥ b, P(n) → P(n+1) 

Then: For all integers n ≥ b, P(n) 

 

A proof using mathematical induction, of an assertion P about some set of positive integers greater than or equal to 

some specific value b, has three parts: 

 

1) A clear statement of the assertion P. 

2) A proof that that P holds for some base case b, the smallest value with which we are concerned.  Often, b = 0 or 

1, but sometimes P may hold only once we get past some initial unusual cases, 

3) A proof that, for all integers n ≥ b, if P(n) then it is also true that P(n+1).  We’ll call the claim P(n) the induction 

hypothesis.  

Example 32.17 The Sum of the First n Odd Positive Integers is n2 

Consider the claim that that the sum of the first n odd positive integers is n2.  We first check for plausibility: 

 

 (n = 1) 1                   =  1  = 12. 

 (n = 2) 1 + 3             =  4  = 22. 

 (n = 3) 1 + 3 + 5       =  9  = 32. 

 (n = 4) 1 + 3 + 5 + 7 = 16 = 42, and so forth. 

 

The claim appears to be true, so we should prove it.  Let Oddi = 2(i – 1) + 1 denote the ith odd positive integer.  Then 

we can rewrite the claim as: 

n  1 )(
1

2
=

=
n

i

i nOdd . 

The proof of the claim is by induction on n: 

 

• Base case: take 1 as the base case.  1 = 12. 
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Observe that the sum of the first n + 1 odd integers is the sum of the first n of them plus the n+1st, so: 

           = .  

                          = .           (Using the induction hypothesis.) 

                          = n2 + 2n + 1.              (Since  is 2(n + 1 – 1) + 1 = 2n + 1.) 

                          = (n + 1)2.          ◼ 

 

Mathematical induction lets us prove properties of positive integers.  But it also lets us prove properties of other things 

if the properties can be described in terms of integers.  For example, we could talk about the cardinality of a finite set, 

or the length of a finite string.   

Example 32.18 The Cardinality of the Power Set of a Finite Set 

Let A be any finite set.  We prove the following claim about the cardinality of the power set of A: 

 

|P(A)| = 2|A|.   

 

The proof is by induction on |A|, the cardinality of A.   

 

• Base case: take 0 as the base case.  |A| = 0, A = , and P(A) = {}, whose cardinality is 1 = 20 = 2|A|. 

 

• Prove: n 0 ((|P(A)| = 2|A| for all sets A of cardinality n) → (|P(A)| = 2|A| for all sets A of cardinality n + 1)). 

 

We do this as follows.  Consider any value of n  0 and any set A with n + 1 elements.  Since n  0, A must have at 

least one element.  Pick one and call it a.  Now consider the set B that we get by removing a from A.  |B| must be n.  

So, by the induction hypothesis, |P(B)| = 2|B|.  Now return to P(A).  It has two parts: those subsets of A that include 

a and those that don’t.  The second part is exactly P(B), so we know that it has 2|B| = 2n elements.  The first part (all 

the subsets that include a) is exactly all the subsets that don't include a with a added in).  Since there are 2n subsets 

that don’t include a and there are the same number of them once we add a to each, we have that the total number 

of subsets of our original set A is 2n (for the ones that don't include a) plus another 2n (for the ones that do include 

a), for a total of 2(2n) = 2n+1, which is exactly 2|A|.          
◼  

 

Mathematical induction can be used to prove properties of a linear sequence of objects by assigning to each object its 

index in the sequence.   

Example 32.19 Generalized Modus Tollens 

Recall the inference rule we call modus tollens: From (P → Q) and Q, conclude P.  We can use mathematical 

induction to prove a generalization of modus tollens to an arbitrary chain of implications.  Suppose that we know, for 

any value of n  2, two things: 

 

i, where 1  i < n-1, (Pi → Pi+1) /* In a chain of n propositions, each implies the next. 

Pn    /* The last proposition is known to be false. 

 

Then generalized modus tollens will let us conclude that all the preceding propositions are also false, and so, in 

particular, it must be the case that: 

 

 P1. 

 

We can use induction to prove this rule.  To make it easy to describe the rule as we work, we’ll introduce the notation 

P |- Q to mean that, from P, we can derive Q.  Using this notation, we can state concisely the rule we are trying to 

prove: 
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   n2 (((i < n (Pi → Pi+1))  Pn) |- P1). 

 

The proof is by induction on n, the number of propositions. 

 

• Base case: take 2 as the base case.  We have P1 → P2 and P2.  So, using modus tollens, we conclude P1. 

 

• Prove that if the claim is true for n propositions it must be true for n+1 of them: 

 

  (((i < n (Pi → Pi+1))  Pn) |- P1) → (((i < n + 1 (Pi → Pi+1))  Pn+1) |- P1)   

 

((Pn → Pn+1)  Pn+1) |- Pn    (Modus tollens) 

((i < n (Pi → Pi+1))  Pn) |- P1     (Induction hypothesis) 

((i < n (Pi → Pi+1))  (Pn → Pn+1)  Pn+1) |- P1  (Chaining) 

((i < n + 1 (Pi → Pi+1))  Pn+1) |- P1    (Simplification) 
◼  

 

Mathematical induction relies on the fact that any subset of the nonnegative integers forms a well-ordered set (as 

defined in Section 32.3.5) under the relation .  Once we have done an induction proof, we know that A(b) (where b 

is typically 0 or 1, but it could be some other starting value) is true and we know that n  b (A(n) → A(n + 1)).  Then 

we claim that n  b (A(n)).  Suppose that the principle of mathematical induction were not sound and there existed 

some set S of nonnegative integers  b for which A(n) is false.  Then, since S is well-ordered, it has a least element, 

which we can call x.  By definition of S, x must be equal to or greater than b.  But it cannot actually be b because we 

proved A(b).  So it must be greater than b.  Now consider x - 1.  Since x - 1 is less than x, it cannot be in S (since we 

chose x to be the smallest value in S).  If x - 1 is not in S, then we know A(x - 1).  But we proved that n  0 (A(n) → 

A(n+1)), so A(x - 1) → A(x).  But we assumed A(x).  So that assumption led us to a contradiction and thus must be 

false.   

 

Sometimes the principle of mathematical induction is stated in a slightly different but formally equivalent way: 

 

If: A(b) is true for some integer value b, and 

 For all integers n ≥ b ((A(k) is true for all integers k where b  k  n) → A(n+1)), 

Then: For all integers n ≥ b (A(x)). 

 

This form of mathematical induction is sometimes called strong induction.  To use it, we prove that whenever A holds 

for all nonnegative integers starting with b, up to and including n, it must also hold for n + 1.  We can use whichever 

form of the technique is easiest for a particular problem. 

32.6.6 The Pigeonhole Principle 
Suppose that we have n pigeons and k holes.  Each pigeon must fly into a hole.  If n > k, then there must be at least 

one hole that contains more than one pigeon.  We call this obvious observation the pigeonhole principle.  More 

formally, consider any function f: A → B.  The pigeonhole principle says: 

 

If |A| > |B| then f is not one-to-one.  

