
7/17/2018

1

MA/CSSE 474
Theory of Computation

Computational Complexity

Announcements
• Don't forget the course evaluations on

Banner Web.
– If a 90%+ response rate for either section,

everyone in that section gets a 5% bonus on
the final exam

• Final Exam Monday 6-10PM. O 269
– You can bring 3 double-sided sheets of paper

– Covers whole course, but

– Much more emphasis on later stuff

– Includes several problems of the "which
language class is this in?" flavor.

7/17/2018

2

Consider :

L1 = {<M, w>: M rejects w}.

L2 = {<M, w>: M does not halt on w}.

L3 = {<M, w>: M is a deciding TM and rejects w}.

Accepting, Rejecting, Halting, and Looping

What About These?

L1 = {a}. [in D]

L2 = {<M> : M accepts a}. [in SD/D]

L3 = {<M> : L(M) = {a}}. [HW 14]

7/17/2018

3

L = {<Ma, Mb> :   L(Ma) – L(Mb)}

R is a reduction from H. R(<M, w>) =
1. Construct the description of M#(x) that operates as follows:

1.1. Erase the tape.
1.2. Write w.
1.3. Run M on w.
1.4. Accept.

2. Construct the description of M?(x) that operates as follows:
2.1. Accept.

3. Return <M?, M#>.

If Oracle exists and semidecides L, C = Oracle(R(<M, w>))
semidecides H: M? accepts everything, including . So:

 <M, w>  H: L(M?) - L(M#) =

 <M, w>  H: L(M?) - L(M#) =

The Problem View The Language View Status

Does TM M have an even number of
states?

{<M> : M has an even number of
states}

D

Does TM M halt on w? H = {<M, w> : M halts on w} SD/D

Does TM M halt on the empty tape? H = {<M> : M halts on } SD/D

Is there any string on which TM M
halts?

HANY = {<M> : there exists at
least one string on which TM M
halts }

SD/D

Does TM M halt on all strings? HALL = {<M> : M halts on *} SD

Does TM M accept w? A = {<M, w> : M accepts w} SD/D

Does TM M accept ? A = {<M> : M accepts } SD/D

Is there any string that TM M accepts? AANY {<M> : there exists at least
one string that TM M accepts }

SD/D

7/17/2018

4

Does TM M accept all strings? AALL = {<M> : L(M) = *} SD

Do TMs Ma and Mb accept the same
languages?

EqTMs = {<Ma, Mb> : L(Ma) =
L(Mb)}

SD

Does TM M not halt on any string? HANY = {<M> : there does not
exist any string on which M halts}

SD

Does TM M not halt on its own
description?

{<M> : TM M does not halt on
input <M>}

SD

Is TM M minimal? TMMIN = {<M>: M is minimal} SD

Is the language that TM M accepts
regular?

TMreg = {<M> : L(M) is regular} SD

Does TM M accept the language
AnBn?

Aanbn = {<M> : L(M) = AnBn} SD

1. Given a CFL L and a string s, is s  L? (decidable)

2. Given a CFL L, is L = ?

3. Given a CFL L, is L = *?

4. Given CFLs L1 and L2, is L1 = L2?

5. Given CFLs L1 and L2, is L1  L2 ?

6. Given a CFL L, is L context-free?

7. Given a CFL L, is L regular?

8. Given two CFLs L1 and L2, is L1  L2 = ?

9. Given a CFL L, is L inherently ambiguous?

10. Given PDAs M1 and M2, is M2 a minimization of M1?

11. Given a CFG G, is G ambiguous?

Undecidable Problems About CFLs

7/17/2018

5

Complexity Classes

course.setOverviewMode(true);

Asymptotic Analysis Review

in case it's been a while …

7/17/2018

6

Are All Decidable Languages Equal?

● (ab)*

● WWR = {wwR : w  {a, b}*}

● WW = {ww : w  {a, b}*}

● SAT = {w : w is a wff in Boolean logic and w is satisfiable}

● TSP (Traveling Salesman Problem). Next slides …

The Traveling Salesman Problem

Given n cities and the distances between each pair of
them, find the shortest tour that returns to its starting point
and visits each other city exactly once along the way.

