e iia RN NS R
S R AR P ST AT

MA/CSSE 474
Theory of Computation

Enumerability
Reduction

More on Dovetailing

Dovetailing: Run multiple (possibly an infinite
number) of computations "in parallel".

SJi, j] represents step j of computation i.

S[1, 1]
S[2,1] S[1, 2]

S[3,1] S[2,2] S[1, 3]

S[4,1] S[3,2] S[2,3] S[1,4]

For every i and j, step SJi, j] will eventually
happen.

Enumeration

Enumerate means "list, in such a way that for any
element, it appears in the list within a finite amount of
time."

We say that Turing machine M enumerates the language
L iff, for some fixed state p of M:

L={w:(s, &)l (P, W)}

p" stands for "print"

Alanguage is Turing-enumerable iff there is a Turing
machine that enumerates it.

Another term that is often used is recursively
enumerable.

A Printing Subroutine

Let P be a Turing machine that enters state p and then
halts:

Examples of Enumeration

Yy | Y
=>PaR >PaPJRaRaRaP1P

What languages do M, and M, enumerate?

SD and Turing Enumerable

Theorem: Alanguage is SD iff it is Turing-enumerable.

Proof that Turing-enumerable implies SD: Let M be the
Turing machine that enumerates L. We convert M to a
machine M' that semidecides L:

1. Save input w on another tape.
2. Begin enumerating L. Each time an element of L is
enumerated, compare it to w. If they match, accept.

w

"""""""""""" g i

=107 — accepl

b e s W3, W, W)

M) M

The Other Way

Proof that SD implies Turing-enumerable:
If L c £*is in SD, then there is a Turing machine M that semidecides L.
A procedure E to enumerate all elements of L:

1. Enumerate all w € X* lexicographically.
e.g., & a, b, aa, ab, ba, bb, ...

2. As each is enumerated, use M to check it.

W3, W, Wy el? |—yes—bw

Problem with this?

The Other Way

Proof that SD implies Turing-enumerable:

If Lc 2*isin SD, then there is a Turing machine M that
semidecides L.

A procedure to enumerate all elements of L:

1. Enumerate all w € X* lexicographically.
2. As each string w; is enumerated:
1. Start up a copy of M with w; as its input.
2. Execute one step of each M, initiated so far,
excluding those that have previously halted.
3. Whenever an M; accepts, output w,.

Lexicographic Enumeration

M lexicographically enumerates L iff M enumerates the
elements of L in lexicographic order.

Alanguage L is lexicographically Turing-enumerable iff
there is a Turing machine that lexicographically
enumerates it.

Example: A"B"C" = {a"b"c": n > 0}

Lexicographic enumeration:

Lexicographically Enumerable =D

Theorem: Alanguage is in D iff it is lexicographically Turing-
enumerable.

Proof that D implies lexicographically TE: Let M be a Turing
machine that decides L. M' lexicographically generates the
strings in ¥* and tests each using M. It outputs those that
are accepted by M. Thus M' lexicographically enumerates L.

Proof, Continued

Proof that lexicographically Turing Enumerable implies D:
Let M be a Turing machine that lexicographically enumerates
L. Then, on input w, M' starts up M and waits until:
e M generates w (so M' accepts),
e M generates a string that comes after w (so M' rejects), or
e M halts (so M' rejects).

Thus M' decides L.

w? —————— accepl

= reject

No more 3,°s? > reject

IN ouT
Semideciding TM Reduction
Enumerable
Unrestricted grammar
Deciding TM Diagonalize
Lexic. enum Reduction
L and —L in SD

Context-Free
CF grammar ArBn Pumping
PDA Closure
Closure
Regular
Regular Expression a*b* Pumping

FSM Closure

OVERVIEW OF REDUCTION

i

- Reducing Decision Problem P, to
another Decision Problem P,

: éWe say that P1 is reducible to P, (written P, < P,) if
' ;93 « there is a Turing-computable function f that finds,
M & for an arbitrary instance | of P,, an instance f(l) of

o P,, and
‘&« fisdefined such that for every instance | of P,
i | is a yes-instance of P, if and only if

f(l) is a yes-instance of P,.

So P, < P, means "if we have a TM that decides
P,, then there is a TM that decides P,.

Example of Turing Reducibility

Let
* P,(n) ="Is the decimal integer n divisible by 47"
* P,(n) ="Is the decimal integer n divisible by 27"
« f(n) = n/2 (integer division, which is clearly

Turing computable)

' Then P,(n) is "yes" iff

: P,(n) is "yes" and P,(f(n)) is "yes" .