 

The pigeonhole principle is a useful technique for proving relationships between sets.  For example, suppose that set 

A is the set of all students who live in the dorm.  Set B is the set of rooms in the dorm.  The function f maps each 

student to a dorm room.  So, if |A| > |B|, we can use the pigeonhole principle to show that some students have 

roommates.  As another everyday use of the principle, consider:  If there are more than 366 people in a class, then at 

least two of them must share a birthday.  The pigeonhole principle is also useful in proving less obvious claims. 

Example 32.20 The Coins and Balance Problem 

Consider the following problem:  You have three coins.  You know that two are of equal weight; the third is different.  

You do not know which coin is different and you do not know whether it is heavier or lighter than the other two.  Your 
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task is to identify the different coin and to say whether it is heavier or lighter than the others.  The only tool you have 

is a balance, with two pans, onto which you may place one or more objects.  The balance has three possible outputs: 

left pan heavier than right pan, right pan heavier than left pan, both pans the same weight.  Show that you cannot solve 

this problem in a single weighing. 

 

There are six possible situations: there are three coins, any one of which could be different, and the different coin can 

be either heavier or lighter.  But a single weighing (no matter how you choose to place coins on pans) has only three 

possible outcomes.  So there is at least one outcome that corresponds to at least two situations.  Thus one weighing 

cannot be guaranteed to determine the situation uniquely. 

32.6.7 Showing That Two Sets Are Equal 
A great deal of what we do when we build a theory about some domain is to prove that various sets of objects in that 

domain are equal.  For example, in our study of automata theory, we are going to want to prove assertions such as 

these: 

 

• The set of strings defined by some regular expression  is identical to the set of strings defined by some second 

regular expression . 

• The set of strings that will be accepted by some given finite state machine M is the same as the set of strings that 

will be accepted by some new finite state machine M' that has fewer states than M has. 

• The set of languages that can be defined using regular expressions is the same as the set of languages that can be 

accepted by a finite state machine. 

• The set of problems that can be solved by a Turing Machine with a single tape is the same as the set of problems 

that can be solved by a Turing Machine with any finite number of tapes. 

 

So we become very interested in the question, “How does one prove that two sets are identical?”  There are lots of 

ways and many of them require special techniques that apply in specific domains.  But it is worth mentioning two 

very general approaches here. 

 

Sometimes we want to compare apples to apples.  We may, for example, want to prove that two sets of strings are 

identical, even though they may have been derived differently.  In this case, one approach is to use the set identity 

theorems that we enumerated in the last section.  Suppose, for example, that we want to prove that: 

       

             A  (B  (A  C))  = A. 

 

We can prove this as follows: 

 

             A  (B  (A  C))  = (A  B)  (A  (A  C)). (Distributivity) 

     = (A  B)  ((A  C)  A). (Commutativity) 

     = (A  B)  A.   (Absorption) 

     = A.    (Absorption) 

 

Sometimes, even when we're comparing apples to apples, the theorems we’ve listed aren’t enough.  In these cases, we 

need to use the definitions of the operators.  Suppose, for example, that we want to prove that: 

 

                A - B = A  B. 

 

We can prove this as follows (where U stands for the universe with respect to which we take complement): 

 

                A - B  = {x : x  A and x  B}. 

    = {x : x  A and (x  U and x  B)}. 

    = {x : x  A and x  U - B}. 

    = {x : x  A and x  B}. 

    = A  B. 
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Sometimes, though, our problem is more complex.  We may need to compare apples to oranges.  In other words, we 

may need to compare sets that aren’t even defined in the same terms.  For example, we will want to be able to prove 

that A: {the set of languages that can be defined using regular expressions} is the same as B: {the set of languages that 

can be accepted by a finite state automaton}.  This seems very hard: regular expressions, which we describe in Chapter 

6, are strings that look like: 

 

 a* (b  ba)* 
 

Finite state machines, which we describe in Chapter 5, are a collection of states and rules for moving from one state 

to another.  How can we possibly prove that A (defined in terms of regular expressions) and B (defined in terms of 

finite state machines) are the same set?  The answer is that we can show that any two sets are equal by showing that 

each is a subset of the other.  So, to prove that A = B, we will show first that, given a regular expression, we can 

construct a finite state machine that accepts exactly the strings that the regular expression describes.  That gives us 

A  B.  But there might still be some finite state machines that don’t correspond to any regular expressions.  So we 

then show that, given a finite state machine, we can construct a regular expression that defines exactly the same strings 

that the machine accepts.  That gives us B  A.  In Section 6.2, we describe both of these proofs and use them to prove 

the claim, called Kleene’s Theorem, that A = B.  We will use the same technique several more times throughout the 

book. 

32.6.8 Showing That a Set is Finite or Countably Infinite 
Next, let’s return briefly to the question, “What is the cardinality of a set?”  In this book, we will be concerned with 

three cases: 

 

• finite sets, 

• countably infinite sets, and 

• uncountably infinite sets. 

 

We will use the following definitions for the terms “finite” and “infinite”:14 

 

A set A is finite and has cardinality n  ℕ (the natural numbers) iff either A =  or there is a bijection from {1, 2, … 

n} to A, for some value of n.  Alternatively, a set is finite if we can count its elements and finish.  The cardinality of a 

finite set is simply a natural number whose value is the number of elements in the set. 

 

A set is infinite iff it is not finite.  The first infinite set we’ll consider is ℕ, the natural numbers.  Following Cantor, 

we’ll call the cardinality of ℕ 0. (Read this as "aleph null".  Aleph is the first symbol of the Hebrew alphabet.)   

 

Now consider an arbitrary set A.  We’ll say that A is countably infinite and also has cardinality 0 iff there exists 

some bijection f: ℕ → A.  And we need one more definition: a set is countable iff it is either finite or countably 

infinite.  We use the term “countable” because the elements of a countable set can be counted with the integers. 

 

To prove that a set A is countably infinite, it suffices to find a bijection from ℕ to it.  

Example 32.21 There is a Countably Infinite Number of Even Numbers 

The set E of even natural numbers is countably infinite.  To prove this, we offer the bijection:  

 

  Even : ℕ → E,   

  Even(x) = 2x. 

So we have the following mapping from ℕ to E: 

 

                                                           
14 An alternative is to begin by saying that a set A is infinite iff there exists a one-to-one mapping from A into a proper 

subset of itself.  Then a set is finite iff it is not infinite.  With the axiom of choice, these two defintions are equivalent.   
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ℕ E 

0 0 

1 2 

2 4 

3 6 

… … 

 

The last example was easy.  The bijection was obvious.  Sometimes it is less so.  In harder cases, a good way to think 

about the problem of finding a bijection from ℕ to some set A, is to turn it into the problem of finding an enumeration 

of A.   

 

An enumeration of a set A is simply a list of the elements of A in some order.  Each element of A must occur in the 

enumeration exactly once.  Of course, if A is infinite, the enumeration will be infinite.  But as long as we can guarantee 

that every element of A will show up eventually, we have an enumeration.    