15

20

25

8
9

23

40

10

4

7
3

28

7/17/2018

7

The Traveling Salesman Problem

15

20

25

8
9

23

40

10

4

7
3

28

Given n cities:

Choose a first city n
Choose a second n-1
Choose a third n-2

… n!

The Traveling Salesman Problem

Can we do better than n!

● First city doesn’t matter.
● Order doesn’t matter.

So we get (n-1!)/2.

7/17/2018

8

The Growth Rate of n!

2 2 11 479001600

3 6 12 6227020800

4 24 13 87178291200

5 120 14 1307674368000

6 720 15 20922789888000

7 5040 16 355687428096000

8 40320 17 6402373705728000

9 362880 18 121645100408832000

10 3628800 19 2432902008176640000

11 39916800 36 3.61041

Growth Rates of Functions

7/17/2018

9

Asymptotic Dominance

f(n)  O(g(n)) iff there exists a positive integer k and a
positive constant c such that:

n  k (f(n)  c g(n)).

Alternatively, if the limit exists:

Or, g grows at least as fast as f does.

Asymptotic Dominance - O


)(

)(
lim

ng

nf
n

7/17/2018

10

Summarizing O

O(c)  O(loga n)  O(nb)  O(dn)  O(n!)  O(nn)

Asymptotic strong upper bound: f(n)  o(g(n)) iff, for
every positive c, there exists a positive integer k such that:

n  k (f(n) < c g(n)).

Alternatively, if the limit exists:

In this case, we’ll say that f is “little-oh” of g or that g grows
strictly faster than f does.

O (little oh)

0
)(

)(
lim 

 ng

nf
n

7/17/2018

11

● Asymptotic lower bound: f(n)  (g(n)) iff there exists
a positive integer k and a positive constant c such that:

n  k (f(n)  c g(n)).

In other words, ignoring some number of small cases
(all those of size less than k), and ignoring some
constant factor c, f(n) is bounded from below by g(n).

Alternatively, if the limit exists:

In this case, we’ll say that f is “big-Omega” of g or that g
grows no faster than f.



0
)(

)(
lim 

 ng

nf
n

● Asymptotic strong lower bound: f(n)  (g(n))
iff, for every positive c, there exists a positive integer
k such that:

n  k (f(n) > c g(n)).

Alternatively, if the required limit exists:

In this case, we’ll say that f is “little-omega” of g or that
g grows strictly slower than f does.



()
lim

()n

f n

g n
 

7/17/2018

12

f(n)  (g(n)) iff there exists a positive integer k and
positive constants c1, and c2 such that:

n  k (c1 g(n)  f(n)  c2 g(n))

Or: Or:

f(n)  (g(n)) iff: f(n)  (g(n)) iff:
f(n)  O(g(n)), and f(n)  O(g(n)), and
g(n)  O(f(n)). f(n)  (g(n)).

Is n3  (n3)?
Is n3  (n4)?
Is n3  (n5)?



1. Use a technique that is guaranteed to find an optimal
solution and likely to do so quickly. Linear programming:

The Concorde TSP Solver found an optimal route that visits
24,978 cities in Sweden.

Tackling Hard Problems

http://www.tsp.gatech.edu/conco
rde.html

2. Use a technique that is guaranteed to run quickly and find
a “good” solution, but not necessarily optimal.

http://en.wikipedia.org/wiki/Travelling_sales
man_problem#Heuristic_and_approximatio
n_algorithms

7/17/2018

13

The Complexity Zoo

The attempt to characterize the decidable languages by
their complexity:

http://qwiki.stanford.edu/wiki/Complexity_Zoo

See especially the Petting Zoo page.

All Problems Are Decision Problems

The Towers of Hanoi

Requires at least enough time to write the solution.

By restricting our attention to decision problems, the
length of the answer is not a factor.

7/17/2018

14

Encoding Types Other Than Strings

The length of the encoding matters.

Integers: use any base other than 1.

111111111111 vs 1100
111111111111111111111111111111 vs 11110

logax = logab logbx

● PRIMES = {w : w is the binary encoding of a prime number}

Encoding Types Other Than Strings
Graphs: use an adjacency matrix:

Or a list of edges:

101/1/11/11/10/10/100/100/101

1 2 3 4 5 6 7

1 

2 

3 

4 

5

6

7

7/17/2018

15

Graph Languages

● CONNECTED = {<G> : G is an undirected graph and G is
connected}.