@ Thus P, is reducible to P,, and we write P, < P,

P, is clearly decidable (is the last digit an element of
{0, 2, 4, 6, 8} ?), so P, is decidable

i

e
&

- Reducing Language L, to L,

: Language L, (over alphabet %,) is
§ ' mapping reducible to language L,
(over alphabet X,) and we write L, < L, if

there is a Turing-computable function
f:Z* > Z," such that
Vx € X%, x e L, ifand only if f(x) € L,

Using reducibility

! :3 If P, is reducible to P,, then
§ | —IfP,is decidable, so is P,

— If P4 is not decidable, neither is P,.

' & The second part is the one that we
& will use most.

. Example of Reduction

o Compute a function (where x and y are unary
representations of integers)

multiply(x, y) =
1. answer := €.
2. Fori:=1to|y| do:
answer = concat (answer, X) .
3. Return answer.

e A
PR PRI 257 e L P

So we reduce multiplication to addition. (concatenation)

Using Reduction for Undecidability

Areduction R from language L, to language L, is one
or more Turing machines such that:

If there exists a Turing machine Oracle that decides (or
semidecides) L,,
then the TMs in R can be composed with Oracle
to build a deciding (or semideciding) TM for L,.

P < P’ means that P is reducible to P’'.

Using Reduction for Undecidability

(R is a reduction from L, to L,) A (L, is in D) — (L, is in D)

If (L, is in D) is false, then at least one of the two
antecedents of that implication must be false. So:

If (R is a reduction from L, to L,) is true
and (L1isin D) is false,
then (L, is in D) must be false.

Application: If L1 is a language that is known to not be in
D, and we can find a reduction from L1 to L2, then L2 is
also not in D.

10

Using Reduction for Undecidability

Showing that L, is not in D:

L, (knownnottobeinD) L;inD ButL, notinD
: | | |
L, (anew language whose ifL,in D L, notin D

decidability we are
trying to determine)

To Use Reduction for Undecidability

1. Choose a language L,:
o that is already known not to be in D, and
e show that L, can be reduced to L,.

2. Define the reduction R.
3. Describe the composition C of R with Oracle.

4. Show that C does correctly decide L, iff Oracle exists. We
do this by showing:
¢ R can be implemented by Turing machines,
«C |fs correct: Follow this outline in
e If X € L4, then C(x) accepts, and proofs that you

o If x ¢ L4, then C(x) rejects. submit.. We will see

Example: H,={<M>:TM M halts on &} many examplt_as in the
next few sessions.

11

Mapping Reductions

R L, is mapping reducible to L, (L, < L,) iff there exists

. some computable function f such that:

VxeX* (X € Ly o f(x) € L,).

;. ¢ To decide whether x is in L,, we transform it, using f,
% into a new object and ask whether that object is in L,.

. Example:

DecideNIM(x) = XOR-solve(transform(x))

show H,in SD but notin D

1. H.is in SD. T semidecides it:
T(<M>) =
1. Run M on .
2. Accept.

T accepts <M> iff M halts on ¢, so T semidecides

* Recall: "M halts on w" is a short way of saying
"M, when started with input w, eventually halts"

12

H, = {<M>: TM M halts on &}

2. Theorem: H, = {<M>: TM M halts on &} is not in D.

H, < H is intuitive, the other

Proof: by reduction from H: direction is not so obvious.

H = {<M, w>: TM M halts on input string w}
R
(?Oracle) H, {<M>:TM M halts on &}
R is a mapping reduction from H to H_:
R(<M, w>) =

1. Construct <M#>, where M#(x) operates as follows:
1.1. Erase the tape.

1.2. Write w on the tape and move the head to the left end.

1.3. Run M on w.
2. Return <M#>.

Proof, Continued

R(<M, w>) =
1. Construct <M#>, where M#(x) operates as follows:
1.1. Erase the tape.

1.2. Write w on the tape and move the head to the left end.

1.3. Run M on w.
2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) decides H:

e C is correct: M# ignores its own input. It halts on everything or
nothing. So:
e <M, w> € H: M halts on w, so M# halts on everything. In
particular, it halts on €. Oracle accepts.
e <M, w> ¢ H: M does not halt on w, so M# halts on nothing and
thus not on ¢. Oracle rejects.

13