Theorem 32.1  Infinite Enumeration and Countable Infinity 

Theorem: A set A is countably infinite iff there exists an infinite enumeration of it. 

 

Proof: We prove the if and only-if parts separately. 

 

If A is countably infinite, then there exists an infinite enumeration of it:  Since A is countably infinite, there exists 

a bijection f from ℕ to it.  We construct an infinite enumeration of A as follows (where the only slight issue is that we 

number the elements of an enumeration starting with 1 and the natural numbers start with 0):  For all i  1, the ith 

element of the enumeration of A will be f(i - 1).  So the first element of the enumeration will be the element that 0 

maps to, the second element of the enumeration will be the element that 1 maps to, and so forth. 

 

If there exists an infinite enumeration E of A, then A is countably infinite:  Define f: ℕ → A, where f(i) is the (i+1)st 

element of the list E.  The function f is a bijection from ℕ to A, so A is countably infinite.   

◼ 

 

We can use Theorem 32.1 both to show that a set is countably infinite (by exhibiting an infinite enumeration of it) and 

to show that a set is not countably infinite (by showing that no infinite enumeration of it exists).   

Theorem 32.2  Finite Union 

Theorem: The union U of a finite number of countably infinite sets is countably infinite.   

 

Proof:  The proof is by enumeration of the elements of U.  We need a technique for producing that enumeration.  The 

simplest thing to do would be to start by enumerating all the elements of the first set, then all the elements of the 

second, etc.  But, since the first set is infinite, we will never get around to considering any of the elements of the other 

sets.  So we need another technique.  We take the first element from each of the sets, then the second element from 

each, and so forth, checking before inserting each element to make sure that it is not already there.   
◼  

 

Using a technique similar to the one we just used to prove Theorem 32.2, it is easy to show that, for any fixed n, the 

set of ordered n-tuples of elements drawn from a countably infinite set must also be countably infinite.  So, for 

example, the rational numbers are countably infinite. 

Theorem 32.3  Countably Infinite Union 

Theorem: The union U of a countably infinite number of countably infinite sets is countably infinite.   

 

Proof:  The proof is by enumeration of the elements of U.  Now we cannot use the simple enumeration technique that 

we used in the proof of Theorem 32.2.  Since we are now considering an infinite number of sets, if we tried that 

technique we’d never get to the second element of any of the sets.  So we follow the arrows as shown in Figure 32.9.  
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The numbers in the squares indicate the order in which we select elements for the enumeration.  This process goes on 

forever, but it is systematic and it guarantees that, if we wait long enough, any element of any of the sets will eventually 

be enumerated.  Note that, before we actually enter any element into the enumeration, we must check to make sure 

that it has not already been generated. 

 

 

 

 Set 1 Set 2 Set 3 Set 4 … 

Element 1 1 2 4 7  

Element 2 3 5 8   

Element 3 6 9    

… 10     

 

Figure 32.9  Systematically enumerating the elements of an infinite number of infinite sets 

◼  

 

It turns out that there are a lot of countably infinite sets.  Some of them, like the even natural numbers, appear at first 

to contain fewer elements than ℕ does.  Some of them, like the union of a countable number of countable sets, appear 

at first to be bigger.  But in both cases there is a bijection from ℕ to the elements of the set, so the cardinality of the 

set is 0.  

32.6.9 Showing That a Set is Uncountably Infinite: Diagonalization 

But not all infinite sets are countably infinite.  There are sets with more than 0 elements.  There are more than 0 

real numbers, for example.  As another case, consider an arbitrary set S with cardinality 0.  Now consider P(S) (the 

power set of S).  P(S) has cardinality greater than 0.  To prove this, we need to show that, although P(S) is infinite, 

there exists no bijection from ℕ to it.  To do this, we will use a technique called diagonalization.   

 

Diagonalization is a kind of proof by contradiction.  To show that a set A is not countably infinite, we assume that it 

is, in which case there would be some enumeration of it.  Every element of A would have to be on that list somewhere.  

But we show how to construct an element of A that cannot be on the list, no matter how the list was constructed.  Thus 

there exists no enumeration of A.  So A is not countably infinite. 

Theorem 32.4  The Cardinality of the Power Set 

Theorem: If S is a countably infinite set, P(S) (the power set of S) is infinite but not countably infinite. 

 

Proof: P(S) must be infinite because, for each of the infinitely many elements s of S, the set {s} is an element of P(S).   

 

But now we must prove that P(S) is not countably infinite.  The proof is by diagonalization.  Since S is countably 

infinite, by Theorem 32.1, there exists an infinite enumeration of it.  We can use that enumeration to construct a 

representation of each subset SS of S as an infinite binary vector that contains one element for each element of the 

original set S.  If SS contains element 1 of S, then the first element of its vector will be 1, otherwise 0 (which we’ll 

show as blank to make our tables easy to read).  Similarly for all the other elements of S.  Of course, since S is 

countably infinite, the length of each vector will also be countably infinite.  Thus we might represent a particular 

subset SS of S as the infinite vector shown in Figure 32.10 (a). 

 

Now, assume that P(S) is countably infinite.  Then there is some enumeration of it.  Pick any such enumeration, and 

write it as shown in Figure 32.10 (b) (where each row represents one element of P(S) as described above.  Ignore for 

the moment the numbers enclosed in parentheses.)  This table is infinite in both directions.  Since it is an enumeration 

of P(S), it must contain one row for each element of P(S).  But it doesn’t.  To prove that it doesn’t, we will construct 

L, an element of P(S) that is not on the list.  To do this, consider the numbers in parentheses along the diagonal of the 

matrix of Figure 32.10 (b).  Using them, we can construct L so that it corresponds to the vector shown in Figure 32.10 

(c).  What we mean by (1) is that if the square labeled (1) is a 1 then 0; if the square labeled (1) is a 0, then 1.   
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Elem 1 of S Elem 2 of S Elem 3 of S Elem 4 of S Elem 5 of S Elem 6 of S …… 

1   1 1  …… 

 

  (a) 

 

 

 Elem 1 of S Elem 2 of S Elem 3 of S Elem 4 of S Elem 5 of S Elem 6 of S ……. 

Elem 1 of P(S) 1           (1)      ….. 

Elem 2 of P(S)  1           (2)     ….. 

Elem 3 of P(S) 1 1            (3)    ….. 

Elem 4 of P(S)   1             (4)   ….. 

Elem 5 of P(S) 1  1              (5)  ….. 

Elem 6 of P(S) 0 1 1               (6) ….. 

       …       ….. 

 

  (b) 

 

 

 

(1) (2) (3) (4) (5) (6) ….. 