● HAMILTONIANCIRCUIT = {<G> : G is an undirected graph
that contains a Hamiltonian circuit}.

● TSP-DECIDE = {<G, cost> : <G> encodes an undirected
graph with a positive distance attached to each of its
edges and G contains a Hamiltonian circuit whose total
cost is less than <cost>}.

Characterizing Optimization Problems
as Languages

7/17/2018

16

We’ll use Turing machines:

● Tape alphabet size?

● How many tapes?

● Deterministic vs. nondeterministic?

Choosing A Model of Computation

timereq(M) is a function of n:

● If M is a deterministic Turing machine that halts on all
inputs, then:

timereq(M) = f(n) = the maximum number of steps
that M executes on any input of
length n.

Measuring Time and Space Requirements

7/17/2018

17

● If M is a nondeterministic Turing machine all of whose
computational paths halt on all inputs, then:

s,qabab

q2,#abab q1,qabab

q1,qabab q3,qbbab

timereq(M) = f(n) = the number of steps on the
longest path that M executes on
any input of length n.

Measuring Time and Space Requirements

spacereq(M) is a function of n:

● If M is a deterministic Turing machine that halts on all
inputs, then:

spacereq(M) = f(n) = the maximum number of tape
squares that M reads on any input of length n.

● If M is a nondeterministic Turing machine all of
whose computational paths halt on all inputs, then:

spacereq(M) = f(n) = the maximum number of tape
squares that M reads on any path that it executes
on any input of length n.

Measuring Time and Space Requirements

7/17/2018

18

Algorithmic Gaps
We’d like to show for a language L:

1. Upper bound: There exists an algorithm that decides L
and that has complexity C1.

2. Lower bound: Any algorithm that decides L must have
complexity at least C2.

3. C1 = C2.

If C1 = C2, we are done. Often, we’re not done.

Algorithmic Gaps
Example: TSP

● Upper bound: timereq  O().
● Don’t have a lower bound that says polynomial isn’t

possible.

We group languages by what we know. And then we ask:
“Is class CL1 equal to class CL2?”

)(2
kn

7/17/2018

19

Given a list of n numbers, find the minimum and the
maximum elements in the list. Or, as a language
recognition problem:

L = {<list of numbers, number1, number2>:
number1 is the minimum element of the list and
number2 is the maximum element}.

(23, 45, 73, 12, 45, 197; 12; 197)  L.

A Simple Example of Polynomial Speedup

The straightforward approach:

simplecompare(list: list of numbers) =
max = list[1].
min = list[1].
For i = 2 to length(list) do:

If list[i] < min then min = list[i].
If list[i] > max then max = list[i].

Requires 2(n-1) comparisons. So simplecompare is O(n).

But we can solve this problem in (3/2)(n-1) comparisons.

How?

A Simple Example of Polynomial Speedup

7/17/2018

20

efficientcompare(list: list of numbers) =
max = list[1].
min = list[1].
For i = 3 to length(list) by 2 do:

If list[i] < list[i-1] then:
If list[i] < min then min = list[i].
If list[i-1] > max then max = list[i-1].

Else:
If list[i-1] < min then min = list[i-1].

If list[i] > max then max = list[i].
If length(list) is even then check the last element.

Requires 3/2(n-1) comparisons.

A Simple Example of Polynomial Speedup

String Search

t: a b c a b a b c a b d

p: a b c d

a b c d

a b c d

. . .

7/17/2018

21

String Search
simple-string-search(t, p: strings) =

i = 0.
j = 0.
While i ≤ |t| - |p| do:

While j < |p| do:
If t[i+j] = p[j] then j = j + 1.

Else exit this loop.
If j = |p| then halt and accept.

Else:
i = i + 1.
j = 0.

Halt and reject.

Let n be |t| and let m be |p|. In the worst case (in which it doesn’t
find an early match), simple-string-search will go through its outer
loop almost n times and, for each of those iterations, it will go
through its inner loop m times.

So timereq(simple-string-search)  O(nm).

K-M-P algorithm is
O(n+m)

● Context-free parsing can be done in O(n3) time instead of
O(2n) time. (CYK algorithm)

● Finding the greatest common divisor of two integers can
be done in O(log2(max(n, m))) time instead of
exponential time.

