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Recap: Steps in a Reduction Proof

1. & Choose an undecidable language to reduce from.
2. @ Define the reduction R.
3. Show that C (the composition of R with Oracle) is

correct.

& indicates the choices that we make.
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Undecidable Problems
(Languages That Aren’t In D)

The Problem View The Language View
Does TM M halt on w? H={<M,w>:
M halts on w}
Does TM M not halt on w? —H ={<M,w>:
M does not halt on w}
Does TM M halt on the empty tape? H,= {<M>: M haltson €}
Is there any string on which TM M halts? H,\y = {<M> : there exists at least
one string on which TM M halts }
Does TM M accept all strings? Ay L= {<M>:L(M)=X*}
Do TMs M, and M, accept the same languages? | EQTMs =
{<M,, M,>: L(M,)=L(M,)}
Is the language that TM M accepts regular? TMreg =
{<M>:L(M) is regular}

Tomorrow: We will prove some of these (most are also done in the book)

- Hp, = {<M> : TM M halts on all inputs}

We show that Hp is not in D by reduction from H,.
H, = {<M> : TM M halts on ¢}
R
(?Oracle) Ha = {<M> : TM M halts on all inputs }

R(<M>) =
1. Construct the description <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Run M.
2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M>)) decides H,:
e R can be implemented as a Turing machine.
e Cis correct: M# halts on everything or nothing, depending on whether M
halts on €. So:
® <\ e H.: Mhalts on €, so M# halts on all inputs. Oracle accepts.
® <M> ¢ H,: Mdoes not halt on €, so M# halts on nothing. Oracle rejects.

But no machine to decide H, can exist, so neither does Oracle.
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The Membership Question for TMs
We next define a new language:
A = {<M, w> : M accepts w}.

Note that A is different from H since it is possible that M
halts but does not accept. An alternative definition of Ais:

A={<M, w>:we L(M)}.

A={<M w>:we L(M)

We show that A is not in D by reduction from H.
H = {<M, w>: TM M halts on input string w}
R
(?Oracle) A={<M, w>:we LM}

R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run Mon w.
1.4. Accept
2. Return <M#, w>.

If Oracle exists, then C = Oracle(R(<M, w>)) decides H:
e R can be implemented as a Turing machine.
e Cis correct: M# accepts everything or nothing. So:
® <M, w> € H: Mhalts on w, so M# accepts everything. In particular, it
accepts w. Oracle accepts.
® <M, w>¢ H: Mdoes not halt on w. M# gets stuck in step 1.3 and so
accepts nothing. Oracle rejects.
But no machine to decide H can exist, so neither does Oracle.
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Ag, Aany, @and Ay
Theorem: A, = {<M> : TM M accepts ¢} is not in D.

Proof: Analogous to that for H,.

Theorem:
Ay = {<M>: TM M accepts at least one string}
is notin D.

Proof: Analogous to that for Huyy-
Theorem: A, | = {<M>:=L(M)=X*}is notin D.

Proof: Analogous to that for H, .

Are safety and security properties of complex systems decidable? (J.2)

EqTMs={<M_, M,>: L(M_)=L(M,)}

M ?

Oracle for EQTMs




EqTMs={<M,, M,>: L(M,)=L(M,)}

Aavy = {<M>:there exists at least one string on which TM M
halts}

R
(Oracle) EGTMs = {<M,, M,>: L(M,)=L(M,)}

R(«M>) =
1. Construct the description of M#(x):
1.1. Accept.
2. Return <M, M#>.

If Oracle exists, then C = Oracle(R(<M>)) decides Aany:
e Cis correct: M# accepts everything. So:
o <M> e Apny: L(M) =? L(M#). Oracle ? Oops.
o <M> ¢ Apny: LIM) = L(M#). Oracle rejects.

EqTMs={<M,, M,>: L(M,)=L(M,)}

AaL = {<M>:L(M)=Z7}

R
(Oracle) EqTMs = {<M,, My>: L(M,)=L(M,)}
R(«M>) =
1. Construct the description of M#(x):
1.1. Accept.

2. Return <M, M#>.

If Oracle exists, then C = Oracle(R(<M>)) decides A, :
e (Ciscorrect: M#accepts everything. So if L(M) = L(M#), M must
also accept everything. So:
o <M>e Ay L(M) = L(M#). Oracle accepts.
o <M>¢ Ay i L(M) = L(M#). Oracle rejects.

But no machine to decide A, | can exist, so neither does Oracle.
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A Practical Consequence

Consider the problem of virus detection. Suppose that a
new virus Vs discovered and its code is <V>.

o Is it sufficient for antivirus software to check solely for
occurrences of <V>?

o Is it possible for it to check for equivalence to V?