 

  (c) 

 

Figure 32.10  Using diagonalization to show the uncountability of a power set 

 

 

So we’ve constructed the representation for an element of P(S).  It must be an element of P(S) since it describes a 

possible subset of S.  But we’ve built it so that it differs from the first element in the list of Figure 32.10 (b) by whether 

or not it includes element 1 of S.  It differs from the second element in the list by whether or not it includes element 2 

of S.  And so forth.  In the end, it must differ from every element in the list in at least one place.  Yet it represents an 

element of P(S).  Thus we have a contradiction.  The list was not an enumeration of P(S).  But since we made no 

assumptions about it except that it was an enumeration of P(S), no such enumeration can exist.  In particular, if we try 

to fix the problem by simply adding our new element L to the list, we can just turn around and do the same thing again 

and create yet another element that is not on the list.  Thus there are more than 0 elements in P(S).   

◼ 

 

If a set S is infinite but not countably infinite then we will say that it is uncountably infinite.  So, for example, P(ℕ) 

is uncountably infinite, since, by Theorem 32.4, the power set of any countably infinite set is infinite but not countably 

infinite.  The real numbers are uncountably infinite, which can be shown with a proof that is very similar to the one 

we just did for the power set except that it is a bit tricky because, when we write out each number as an infinite 

sequence of digits (just as we wrote out each set above as an infinite sequence of 0's and 1's), we have to consider the 

fact that several distinct sequences may represent the same number.   

 

Not all uncountably infinite sets have the same cardinality.  There are more elements in the power set of the real 

numbers than there are real numbers, for example.  

32.7 Reasoning about Programs 
An algorithm is a detailed procedure that accomplishes some clearly specified task.  A program is an executable 

encoding of an algorithm.  Not all algorithms halt.  For example, a monitoring system might be designed never to halt 

but to run constantly, looking for some pattern of events to which some sort of response is required.  So not all 

programs are designed to halt.  However, we will focus on the class of programs whose job is to accept input, compute, 

and halt, having produced appropriate output.  Useful programs of this sort possess two kinds of properties: 
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• correctness properties, including:  

• The program eventually halts. 

• When it halts, it has produced the desired output. 

• performance properties, including: 

• time requirements, and 

• space requirements. 

 

Entire books have been written on techniques for proving these properties.  We summarize here just the few techniques 

that we will find the most useful in the rest of this book. 

32.7.1 Proving Correctness Properties 
We will first consider the problem of proving that a program halts.  Then we’ll look at techniques that can be used to 

show that a program’s result satisfies its specification. 

Proving that a Program Halts 

When we describe a program to solve a problem, we would like to be able to prove that the program always halts.  

One of the main results of the theory that we will develop in this book is that there can exist no algorithm to solve the 

halting problem, which we can state as, “Answer the following question: Given the text of some program M and some 

input w, does M halt on input w?”  So there can exist no general purpose algorithm that considers an arbitrary program 

and determines whether or not it halts on even one input, much less on all inputs.  However, that does not mean that 

there are not particular programs that can be shown to halt on all inputs.   

 

Any program that has no loops and no recursive function calls halts when it reaches the end of its code.  So we focus 

our attention on proving that loops and recursive functions halt.  In a nutshell, any such proof must show that the loop 

or the recursion executes some finite number of steps.  Sometimes, particularly in the case of for loops, we can simply 

state the maximum number of steps. 

Example 32.22 Termination of a For Loop 

Consider the following very simple program P: 

 

        P(some arguments) = 

  For i = 1 to 10 do: 

    Compute something. 

 

As long as the compute step of P does not modify i, we can safely claim that this loop executes at most 10 times. (It 

could possibly execute fewer if it exits prematurely.) 

 

When dealing with while and until loops and with recursive functions, it may not be possible to make such a 

straightforward statement.  In proving that any such program P halts, we will generally rely on the existence of some 

well-founded set (S, R) such that: 

 

• There exists some bijection between each step of P and some element of the set S, 

• The first step of P corresponds to a maximal (with respect to R) element of S, 

• Each successive step of P corresponds to a smaller (with respect to R) element of S, and 

• P halts on or before it executes a step that corresponds to a minimal (with respect to R) element of S. 
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Example 32.23 Choosing a Well-Founded Set 

Consider the following simple program P that acts on a finite-length string: 

 

        P(s: string) = 

  While length(s) > 0 do: 

  Remove the first character from s and call it c. 

  if c = a return True. 

 Return False. 

 

Let S = {0, 1, 2,  …, |s|}.  (S, ) is a well-founded set whose least element is 0.  Associate each step of the loop with 

|s| as the step is about to be executed.  The first pass through the loop is associated the initial length of s, which is the 

maximum value of |s| throughout the computation.  |s| is decremented by one each time through the loop.  P halts when 

|s| is 0 or before (if it finds the character a).  So the maximum number of times the loop can be executed is the initial 

value of |s|. 

 

If we cannot find a well-founded set that corresponds to the steps of a loop or a recursively defined function, then it 

is likely that that program fails to halt on at least some inputs. 

Example 32.24 When We Can’t Find a Well-Founded Set 

Consider the following program P, along with the claim that, given some positive integer n, P always halts and finds 

and prints the square root of n:  

 

        P(n: positive integer) = 

  r = 0. 

  Until r  r = n do: 

   r = r + 1. 

   Print(r). 

 

We could try to prove that P always halts by using the well-founded set (ℕ, ).  Associate each step of the loop with 

n – r2.  On entrance to the loop, this difference must be in ℕ since n is in ℕ and r = 0.  The difference decreases at 

each step through the loop, as r increases.  If r ever equals the square root of n, the difference will be 0 and the loop 

will terminate.  But, if n is not a perfect square, there is no guarantee that the difference will not simply become more 

and more negative.  So there is no bijection between n – r2 and ℕ.  There is one between n – r2 and Z (the integers), 

but Z has no minimal element and so is not well-founded.  As it turns out, there is no well-founded set that can be put 

in one-to-one correspondence with the steps of this loop, which cannot be guaranteed to halt.   

Proving that a Program Computes the Correct Result 

Given that a program halts, does it halt with the correct result?  We will find two techniques particularly useful for 

proving that it does: 

 

• loop invariants, which we will introduce briefly here. 

• induction, which we reviewed in Section 32.6.6. 

 

Often the most straightforward way to analyze any sort of iterated process is to focus not on what the process does but 

rather on what it doesn’t do.  So we’ll describe some key property that does not change at any step of the process’s 

execution.   

Example 32.25 The Coffee Can Problem 

Consider the following problem, which we’ll call the coffee can problem [Gries 1989]: we have a coffee can that 

contains some white beans and some black beans.  We perform the following operation on the beans: 

 

     Until no further beans can be removed do: 

  Randomly choose two beans. 
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  If the two beans are the same color then throw both of them away and add a new black bean. 

  If the two beans are different colors then throw away the black one and return the white one to the can.  

 

It is easy to show that this process must halt.  After each step, the number of beans in the can decreases by one.  When 

only one bean remains, no further beans can be removed. 