Replacing an Exponential
Algorithm with a Polynomial One

7/17/2018

22

The Language Class P

L  P iff

● there exists some deterministic Turing machine M
that decides L, and

● timereq(M)  O(nk) for some k.

We’ll say that L is tractable iff it is in P.

Closure under Complement

Theorem: The class P is closed under complement.

Proof: If M accepts L in polynomial time, swap
accepting and non accepting states to accept L in
polynomial time.

7/17/2018

23

Defining Complement

● CONNECTED = {<G> : G is an undirected graph and G is
connected} is in P.

● NOTCONNECTED = {<G> : G is an undirected graph and G is
not connected}.

● CONNECTED = NOTCONNECTED  {strings that are
not syntactically legal descriptions of undirected graphs}.

CONNECTED is in P by the closure theorem. What about
NOTCONNECTED?

If we can check for legal syntax in polynomial time, then we can
consider the universe of strings whose syntax is legal. Then we
can conclude that NOTCONNECTED is in P if CONNECTED is.

Languages That Are in P
● Every regular language.

● Every context-free language since there exist
context-free parsing algorithms that run in O(n3) time.

● Others:

● AnBnCn

● Nim

7/17/2018

24

To Show That a Language Is In P

● Describe a one-tape, deterministic Turing machine.

● It may use multiple tapes. Price:

● State an algorithm that runs on a conventional computer.
Price:

How long does it take to compare two strings?

q a a a ; a a a q …

Bottom line: If ignoring polynomial factors, then just describe
a deterministic algorithm.

Theorem: Every regular language can be decided in linear
time. So every regular language is in P.

Proof: If L is regular, there exists some DFSM M that
decides it. Construct a deterministic TM M that simulates
M, moving its read/write head one square to the right at each
step. When M reads a q, it halts. If it is in an accepting
state, it accepts; otherwise it rejects.

On any input of length n, M will execute n + 2 steps.

So timereq(M)  O(n).

Regular Languages

7/17/2018

25

Context-Free Languages

Theorem: Every context-free language can be
decided in O(n18) time. So every context-free
language is in P.

Proof: The Cocke-Kasami-Younger (CKY) algorithm
can parse any context-free language in time that is
O(n3) if we count operations on a conventional
computer. That algorithm can be simulated on a
standard, one-tape Turing machine in O(n18) steps.

WE could get bogged down in the details of this, but w ewon't!

Graph Languages

Represent a graph G = (V, E) as a list of edges:

101/1/11/11/10/10/100/100/101/11/101

1 3

2 4 5

7/17/2018

26

Graph Languages

CONNECTED =
{<G> : G is an undirected graph and

G is connected}.

Is CONNECTED in P?

1 2

3

4

5

6

7

8

9

CONNECTED is in P
connected(<G = (V, E>) =

1. Set all vertices to be unmarked.
2. Mark vertex 1.
3. Initialize L to {1}.
4. Initialize marked-vertices-counter to 1.
5. Until L is empty do:

5.1. Remove the first element from L. Call it current-vertex.
5.2. For each edge e that has current-vertex as an endpoint do:

Call the other endpoint of e next-vertex. If next-vertex is not
already marked then do:

Mark next-vertex.
Add next-vertex to L.
Increment marked-vertices-counter by 1.

6. If marked-vertices-counter = |V| accept. Else reject.

7/17/2018

27

Analyzing connected
● Step 1 takes time that is O(|V|).
● Steps 2, 3, and 4 each take constant time.
● The loop of step 5 can be executed at most |V| times.
● Step 5.1 takes constant time.
● Step 5.2 can be executed at most |E| times. Each time,

it requires at most O(|V|) time.
● Step 6 takes constant time.

So timereq(connected) is:

|V|O(|E|)O(|V|) = O(|V|2|E|).

But |E|  |V|2. So timereq(connected) is:

O(|V|4).

RELATIVELY-PRIME =
{<n, m> : n and m are integers that are relatively prime}.

PRIMES =
{w : w is the binary encoding of a prime number}

COMPOSITES =
{w : w is the binary encoding of a nonprime number}

Primality Testing

7/17/2018

28

But Finding Factors Remains Hard

http://xkcd.com/247/

TSP-DECIDE = {<G, cost> : <G> encodes an undirected
graph with a positive distance attached to each of its edges
and G contains a Hamiltonian circuit whose total cost is
less than <cost>}.