- Sometimes Mapping Reducibility Isn’t Right

Recall that a mapping reduction from L, to L, is a
computable function fwhere:

VxeXl* (xe Ly & fix) e L,).
When we use a mapping reduction, we return:
Oracle(f(X))
Sometimes we need a more general ability to use Oracle

as a subroutine and then to do other computations after it
returns.
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c{<M> : M accepts no even length strings}
H = {< M, w> : TM Mhalts on input string w}

|7

(?Oracle) L, = {<M> : M accepts no even length strings}

R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run Mon w.
1.4. Accept.
2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M, w>)) decides H:
e Cis correct: M#ignores its own input. It accepts everything or nothing,
depending on whether it makes it to step 1.4. So:
o <M, w> e H: Mhaltson w. Oracle:
o <M, w> ¢ H: Mdoes not halton w. Oracle:

Problem:

c{<M> : M accepts no even length strings}
5 H = {< M, w> : TM M halts on input string w}

|7

(?Oracle) L, = {<M> : M accepts no even length strings}

R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run Mon w.
1.4. Accept.
2. Return <M#>.

If Oracle exists, then C = —Oracle(R(<M, w>)) decides H:
e Rand — can be implemented as Turing machines.
e Cis correct:
e <M, w> e H: M halts on w. M# accepts everything, including some
even length strings. Oracle rejects so C accepts.
e <M, w> ¢ H: Mdoes not halt on w. M#gets stuck. So it accepts
nothing, so no even length strings. Oracle accepts. So C rejects.
But no machine to decide H can exist, so neither does Oracle.
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- Are All Questions about TMs Undecidable?

Let L = {<M>: TM M contains an even number of states}

Let L = {<M, w> : M halts on w within 3 steps}.

Let L, = {<M, g> : there is some configuration

(p, uav) of M, with p # q,

that yields a configuration whose state is q }.

Is Lq decidable?

Is There a Pattern?

e Does L contain some particular string w?

e Does L contain €?

e Does L contain any strings at all?

e Does L contain all strings over some alphabet £?

oA ={<M, w>:TM M accepts w}.
oA, ={<M>: TM M accepts &}.

o Apny = {<M>:  there exists at least one string that
TM M accepts}.

oA, ={<M>: TM M accepts all inputs}.
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Rice’s Theorem

No nontrivial property of the SD languages is decidable.
or
Any language that can be described as:
{<M>: P(L(M)) = True}
for any nontrivial property P, is not in D.

A nontrivial property is one that is not simply:

True f I Because of time
* [rueior all languages, or constraints, we will

+ False for all languages. skip the proof of
this theorem.

P
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Applying Rice’s Theorem

To use Rice’s Theorem to show that a language L is not
in D we must:

e Specify property P.
e Show that the domain of Pis the SD languages.
e Show that Pis nontrivial:

e Pis true of at least one language
e Pis false of at least one language

2/13/2012
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Applying Rice’s Theorem

.’ir_-
-

{<M> : L(M) contains only even length strings}.
{<M>: L(
{<M>: L(
{<M> : L(M) is infinite}.
{<M> : L(M) is regular}.
{<M> : M contains an even number of states}.

M) contains an odd number of strings}.
M) contains all strings that start with a}.

S Al -

{<M> : M has an odd number of symbols in its tape
alphabet}.

8. {<M>: M accepts € within 100 steps}.
9. {<M>: M accepts €}.
10. {<M,, M> : L(M,) = L(M,)}.

Given a TM M, is L(M) Regular?
The problem: Is L(M) regular?

As a language: Is {<M> : L(M) is regular} in D?

BRI TERR 7 e

No, by Rice’s Theorem:

e P= Trueif L is regular and False otherwise.

e The domain of Pis the set of SD languages since it is
the set of languages accepted by some TM.

e Pis nontrivial:

¢ P@@*) = True. We can also show it
¢ P(A"B") = False. directly, using reduction.
(Next slide)
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-~ Given a Turing Machine M, is L(M) Regular?
H = {<M, w>: TM M halts on input string w}

R
(Oracle) L, = {<M>: L(M) is regular}

R(<M, w>) =

1. Construct M#(x):
1.1. Copy its input x to another track for later.
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run Mon w.
1.5. Put x back on the tape.
1.6. If xe A"B" then accept, else reject.

2. Return <Mi>.

Problem:

But We Can Flip
“ R(<M, w>) =

's. onstruct the description <M##>, where Mi(x) operates as follows:
.1. Save x for later.

.2. Erase the tape.