 

But what can we say about the one remaining bean?  Is it white or black?  The answer is that if the original number of 

white beans is odd, the remaining bean is white.  Otherwise the remaining bean is black.  To see why this is true, we 

note that our bean culling process preserves white bean parity.  In other words, if the number of white beans starts out 

even, it stays even.  If the number of white beans starts out odd, it stays odd.  To prove that this is so, we consider 

each action that the culling process can perform.  There are three: 

 

• Two white beans are removed and one black bean is added.   

• Two black beans are removed and one black bean is added.  

• One black bean is removed. 

   

In each of these, an even number of white beans is removed and white bean parity is preserved.  So, if the number of 

white beans is initially odd, the number of white beans can never become zero and a white bean must be the sole 

survivor.  If, on the other hand, the number of white beans is initially even, it can never become one.  Thus any sole 

survivor must be black. 

 

The white bean parity property that we just described is an example of a loop invariant: a predicate I that describes a 

property that doesn’t change during the execution of an iterative process.  To use a loop invariant to prove the 

correctness of a program, we must prove each of the following: 

 

• I is true on entry to the loop.  

• The truth of I is maintained at each pass through the loop.  By this we mean that, if I is true at the beginning of a 

particular pass through the loop, then it must also be true at the end of that pass.  Note, however, that I may fail 

to hold at some point partway through the loop.  

• I, together with the loop termination condition, imply whatever property we wish to prove is true on exit from the 

loop. 

Example 32.26 Finding a Loop Invariant 

Consider the following program P: 

 

        P(s: string) =  

   count = 0. 

   For i = 1 to length(s) do: 

    If the ith character of s is a then count = count + 1. 

   Print (count). 

 

Prove that the value of count, on exit from the loop, is the number of a’s in s.  Call this claim C.  We will use a loop 

invariant to prove C. 

 

We’ll use the notation #a(s) to mean the number of a’s in the string s.  Let: 

 

I = [#a(s) = count + #a(the last (length(s) +1 – i) characters of s)].   

 

In other words, the total number of a’s in s is equal to the current value of count plus the number of a’s in that part of 

s that has not so far been examined by the loop.   
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We show: 

 

• I is true on entry to the loop:  i = 1 and count = 0.  So we have: 

 

  #a(s) = 0 + #a(the last (length(s)) characters of s), which is true. 

 

• I is maintained at each step through the loop:  If the ith character of s is an a, then count is incremented by 1.  But 

i is also incremented, so the number of a’s in the last (length(s) +1 – i) characters of s is decremented by 1, leaving 

count + #a(the last (length(s) +1 – i) characters of s) unchanged.  If the ith character of s is not an a, then the value 

of both count and the number of a’s in the last (length(s) +1 – i) remains unchanged.  

 

• I, together with the loop termination condition, imply C: on exit from the loop, i = length(s) + 1.  So we have: 

 I  [i = length(s) + 1]  [#a(s) = count + #a(the last (length(s) +1 – i) characters of s)]  [i = length(s) + 1]. 

                [#a(s) = count + #a(the last (length(s) +1 – (length(s) + 1) characters of s].  

                [#a(s) = count + #a(the last 0 characters of s].  

              #a(s) = count. 

 

So, on exit from the loop, count is equal to the number of a’s in s.  Thus C is true.  Note that a separate proof is 

required to show that the loop does in fact terminate. 

 

Example 32.27 Finding a Loop Invariant for a Program that Doesn’t Halt 

Consider the following program P, which differs from our other examples since it is not designed to halt: 

 

        P() =  

  s = . 

   Loop: 

    Print(s). 

    s = s || a. 

 

Prove that P will print all and only the finite length strings composed of 0 or more a’s (and no other characters).  We 

will use a loop invariant to prove that P prints only strings composed exclusively of a’s.  We will use induction to 

prove that P will eventually print all strings composed only of a’s. 

 

The loop invariant we need is I = [s contains no characters other than a].   

 

We show: 

 

• I is true on entry to the loop the first time:  s is the empty string and so contains no characters that are not a. 

 

• I is maintained at each step through the loop:  s is unchanged through the loop except to have a single a added to 

the end of it.  So if it contained only a’s at the top of the loop, it will contain only a’s at the bottom. 

 

• We are not concerned with what happens when the loop in P terminates, since it doesn’t.  So we can skip the step 

in which we show that some statement is true on exit from the loop. 

 

Since I must be true at the top of the loop, it is true when the print statement executes, so only strings composed 

exclusively of a’s will be printed.  

 

Now we need to show that P will eventually print any string s that is composed of no characters other than a.  We do 

this by induction on |s|: 

 

• Base step: Let |s| = 0.  P prints s the first time through the loop. 
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• Induction hypothesis: P prints all strings of a’s of length n.  Note that, for any value of n, there is only one such 

string.  Call it an. 

 

• Prove that P prints all strings of a’s of length n + 1.  There is only one such string, namely ana.  By the induction 

hypothesis, P generates an.  When it does that, the variable s is equal to an.  The next thing P does is to concatenate 

one more a onto s, which then equals ana, and print it.   

 

So, for all n  0, P prints the string composed exactly of n a’s.  

32.7.2 Analyzing Complexity 
Whenever we present a program P, we may want to ask the question, “How long will it take P to run?”  Generally the 

answer depends on the size of the input.  So our answer will usually be stated as a function of some number that 

corresponds to a reasonable measure of the size of the input.  If the input is a string, we can use the length of the string.  

If the input is a structure like a list or an array, we can use the number of elements in the structure.  If the input is a 

number, we will typically use the length of the binary or decimal encoding of the number. 

 

In Part V of this book we present a formal theory of complexity.  Here we present an informal treatment of the approach 

that we will describe there.   

 

We will describe the time complexity of a program P as a function of the size of its input, which we’ll call n.  We are 

typically not interested in how long it takes P to run on small inputs.  Rather we are concerned with how quickly 

execution time grows as n grows.  While in some cases we are concerned with an exact count of the number of steps 

that P must execute, we are often willing to ignore constant factors and instead to concentrate on whether P’s execution 

time:  

 

• is constant (i.e., it is independent of n), 

• grows linearly with n, 

• grows faster than n but at a rate that can be described by some polynomial function of n (for example, n2), or 

• grows at a rate that is faster than any polynomial function of n (for example 2n). 

 

Suppose that we have a program that, on input of length n, executes n3 + 2n + 3 steps.  As n increases, the n3 term 

dominates the other two.  So we would like to ignore the slower growing terms of the function n3 + 2n + 3 and 

characterize the time required to execute this program as the simpler function n3.  To do that, we introduce the notion 

of asymptotic dominance of one function by another.   

 

Let f(n) and g(n) be functions from the natural numbers to the positive reals.  Then we’ll say that the function g(n) 

asymptotically dominates the function f(n) iff there exists a positive integer k and a positive constant c such that: 

 

n  k (f(n)  c g(n)).   

 

In other words, ignoring some number of small cases (all those of size less than k), and ignoring some constant factor 

c, f(n) is bounded from above by g(n).   

 

We will use the symbol O to denote the asymptotic dominance relation, so O(g(n)) is the set of all functions that are 

asymptotically dominated by g(n).  Thus, if g(n) asymptotically dominates f(n), we will write: 

 

f(n)  O(g(n)). 

