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MA/CSSE 474
Theory of Computation

Enumerability
Reduction

More on Dovetailing

Dovetailing: Run multiple (possibly an infinite 
number) of computations "in parallel". 

S[i, j] represents step j of computation i.

S[1, 1]
S[2, 1]    S[1, 2]
S[3, 1]    S[2, 2]   S[1, 3]
S[4, 1]    S[3, 2]   S[2, 3]   S[1, 4 ]
. . . 
For every i and j, step S[i, j]  will eventually 
happen.
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Enumerate means "list, in such a way that for any 
element, it appears in the list within a finite amount of 
time."

We say that Turing machine M enumerates the language 
L iff, for some fixed state p of M:

L = {w : (s, ) |-M* (p, w)}.

"p" stands for "print"

A language is Turing-enumerable iff there is a Turing 
machine that enumerates it.

Another term that is often used is recursively 
enumerable.

Enumeration

Let P be a Turing machine that enters state p and then 
halts:

A Printing Subroutine
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Examples of Enumeration

What languages do M1 and M2 enumerate?

Theorem: A language is SD iff it is Turing-enumerable.

Proof that Turing-enumerable implies SD: Let M be the 
Turing machine that enumerates L.  We convert M to a 
machine M' that semidecides L:

1. Save input w on another tape.
2. Begin enumerating L.  Each time an element of L is 

enumerated, compare it to w.  If they match, accept.

SD and Turing Enumerable
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Proof that SD implies Turing-enumerable:

If L  * is in SD, then there is a Turing machine M that semidecides L.

A procedure E to enumerate all elements of L:

1. Enumerate all w  * lexicographically.
e.g., , a, b, aa, ab, ba, bb, …

2. As each is enumerated, use M to check it. 

w3, w2, w1 L? yes          w
E

M

M'

Problem with this?

The Other Way

Proof that SD implies Turing-enumerable:

If L  * is in SD,  then there is a Turing machine M that 
semidecides L.

A procedure to enumerate all elements of L:

1. Enumerate all w  * lexicographically.
2. As each string wi is enumerated:

1. Start up a copy of M with wi as its input.
2. Execute one step of each Mi initiated so far, 

excluding those that have previously halted.
3. Whenever an Mi accepts, output wi.

The Other Way



5

M lexicographically enumerates L iff M enumerates the 
elements of L in lexicographic order.  

A language L is lexicographically Turing-enumerable iff 
there is a Turing machine that lexicographically 
enumerates it.

Example:  AnBnCn = {anbncn : n  0}

Lexicographic enumeration:

Lexicographic Enumeration

Theorem: A language is in D iff it is lexicographically Turing-
enumerable.

Proof that D implies lexicographically TE: Let M be a Turing 
machine that decides L. M' lexicographically generates the 
strings in * and tests each using M.  It outputs those that 
are accepted by M.  Thus M' lexicographically enumerates L.

Lexicographically Enumerable = D
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Proof that lexicographically Turing Enumerable implies D:
Let M be a Turing machine that lexicographically enumerates 
L.  Then, on input w, M' starts up M and waits until:
● M generates w (so M' accepts), 
● M generates a string that comes after w (so M' rejects), or 
● M halts (so M' rejects).  

Thus M' decides L.

Proof, Continued

IN SD OUT
Semideciding TM H  Reduction   
Enumerable
Unrestricted grammar

D
Deciding TM AnBnCn Diagonalize
Lexic. enum Reduction
L and L in SD 

Context-Free
CF grammar AnBn Pumping
PDA Closure
Closure

Regular
Regular Expression                  a*b* Pumping
FSM Closure

Language Summary
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OVERVIEW OF REDUCTION

Reducing Decision Problem P1 to 
another Decision Problem P2

We say that P1 is reducible to P2 (written P1  P2) if
• there is a Turing-computable function f that finds, 

for an arbitrary instance I of P1, an instance f(I) of 
P2, and 

• f is defined such that for every instance I of P1, 
I is a yes-instance of P1 if and only if 

f(I) is a yes-instance of P2.

So P1  P2 means "if we have a TM that decides 
P2, then there is a TM that decides P1.
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Example of Turing Reducibility

Let 

• P1(n) = "Is the decimal integer n divisible by 4?"

• P2(n) = "Is the decimal integer n divisible by 2?"