.3. Write w on the tape.

4. Run Mon w.

1.5. Put x back on the tape.

1.6. If xe A"B" then accept, else reject.
2. Return <M#>.

1.C
1
1
1
1

If Oracle decides L,, then C = —Oracle(R(<M, w>)) decides H:
o <M, w> e H: M# makes it to step 1.5. Then it accepts x iff
x e A"B". So M# accepts A"B", which is not regular.
Oracle rejects. C accepts.
e <M, w> ¢ H: Mdoes not halt on w. M# gets stuck in step 1.4.
It accepts nothing. L(M#) = &, which is regular.
Oracle accepts. Crejects.
But no machine to decide H can exist, so neither does Oracle.
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Or, Doing it Without Flipping

. R(<M, w>) =
1. Construct the description <M##>, where M#(x) operates as follows:
1.1. If xe A"B" then accept, else:
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run Mon w.
1.5. Accept
2. Return <Mi#>.

If Oracle exists, C = Oracle(R(<M, w>)) decides H:
5 e Cis correct: M# immediately accepts all strings in A"B":
o <M, w> e H: M# accepts everything else in step 1.5. So
L(M#) = £*, which is regular. Oracle accepts.

o <M, w> ¢ H: M# gets stuck in step 1.4, so it accepts nothing
else. L(M#)=A"B", which is not regular. Oracle rejects.

But no machine to decide H can exist, so neither does Oracle.

Any Nonregular Language Will Work

“. R(<M, w>) =
1. Construct the description <M##>, where M#(x) operates as follows:
1.1. If xe WW then accept, else:
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run Mon w.
1.5. Accept
2. Return <Mi#>.

: If Oracle exists, C = Oracle(R(<M, w>)) decides H:
% e Cis correct: M# immediately accepts all strings WW:
o <M, w> e H: M# accepts everything else in step 1.5. So
L(M#) = £*, which is regular. Oracle accepts.

o <M, w>¢ H: M# gets stuck in step 1.4, so it accepts nothing
else. L(M#)=WW, which is not regular. Oracle rejects.

But no machine to decide H can exist, so neither does Oracle.

2/13/2012
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Is L(M) Context-free?

~ \' How about: L; = {<M>: L(M) is context-free}?

" R(<M, ws) =

1. Construct the description <M##>, where M#(x) operates as follows:
1.1. If xe A"B"C" then accept, else:
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run Mon w.
1.5. Accept

2. Return <Mi#>.

Practical Impact of These Results

1. Does P, when running on x, halt?
2. Might P get into an infinite loop on some input?

3. Does P, when running on x, ever output a 0? Or anything at
all?

4. Are P; and P, equivalent?
5. Does P, when running on x, ever assign a value to n?

6. Does P ever reach Son any input (in other words, can we
chop it out?

7. Does Preach Son every input (in other words, can we
guarantee that S happens)?

e Can the Patent Office check prior art?

e Can the CS department buy the definitive grading program?

2/13/2012
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Turing Machine Questions Can be
Reduced to Program Questions

b EgPrograms =

{<P,, P,>: P,and P, are PL programs and L(P,) = L(P,)}.

' We can build, in any programming language PL, SimUM:

: » thatis a PL program

+ that implements the Universal TM U and so can
simulate an arbitrary TM.

{<M, g> : Mreaches q on some input}

Hany = {<M> : there exists some string on which TM M halts}

l R
(?Oracle) L, = {<M, g> : Mreaches q on some input}

R(<M>) =
1. Build <M#> so that M# is identical to M except that, if M has a transition
((g1, ¢1), (@o, C5, d)) @and @ is a halting state other than h, replace that
transition with:
(g4, &), (h, Cs, ). A good example,

2. Return <M#, h>. but the term is
flying by, so we will
It Oracle exists, then C = Oracle(R(<M>)) decides Hanv: | skip it for now.

e A can be implemented as a Turing machine.

e Cis correct: M# will reach the halting state h iff M would reach some

halting state. So:
o <M> € Huwy: There is some string on which M halts. So there is some
string on which M# reaches state h. Oracle accepts.
o <M> ¢ Hawy: There is no string on which M halts. So there is no string
on which M# reaches state h. Oracle rejects.
But no machine to decide Huyy can exist, so neither does Oracle.

2/13/2012
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Side Road with a purpose:
obtainSelf
From Section 25.3:

useful computable function: obtainSelf. When called as a
subroutine by any Turing machine M, obtainSelf writes
<M> onto M's tape.