An NDTM to decide TSP-DECIDE:

Returning to TSP

15

20

25

8
9

23

40

10

4

7
3

2830

7/17/2018

29

An NDTM to decide TSP-DECIDE:

Returning to TSP

15

20

25

8
9

23

40

10

4

7
3

2830

1. For i = 1 to |V| do:
Choose a vertex that hasn’t yet been chosen.

2. Check that the path defined by the chosen sequence
of vertices is a Hamiltonian circuit through G with
distance less than cost.

TSP-DECIDE, and other problems like it, share three
properties:

1. The problem can be solved by searching through a
space of partial solutions (such as routes). The size
of this space grows exponentially with the size of the
problem.

2. No better (i.e., not based on search) technique for
finding an exact solution is known.

3. But, if a proposed solution were suddenly to appear, it
could be checked for correctness very efficiently.

TSP and Other Problems Like It

7/17/2018

30

Nondeterministic deciding:

L  NP iff:

● there is some NDTM M that decides L, and

● timereq(M)  O(nk) for some k.

NDTM deciders:
s,qabab

q2,#abab q1,qabab

q1,qabab q3,qbbab

The Language Class NP

TSP-DECIDE = {<G, cost> : <G> encodes an undirected
graph with a positive distance attached to each of its
edges and G contains a Hamiltonian circuit whose
total cost is less than <cost>}.

Suppose some Oracle presented a candidate path c:

<G, cost, v1, v7, v4, v3, v8, v5, v2, v6, v1>

How long would it take to verify that c proves that:

<G, cost> is in TSP-DECIDE?

TSP Again

7/17/2018

31

A Turing machine V is a verifier for a language L iff:

w  L iff c (<w, c>  L(V)).

We’ll call c a certificate.

Deterministic Verifying

An alternative definition for the class NP:

L  NP iff there exists a deterministic TM V such that:

● V is a verifier for L, and

● timereq(V)  O(nk) for some k.

Deterministic Verifying

7/17/2018

32

Theorem: These two definitions are equivalent:

(1) L  NP iff there exists a nondeterministic,
polynomial-time TM that decides it.

(2) L  NP iff there exists a deterministic,
polynomial-time verifier for it.

Proof: WE skip it

ND Deciding and D Verifying

● Exhibit an NDTM to decide it.

● Exhibit a DTM to verify it.

Proving That a Language is in NP

7/17/2018

33

● SAT = {w : w is a Boolean wff and w is satisfiable} is in NP.

F1 = P  Q  R ?
F2 = P  Q  R ?
F3 = P  P ?
F4 = P  (Q  R)  Q ?

SAT-decide(F4) =

SAT-verify (<F4, (P = True, Q = False, R = False)>) =

Example

3-SAT
• A literal is either a variable or a variable preceded by a

single negation symbol.

• A clause is either a single literal or the disjunction of
two or more literals.

• A wff is in conjunctive normal form (or CNF) iff it is
either a single clause or the conjunction of two or more
clauses.

• A wff is in 3-conjunctive normal form (or 3-CNF) iff it
is in conjunctive normal form and each clause contains
exactly three literals.

7/17/2018

34

Every wff can be converted to an equivalent wff in CNF.

● 3-SAT = { w : w is a wff in Boolean logic,
w is in 3-conjunctive normal form, and
w is satisfiable}.

Is 3-SAT in NP?

3-SAT
3-CNF CNF

(P  Q  R)  

(P  Q  R)  (P  Q  R)  

P 

(P  Q  R  S)  (P  R) 

P  Q

(P  Q  R  S)  (P  R)

(P  Q  R)

Is P = NP?

Here are some things we know:

P  NP  PSPACE  EXPTIME

P  EXPTIME

The Millenium Prize

The Relationship Between P and NP

7/17/2018

35

A mapping reduction R from L1 to L2 is a

• Turing machine that
• implements some computable function f with the property

that:

x (x  L1  f(x)  L2).

If L1  L2 and M decides L2, then:

C(x) = M(R(x)) will decide L1.

Using Reduction in Complexity Proofs

If R is deterministic polynomial then:

L1 P L2.

And, whenever such an R exists:

● L1 must be in P if L2 is: if L2 is in P then there exists some
deterministic, polynomial-time Turing machine M that
decides it. So M(R(x)) is also a deterministic, polynomial-
time Turing machine and it decides L1.