 

This claim is read, “f is big-O of g”.  It is also often written f(n) = O(g(n)), although that statement is not literally 

correct since O(g(n)) is a set of functions, not a function. 
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Example 32.28 O 

n3 + 2n + 3  O(n3), since we can let k = 2 and c = 2 and observe that for all n  2, n3 + 2n + 3  2n3. 

 

Now we can return to the problem of characterizing the execution time of a program P.  Let f(n) be a function that 

describes the time required to execute P as a function of n, where n is some reasonable measure of the size of P’s 

input.  We’ll say that P runs in time O(g(n)) iff f(n)  O(g(n)). 

Example 32.29 Using O to Measure Time Complexity: A Linear Example 

Consider again the program P from Example 32.26: 

 

        P(s: string) =  

   count = 0. 

   For i = 1 to length(s) do: 

    If the ith character of s is a then count = count + 1. 

   Print (count). 

 

Let n = length(s).  The number of program steps that P executes is at most 2 + 2n  O(n).  So the execution time of 

P grows linearly in the length of its input. 

 

Example 32.30 Using O to Measure Time Complexity: A Quadratic Example 

Consider the following program P, which returns True if any two elements of its input vector are the same and False 

otherwise: 

 

     P(v: vector of integers) = 

  For i = 1 to length(v) do: 

   For j = i + 1 to length(v) do: 

    If v[i] = v[j] then return True. 

  Return False. 

 

Let n = length(v).  In the worst case, P goes through the outer loop n  times.  At each pass, unless it finds a match, it 

goes through the inner loop on average n/2 times.  So the number of program steps that P executes is at most 1 + n(1 + 

2n/2) = 1+ n + n2  O(n2).  So the execution time of P grows as the square of the length of its input. 

 

Suppose that a program P, on input of size n, runs in time f(n) = 2 + 4n.  Then f(n)  O(n).  But notice that it is also 

true that f(n)  O(n2) and f(n)  O(2n), since both n2 and 2n also asymptotically dominate 2 + 4n.  In Chapter 27 we 

will define , a relation that is similar to O except that it is stricter.  Specifically: 

 

 f(n)  (g(n)) iff f(n)  O(g(n)) and g(n)  O(f(n)). 

 

So 2 + 4n  (n), but 2 + 4n  (n2) because n2  O(n).   

 

Discussions of the complexity of algorithms should use , whenever possible, since we want the tightest bound we 

can find.  But that is not the convention.  As we did in both Example 32.29 and Example 32.30, we will use the 

standard convention of writing f(n)  O(g(n)) instead of f(n)  (g(n)), but, whenever we can, we will choose values 

for g(n) such that the claim that f(n)  (g(n)) would also be true. 

 

In analyzing the algorithms that we will consider in Parts II through IV of this book, we will use the O relation as we 

have just defined it.  In Chapter 27, we will have more to say about O and similar relations such as . 
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32.8 A General Definition of Closure  
In Section 32.5 we introduced closures.  We elaborate on that discussion here.  We begin by reviewing what we said 

there.  Imagine some set S and some property P.  If we care about making sure that S has property P, we could do the 

following: 

 

1. Examine S for P.  If it has property P, we quit. 

2. If it doesn’t, then add to S the smallest number of additional elements required to satisfy P. 

 

We will say that S is closed with respect to P iff it possesses P.  And, if we have to add elements to S in order to satisfy 

P, we’ll call a smallest such expanded S that does satisfy P a closure of S with respect to P.   

Example 32.31 Some Relations and Their Closures 

1. Let S be a set of friends we are planning to invite to a party.  Let P be, “S should include everyone who is likely 

to find out about the party” (since we don't want to offend anyone).  Let’s assume that if you invite Bill and Bill 

has a friend Bob, then Bill may tell Bob about the party.  This means that if you want S to satisfy P, then you have 

to invite not only your friends, but your friends’ friends, and their friends, and so forth.  If you move in a fairly 

closed circle, you may be able to satisfy P by adding a few people to the guest list.  On the other hand, it’s possible 

that you’d have to invite the whole city before P would be satisfied.  It depends on the connectivity of the Friendof 

relation in your social setting.  The problem is that whenever you add a new person to S, you have to turn around 

and look at that person’s friends and consider whether there are any of them who are not already in S.  If there 

are, they must be added, and so forth.  There is one positive feature of this problem, however.  Notice that there 

is a unique set that does satisfy P, given the initial set S.  There aren’t any choices to be made. 

 

2. Let S be a set of 6 people.  Let P be, “S can enter a baseball tournament”.  This problem is different from the 

previous one in two important ways.  First, there is a clear limit on how many elements we have to add to S in 

order to satisfy P.  We need 9 people and when we’ve got them we can stop.  But notice that there is not a unique 

way to satisfy P (assuming that we know more than 9 people).  Any way of adding 3 people to S will work. 

 

3. Let S be the Address relation (which we defined earlier as “lives at same address as”).  Since relations are sets, 

we should be able to treat address just as we’ve treated the sets of people in our last two examples.  We know 

that Address is an equivalence relation.  So we’ll let P be the property of being an equivalence relation (i.e., 

reflexive, symmetric, and transitive).  But suppose we are only able to collect facts about living arrangements in 

a piecemeal fashion.  For example, we may learn that Address contains {(Dave, Stacy), (Jen, Pete), (John, Bill)}.  

Immediately we know, because Address must be reflexive, that it must also contain {(Dave, Dave), (Stacy, Stacy), 

(Jen, Jen), (Pete, Pete), (John, John), (Bill, Bill)}.  And, since Address must also be symmetric, it must contain 

{(Stacy, Dave), (Pete, Jen), (Bill, John)}.  Now suppose that we discover that Stacy lives with Jen.  We add 

{(Stacy, Jen)}.  To make Address symmetric again, we must add {(Jen, Stacy)}.  But now we also have to make 

it transitive by adding {(Dave, Jen), (Jen, Dave)}. 

 

4. Let S be the set of positive integers.  Let P be, “The sum of any two elements of S is also in S”.  Now we’ve got 

a property that is already satisfied.  The sum of any two positive integers is a positive integer.  This time, we don’t 

have to add anything to S to establish P. 

 

5. Let S again be the set of positive integers.  Let P be, “The quotient of any two elements of S is also in S”.  This 

time we have a problem.  3/5 is not a positive integer.  We can add elements to S to satisfy P.  If we do, we end 

up with exactly the positive rational numbers. 

 

To use closures effectively, we need to define precisely what we mean when we say that a set S is closed under P or 

that the closure of S under P is T.  We present here a set of definitions that include all but one of the specific cases 

that we just described.  The definitions of closure that we presented in Section 32.5 are special cases of the ones 

presented here.  The one requirement that must be met in order to apply these definitions to a closure problem is that 

we must be able to describe the property P that is to be maintained as a relation.   