• f(n) = n/2 (integer division, which is clearly 
Turing computable)

Then P1(n) is "yes" iff 
P2(n) is "yes" and P2(f(n)) is "yes" .

Thus P1 is reducible to P2, and we write P1  P2.

P2 is clearly decidable (is the last digit an element of 
{0, 2, 4, 6, 8} ?), so P1 is decidable 

Reducing Language L1 to L2

• Language L1 (over alphabet 1) is 
mapping reducible to language L2

(over alphabet 2) and we write L1  L2 if

there is a Turing-computable function 
f : 1*  2* such that 

x  1*, x  L1 if and only if f(x)  L2



9

Using reducibility

• If P1 is reducible to P2, then
– If P2 is decidable, so is P1.

– If P1 is not decidable, neither is P2.

• The second part is the one that we 
will use most.

Example of Reduction

● Compute a function (where x and y are unary 
representations of integers)

multiply(x, y) = 
1. answer := ε.
2. For i := 1 to |y| do:

answer = concat (answer, x) .
3. Return answer.

So we reduce multiplication to addition. (concatenation)
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Using Reduction for Undecidability

A reduction R from language  L1 to language  L2 is one 
or more Turing machines such that: 

If there exists a Turing machine Oracle that decides (or 
semidecides) L2, 

then the TMs in R can be composed with Oracle
to build a deciding (or semideciding) TM for L1. 

P  P means that P is reducible to P. 

(R is a reduction from L1 to L2)  (L2 is in D)  (L1 is in D)

If (L1 is in D) is false, then at least one of the two 
antecedents of that implication must be false.  So:

If (R is a reduction from L1 to L2) is true
and  (L1 is in D) is false, 

then (L2 is in D) must be false.

Application: If L1 is a language that is known to not be in 
D, and we can find a reduction from L1 to L2, then L2 is 
also not in D.

Using Reduction for Undecidability
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Showing that L2 is not in D:

L1 (known not to be in D)      L1 in D          But L1 not in D

R

L2 (a new language whose   if L2 in D         L2 not in D
decidability we are
trying to determine)

Using Reduction for Undecidability

1. Choose a language L1:
● that is already known not to be in D, and  
● show  that L1 can be reduced to L2.

2. Define the reduction R.

3. Describe the composition C of R with Oracle.

4. Show that C does correctly decide L1 iff Oracle exists.  We 
do this by showing:
● R can be implemented by Turing machines,
● C is correct:
● If x  L1, then C(x) accepts, and
● If x  L1, then C(x) rejects.

To Use Reduction for Undecidability

Follow this outline in 
proofs that you 
submit..  We will see 
many examples in the 
next few sessions.

Example:  H = {<M> : TM M halts on }
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Mapping Reductions

L1 is mapping reducible to L2 (L1 M L2) iff there exists 
some computable function f such that:

x* (x  L1  f(x)  L2).

To decide whether x is in L1, we transform it, using f, 
into a new object and ask whether that object is in L2.

Example:

DecideNIM(x) = XOR-solve(transform(x))

1. H is in SD. T semidecides it:

T(<M>) = 
1. Run M on .
2. Accept.

T accepts <M> iff M halts on , so T semidecides 
H.

* Recall:  "M halts on w" is a short way of saying 
"M, when started with input w, eventually halts"

show H in SD but not in D
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2. Theorem: H =  {<M> : TM M halts on } is not in D.  

Proof: by reduction from H:

H = {<M, w> : TM M halts on input string w}

R 

(?Oracle) H {<M> : TM M halts on }

R is a mapping reduction from H to H:
R(<M, w>) = 

1. Construct <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape and move the head to the left end.
1.3. Run M on w.

2. Return <M#>.

H = {<M> : TM M halts on }

*

H ≤ H is intuitive, the other 
direction is not so obvious.

R(<M, w>) = 
1. Construct <M#>, where M#(x) operates as follows:

1.1. Erase the tape.
1.2. Write w on the tape and move the head to the left end.
1.3. Run M on w.

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) decides H:

● C is correct: M# ignores its own input.  It halts on everything or 
nothing.  So:
● <M, w>  H: M halts on w, so M# halts on everything.  In 
particular, it halts on .  Oracle accepts.
● <M, w>  H: M does not halt on w, so M# halts on nothing and 
thus not on .  Oracle rejects.

Proof, Continued