● L1 must be in NP if L2 is: if L2 is in NP then there exists
some nondeterministic, polynomial-time Turing machine
M that decides it. So M(R(x)) is also a nondeterministic,
polynomial-time Turing machine and it decides L1.

Using Reduction in Complexity Proofs

7/17/2018

36

Given L1 P L2, we can use reduction to:

● Prove that L1 is in P or in NP because we already know
that L2 is.

● Prove that L1 would be in P or in NP if we could
somehow show that L2 is. When we do this, we
cluster languages of similar complexity (even if we’re
not yet sure what that complexity is). In other words,
L1 is no harder than L2 is.

Why Use Reduction?

INDEPENDENT-SET

● INDEPENDENT-SET = {<G, k> : G is an undirected graph and G
contains an independent set of at least k vertices}.

An independent set is a set of vertices no two of which are
adjacent (i.e., connected by a single edge. So, in the following
graph, the circled vertices form an independent set:

In a scheduling program the vertices represent tasks
and are connected by an edge if their corresponding
tasks conflict. We can find the largest number of tasks
that can be scheduled at the same time by finding the
largest independent set in the task graph.

7/17/2018

37

3-SAT P INDEPENDENT-SET.

Strings in 3-SAT describe formulas that contain literals and
clauses.

(P  Q  R)  (R  S  Q)

Strings in INDEPENDENT-SET describe graphs that contain
vertices and edges.

101/1/11/11/10/10/100/100/101/11/101

3-SAT and INDEPENDENT-SET

A gadget is a structure in the target language that mimics
the role of a corresponding structure in the source language.

Example: 3-SAT P INDEPENDENT-SET.

(P  Q  R)  (R  S  Q)

(approximately)

101/1/11/11/10/10/100/100/101/11/101

So we need:
• a gadget that looks like a graph but that mimics a literal, and
• a gadget that looks like a graph but that mimics a clause.

Gadgets

7/17/2018

38

R(<f: Boolean formula with k clauses>) =
1. Build a graph G by doing the following:

1.1. Create one vertex for each instance of each literal in f.
1.2. Create an edge between each pair of vertices for symbols

in the same clause.
1.3. Create an edge between each pair of vertices for

complementary literals.
2. Return <G, k>.

(P  Q  W)  (P  S  T):

3-SAT P INDEPENDENT-SET

Show: f  3-SAT iff R(<f>)  INDEPENDENT-SET
by showing:

● f  3-SAT  R(<f>)  INDEPENDENT-SET

● R(<f>)  INDEPENDENT-SET  f  3-SAT

R is Correct

7/17/2018

39

f  3-SAT  R(<f>)  INDEPENDENT-SET:
There is a satisfying assignment A to the symbols in f.
So G contains an independent set S of size k, built by:

1. From each clause gadget choose one literal that is made
positive by A.

2. Add the vertex corresponding to that literal to S.

S will contain exactly k vertices and is an independent set:
● No two vertices come from the same clause so step 1.2

could not have created an edge between them.
● No two vertices correspond to complimentary literals so step

1.3 could not have created an edge between them.

One Direction

● R(<f>)  INDEPENDENT-SET.
● So the graph G that R builds contains an independent set S of size k.
● We prove that there is some satisfying assignment A for f:

No two vertices in S come from the same clause gadget. Since S
contains at least k vertices, no two are from the same clause, and f
contains k clauses, S must contain one vertex from each clause.

Build A as follows:
1. Assign True to each literal that corresponds to a vertex in S.
2. Assign arbitrary values to all other literals.

Since each clause will contain at least one literal whose value is
True, the value of f will be True.

The Other
Direction

7/17/2018

40

NP-Completeness

1. L is in NP.
2. Every language in NP is deterministic,

polynomial-time reducible to L.

• L is NP-complete iff it possesses both property 1
and property 2.

• L is NP-hard iff it possesses property 2.

A language L might have these properties:

All NP-complete languages can be viewed as being
equivalently hard.

An NP-hard language is at least as hard as any other
language in NP.

NP-Hard vs. NP-Complete

CHESS = {: b is a configuration of an n  n
chess board and there is a guaranteed win for
the current player}.

An example: puzzles vs. games (Appendix N).