 

Let n be an integer greater than or equal to 1.  Let R be an n-ary relation on a set A.  Thus elements of R are of the 

form (d1, d2, …, dn).  We say that a subset S of A is closed under R iff, whenever: 
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• d1, d2, …dn-1  S   (all of the first n-1 elements are already in the set S), and 

• (d1, d2, …dn-1, dn)  R  (the last element is related to the n-1 other elements via R).  

 

it is also true that dn  S.   

 

A set S' is a closure of S with respect to R (defined on A) iff: 

 

• S  S', 

• S' is closed under R, and 

• T ((S  T and T is closed under R) → |S'|  |T|).   

 

In other words, S' is a closure of S with respect to R if it is an extension (i.e., a superset) of S that is closed under R 

and if there is no smaller set that also meets both of those requirements.  Note that we cannot say that S' must be the 

smallest set that will do the job, since we do not yet have any guarantee that there is a unique such smallest set (recall 

the softball example above). 

 

These definitions of closure are a very natural way to describe our first example above.  Drawing from a set A of 

people, you start with S equal to your friends.  Then, to compute your invitee list S', you simply take the closure of S 

with respect to the relation fFriendof, which will force you to add to S' your friends’ friends, their friends, and so forth.  

 

These definitions also apply naturally to our fifth example, the positive integers under division.  The smallest set that 

contains the positive integers and that is closed under division is the positive rationals.  So the closure under division 

of the positive integers is the positive rationals. 

 

Now consider our second example, the case of the baseball team.  Here there is no relation R that specifies, if one or 

more people are already on the team, that some specific other person must also be on.  The property we care about is 

a property of the team (set) as a whole and not a property of patterns of individuals (elements).  Thus this example, 

although similar, is not formally an instance of closure as we have just defined it.  This turns out to be significant and 

leads us to the following definition: 

 

Any property that asserts that a set S is closed under some relation R is called a closure property of S.   

Theorem 32.5  Closures Exist and are Unique 

Theorem: If R is a closure property, as just defined, on a set A and S is a subset of A, then the closure of S with respect 

to R exists and is unique.   

 

Proof: Omitted. 
◼ 

 

Stating the theorem another way, if its conditions are met then there exists a unique minimal set S' that contains S and 

is closed under R.  Of all of our examples above, the baseball example is the only one that cannot be described in the 

terms of this definition of a closure property.  The theorem that we have just stated (without proof) guarantees, 

therefore, that it will be the only one that does not have a unique minimal solution.  

 

The definitions that we have just provided also work to describe our third example, in which we want to compute the 

closure of a relation (since, after all, a relation is a set).  All we have to do is to come up with relations that describe 

the properties of being reflexive, symmetric, and transitive.  To help us see what those relations need to be, let’s recall 

our definitions of symmetry, reflexivity, and transitivity:  

 

• A binary relation R  A  A is reflexive iff, for each a  A, (a, a)  R. 

• A binary relation R  A  A is symmetric iff, whenever (a, b)  R, so is (b, a).  

• A binary relation R  A  A is transitive iff, whenever (a, b)  R and (b, c)  R, (a, c)  R. 
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Looking at these definitions, we can come up with three relations, Reflexivity, Symmetry, and Transitivity.  All three 

are relations on relations, and they will enable us to define these three properties using the closure definitions we’ve 

given so far.  All three definitions assume a base set A on which the relation that we are interested in is defined: 

 

• For any a in A, ((a, a))  Reflexivity and no other elements are.  Notice the double parentheses here.  Reflexivity is 

a unary relation, where each element is itself an ordered pair.  It doesn't really “relate” two elements.  It is simply 

a list of ordered pairs.  To see how it works to define reflexive closure, imagine a set A = {x, y}.  Now suppose we 

start with a relation R on A = {(x, y)}.  Clearly R isn't reflexive: the Reflexivity relation on A is {((x, x)), ((y, y))}.  

Reflexivity is a unary relation.  So n, in the definition of closure, is 1.  Consider the first element ((x, x)).  We 

consider all the components before the nth (i.e., first) and see if they are in A.  This means we consider the first zero 

components.  Trivially, all zero of them are in A.  So the nth (the first) must also be.  This means that (x, x) must be 

in R.  But it isn’t.  So to compute the closure of R under Reflexivity, we add it.  Similarly for (y, y). 

 

• For any a and b in A, a  b → [((a, b), (b, a))  Symmetry] and no other elements are.  This one is a lot easier.  

Again, suppose we start with a set A = {x, y} and a relation R on A = {(x, y)}.  Clearly R isn't symmetric: Symmetry 

on A = {((x, y), (y, x)), ((y, x), (x, y))}.  But look at the first element of Symmetry.  It tells us that for R to be closed 

under Symmetry, whenever (x, y) is in R, (y, x) must also be.  But it isn’t.  To compute the closure of R under 

Symmetry, we must add it. 

 

• For any a, b and c and  in A, [a  b  b  c] → [((a, b), (b, c), (a, c))  Transitivity] and no other elements are.  

Now we will exploit a ternary relation.  Whenever the first two elements of it are present in some relation R, then 

the third must also be if R is transitive.  This time, let’s start with a set A = {x, y, z} and a relation R on A = {(x, y), 

(y, z)}.   Clearly R is not transitive:  The Transitivity relation on A is {((x, y), (y, z), (x, z)), ((x, z), (z, y), (x, y)), ((y, 

x), (x, z), (y, z)), ((y, z), (z, x), (y, x)), ((z, x), (x, y), (z, y)), ((z, y), (y, x), (z, x))}.  Look at the first element of it.  Both 

of the first two components of it are in R.  But the third isn’t.  To make R transitive, we must add it. 

 

We can also describe the closure of the positive integers under division with a closure property: let A be the positive 

rationals, let S be the positive integers and let R be Quotientclosure, defined as: 

 

• For any a, b and c and  in A,  [a/b = c] → [(a, b, c)  Quotientclosure].  

 

So there exists a unique closure of S with respect to Quotientclosure.  In this case, that closure is A. 

 

We now have a general definition of closure that makes it possible to prove the existence of a unique closure for any 

set and any relation R.  The only constraint is that this definition works only if we can define the property we care 

about as an n-ary relation for some finite n.  There are cases of closure where this is not possible, as we saw above in 

the baseball team example, but we will not consider them further. 

 

32.9 Exercises 
1) Prove each of the following: 

a) ((A  B) → C)  (A  B  C). 

b) (A  B  C) → (A  (B  C)). 

 

2) List the elements of each of the following sets: 

a) P({apple, pear, banana}). 

b) P({a, b}) - P({a, c}). 

c) P(). 

d) {a, b}  {1, 2, 3}  . 

e) {x  ℕ: (x  7  x  7)}. 

f) {x  ℕ: y  ℕ (y < 10  (y + 2 = x))} (where ℕ is the set of nonnegative integers). 

g) {x  ℕ: y  ℕ (z  ℕ ((x = y + z)  (y < 5)  (z < 4)))}. 
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3) Prove each of the following: 

a) A  (B  C  D) = (A  B)  (A  D)  (A  C). 

b) A  (B  C  A) = A. 

c) (B  C) - A  C. 