"N Related to quines

Some quines

* main() {char g=34, n=10,*a="main() {char
g=34,n=10, *a=%c%s%cC;
printf(a,g,a,q,n);}%c";printf(a,q,a,q,n);}

* ((lambda (x) (list x (list 'quote x)))
(quote (lambda (x) (list x (list 'quote x)))))

18 - Quine's paradox and a related sentence:

"Yields falsehood when preceded by its quotation” yields
falsehood when preceded by its quotation.

"quoted and followed by itself is a quine." quoted and
followed by itself is a quine.

2/13/2012
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Non-SD Languages

There is an uncountable number of non-SD languages, but only a
countably infinite number of TM’s (hence SD languages). ..The class
of non-SD languages is much bigger than that of SD languages!

AT
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Non-SD Languages
Intuition: Non-SD languages usually involve either infinite

search (where testing each potential member could loop
forever) or determining whether the a TM will infinite

loop.

Examples:
+  —H={<M, w>: TM Mdoes not halt on w}.
e {<M>:L(M)=1x%}.

* {<M>:TM M halts on nothing}.

2/13/2012
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Proving Languages are not SD

e Contradiction
e L is the complement of an SD/D Language.

e Reduction from a known non-SD language

Contradiction

Theorem: TMy,\ =
{<M>: Turing machine M is minimal} is not in SD.

Proof: If TMy,y were in SD, then there would exist some Turing
machine ENUM that enumerates its elements. Define the following
Turing machine:

M#(x) =
1. Invoke obtainSelf to produce <M#>.
2. Run ENUM until it generates the description of some Turing
machine M“whose description is longer than |<M#>|.
3. Invoke U on the string <M x>.

Since TMy,\ is infinite, ENUM must eventually generate a string that
is longer than |<M#>|. So M# makes it to step 3 and thus M# is
Equivalentto M’since it simulates M’ But, since |<M#>| < |[<M5|, M”
cannot be minimal.

But M#'s description was generated by ENUM. Contradiction.

2/13/2012
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The Complement of L is in SD/D

: Suppose we want to know whether L is in SD and we know:

e —[ isin SD, and
e At least one of L or =L is notin D.

% ¥ Then we can conclude that L is not in SD, because, if it were,
. & itwould force both itself and its complement into D, which we
& & know cannot be true.

Example:
e —H (since =(—H) = H is in SD and not in D)

— . - ANRN
A, = {<M>: L(M) = A"B"}
A.n contains strings that look like:

(g00,a00,g01,a00, ),
(g00,a01,900,a10, ),
(g00,a10,g01,a01, «),
(g00,a11,g01,a10, <),
(g01,a00,g00,a01, —>),
(g01,a01,901,a10, ),
(g01,a10,g01,al11, <),
(g01,a11,911,a01,«)

It does not contain strings like aaabbb.

But A"B" does.
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Aonin = {<M> : L(M) = A"B"}

What’s wrong with this proof that A, is not in SD?

-H = {<M, w>:TM M does not halt on w}
| A
(?Oracle) Agnon = {<M> 1 L(M) = A"B"}

R(<M, w>) =
1. Construct the description <M##>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run Mon w.
1.4. Accept.
2. Return <Mit>.

If Oracle exists, C = Oracle(R(<M, w>)) semidecides —H:

ARSI TR R T R R TR e e

i

A, o = {<M>: L(M) = A"B"} is not SD

What about: —H=  {<M, w>: TM M does not halt on w}

R
(?Oracle) Agnon = {<M> 1 L(M) = A"Bn}
R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as
follows:

1.1 Copy the input x to another track for later.
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run Mon w.
1.5. Put x back on the tape.
1.6. If xe A"B" then accept, else loop.
2. Return <Mi#>.

ARSI TR R T R SRR TR e e

If Oracle exists, C = Oracle(R(<M, w>)) semidecides —H:

2/13/2012
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¢ Agnpn = {<M> : L(M) = A"B"} is not SD
R(<M, w>) reduces —H to Aynpn:
1. Construct the description <M#>:
1.1. If xe A"B" then accept. Else:
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run Mon w.
1.5. Accept.
2. Return <Mi#>.

If Oracle exists, then C = Oracle(R(<M, w>)) semidecides —H:
Mi# immediately accepts all strings in A"B". If M does not halt on
w, those are the only strings M# accepts. If M halts on w,
Mit accepts everything:

e <M, w> e —H: M does not halt on w, so M# accepts strings in
A"B"in step 1.1. Then it gets stuck in step 1.4, so it accepts
nothing else. ltis an A"B" acceptor. Oracle accepts.

e <M, w>¢ —H: M halts on w, so M# accepts everything.

Oracle does not accept.

But no machine to semidecide —H can exist, so neither does Oracle.
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