To use this theory to analyze a game like chess, we
must generalize it so that we can talk about solution
time as a function of problem size:

7/17/2018

41

Sudoku
• SUDOKU = {: b is a configuration of an n  n grid

and b has a solution under the rules of Sudoku}.

Sudoku
• SUDOKU = {: b is a configuration of an n  n grid

and b has a solution under the rules of Sudoku}.

A deterministic, polynomial time verifier for SUDOKU, on
input:

<b, (1,1,1), (1,2,5), (1,3,4), …>

7/17/2018

42

Chess

A deterministic polynomial time verifier for CHESS?

NP-Hard vs. NP-Complete

SUDOKU = {: b is a configuration of an nn
grid and b has a solution under the rules of
Sudoku}.

NP-complete.

CHESS = {: b is a configuration of an nn
chess board and there is a guaranteed win for
the current player}.

NP-hard, not thought to be in NP.
If fixed number of pieces: PSPACE-complete.
If varialbe number of pieces: EXPTIME-complete.

7/17/2018

43

Showing that L is NP-Complete
How about: Take a list of known NP languages and
crank out the reductions?

NPL1  L

NPL2  L

NPL3  L

…

Showing that L is NP-Complete

NPL1 NPL2 NPL3 NPL4 NPL...

L

L

Suppose we had one NP-complete language L :

7/17/2018

44

Finding an L

• The key property that every NP language has is that it
can be decided by a polynomial time NDTM.

• So we need a language in which we can describe
computations of NDTMs.

The Cook-Levin Theorem

Define: SAT = {w : w is a wff in Boolean logic and
w is satisfiable}

Theorem: SAT is NP-complete.

Proof:

• SAT is in NP.

• SAT is NP-hard.

7/17/2018

45

NP-Complete Languages
• SUBSET-SUM = {<S, k> : S is a multiset of integers, k

is an integer, and there exists some subset of S whose
elements sum to k}.

• SET-PARTITION = {<S> : S is a multiset of objects
each of which has an associated cost and there exists
a way to divide S into two subsets, A and S - A, such
that the sum of the costs of the elements in A equals
the sum of the costs of the elements in S - A}.

• KNAPSACK = {<S, v, c> : S is a set of objects each of
which has an associated cost and an associated value,
v and c are integers, and there exists some way of
choosing elements of S (duplicates allowed) such that
the total cost of the chosen objects is at most c and
their total value is at least v}.

NP-Complete Languages

• TSP-DECIDE.

• HAMILTONIAN-PATH = {<G> : G is an undirected
graph and G contains a Hamiltonian path}.

• HAMILTONIAN-CIRCUIT = {<G> : G is an undirected
graph and G contains a Hamiltonian circuit}.

• CLIQUE = {<G, k> : G is an undirected graph with
vertices V and edges E, k is an integer, 1  k  |V|,
and G contains a k-clique}.

• INDEPENDENT-SET = {<G, k> : G is an undirected
graph and G contains an independent set of at least k
vertices}.

7/17/2018

46

NP-Complete Languages

• SUBGRAPH-ISOMORPHISM = {<G1, G2> :
G1 is isomorphic to some subgraph of G2}.

Two graphs G and H are isomorphic to each other iff
there exists a way to rename the vertices of G so that
the result is equal to H. Another way to think about
isomorphism is that two graphs are isomorphic iff their
drawings are identical except for the labels on the
vertices.

SUBGRAPH-ISOMORPHISM

7/17/2018

47

NP-Complete Languages

• BIN-PACKING = {<S, c, k> : S is a set of objects each
of which has an associated size and it is possible to
divide the objects so that they fit into k bins, each of
which has size c}.

BIN-PACKING

In three
dimensions:

7/17/2018

48

NP-Complete Languages

• SHORTEST-SUPERSTRING = {<S, k> : S is a set of
strings and there exists some superstring T such that
every element of S is a substring of T and T has
length less than or equal to k}.

SHORTEST-SUPERSTRING

Source: Wiley: Interactive Concepts in Biology

7/17/2018

49

Proving that L is NP-Complete
NPL1 NPL2 NPL3 NPL4 NPL...

L1

L2Theorem:

If:

L1 is NP-complete,

L1 P L2, and

L2 is in NP,

Then L2 is also NP-complete.