 

4) Consider the English sentence, “If some bakery sells stale bread and some hotel sells flat soda, then the only thing 

everyone likes is tea.”  This sentence has at least two meanings.  Write two (logically different) first-order-logic 

sentences that correspond to meanings that could be assigned to this sentence.  Use the following predicates: B(x) 

is True iff x is a bakery; SB(x) is True iff x sells stale bread; H(x) is True iff x is a hotel; SS(x) is True iff x sells flat 

soda; L(x, y) is True iff x likes y; and T(x) is True iff x is tea. 

 

5) Let P be the set of positive integers.  Let L = {A, B, …, Z} (i.e., the set of upper case characters in the English 

alphabet).  Let T be the set of strings of one or more upper case English characters.  Define the following predicates 

over those sets: 

 

• For x  L,   V(x) is True iff x is a vowel.  (The vowels are A, E, I, O, and U.) 

• For x  L and n  P,  S(x, n) is True iff x can be written in n strokes. 

• For x  L and s  T,  O(x, s) is True iff x occurs in the string s. 

• For x, y  L,   B(x, y) is True iff x occurs before y in the English alphabet. 

• For x, y  L,   E(x, y) is True iff x = y. 

 

Using these predicates, write each of the following statements as a sentence in first-order logic: 

a) A is the only upper case English character that is a vowel and that can be written in three strokes but does not 

occur in the string STUPID. 

b) There is an upper case English character strictly between K and R that can be written in one stroke.  

 

6) Choose a set A and predicate P and then express the set {1, 4, 9, 16, 25, 36, …} in the form: 

 

{x  A : P(x)}. 

 

7) Find a set that has a subset but no proper subset. 

 

8) Give an example, other than one of the ones in the book, of a reflexive, symmetric, intransitive relation on the set 

of people. 

 

9) Not equal (defined on the integers) is (circle all that apply): reflexive, symmetric, transitive. 

 

10) In Section 32.3.3, we showed a table that listed the eight possible combinations of the three properties: reflexive, 

symmetric and transitive.  Add antisymmetry to the table.  There are now 16 possible combinations.  Which 

combinations could some nontrivial binary relation posses?  Justify your answer with examples to show the 

combinations that are possible and proofs of the impossibility of the others. 

 

11) Using the definition of p (equivalence modulo p) that is given in Example 32.4, let Rp  be a binary relation on 

ℕ, defined as follows, for any p  1: 

            Rp  = {(a, b): a p b} 

So, for example R3 contains (0, 0), (6, 9), (1, 4), etc., but does not contain (0, 1), (3, 4), etc. 

a) Is Rp  an equivalence relation for every p  1?  Prove your answer. 

b) If Rp  is an equivalence relation, how many equivalence classes does it  induce for a given value of p?  What 

are they? (Any concise description is fine.) 

c) Is Rp  a partial order?  A total order?  Prove your answer. 
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12) Let S = {w  {a, b}*}.  Define the relation Substr on the set S to be {(s, t) : s is a substring of t}. 

a) Choose a small subset of Substr and draw it as a graph (in the same way that we drew the graph of Example 

32.5. 

b) Is Substr a partial order? 

 

13) Let P be the set of people.  Define the function: 

 

father-of: P → P. 

father-of(x) = the person who is x’s father 

 

a) Is father-of one-to-one?  

b) Is it onto? 

 

14) Are the following sets closed under the following operations?  If not, give an example that proves that they are 

not and then specify what the closure is. 

a) The negative integers under subtraction. 

b) The negative integers under division. 

c) The positive integers under exponentiation. 

d) The finite sets under Cartesian product. 

e) The odd integers under remainder, mod 3. 

f) The rational numbers under addition. 

 

15) Give examples to show that  

a) The intersection of two countably infinite sets can be finite. 

b) The intersection of two countably infinite sets can be countably infinite. 

c) The intersection of two uncountable sets can be finite. 

d) The intersection of two uncountable sets can be countably infinite.  

e) The intersection of two uncountable sets can be uncountable. 

 

16) Let R = {(1, 2), (2, 3), (3, 5), (5, 7), (7, 11), (11, 13), (4, 6), (6, 8), (8, 9), (9, 10), (10, 12)}.  Draw a directed graph 

representing R*, the reflexive, transitive closure of R. 

 

17) Let ℕ be the set of nonnegative integers.  For each of the following sentences in first-order logic, state whether 

the sentence is valid, is not valid but is satisfiable, or is unsatisfiable.  Assume the standard interpretation for < 

and >.  Assume that f could be any function on the integers.  Prove your answer. 

a) x  ℕ (y  ℕ (y < x)). 

b) x  ℕ (y  ℕ (y > x)). 

c) x  ℕ (y  ℕ f(x) = y). 

 

18) Let ℕ be the set of nonnegative integers.  Let A be the set of nonnegative integers x such that x 3 0.  Show that 

|ℕ| = |A|. 

 

19) What is the cardinality of each of the following sets?  Prove your answer 

a) {n  ℕ : n 3 0}. 

b) {n  ℕ : n 3 0}  {n  ℕ : n is prime}. 

c) {n  ℕ : n 3 0}  {n  ℕ : n is prime}. 

 

20) Prove that the set of rational numbers is countably infinite. 

 

21) Use induction to prove each of the following claims: 

a) n>0 (
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b) n>0 (n!  2n-1).  Recall that 0! = 1 and n > 0 (n! = n(n - 1)(n - 2) … 1). 

c) n>0 (
=
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e) n0 (
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 = fnfn+1), where fn is the nth element of the Fibonacci sequence, as defined in Example 24.4. 

 

22) Consider a finite rectangle in the plane.  We will draw some number of (infinite) lines that cut through the 

rectangle.  So, for example, we might have: 

 

 

 

 

 

 

 

 

 

 

 

 

In Section 28.7.6, we define what we mean when we say that a map can be colored using two colors.  Treat the 

rectangle that we just drew as a map, with regions defined by the lines that cut through it.  Use induction to prove 

that, no matter how many lines we draw, the rectangle can be colored using two colors. 

 

23) Let div2(n) = n/2 (i.e., the largest integer that is less than or equal to n/2).  Alternatively, think of it as the 

function that performs division by 2 on a binary number by shifting right one digit.  Prove that the following 

program correctly multiplies two natural numbers.  Clearly state the loop invariant that you are using. 

 

mult(n, m: natural numbers) = 

 result = 0. 

 While m  0 do 

  If odd(m) then result = result + n. 

  n = 2n. 

  m = div2(m). 

 

24) Prove that the following program computes the function double(s) where, for any string s, double(s) = True if s 

contains at least one pair of adjacent characters that are identical and False otherwise.  Clearly state the loop 

invariant that you are using. 

 

double(s: string) =  

found = False. 

for i = 1 to length(s) - 1 do 

  if s[i] = s[i + 1] then found = True. 

return(found). 
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