

AL 4 1999	Does This Progra	m Always Halt?
	<pre>times3(x: positive integer) = while x ≠ 1 do: if x is even then x = x/2. else x = 3x + 1 times3(25) Lothar Collatz, 1937, conjectured that times3 halts for all positive integers n. Still an open problem. Paul Erdős: "Mathematics is not yet ready for such confusing, troubling, and hard problems." http://mathworld.wolfram.com/Collatz Problem.html</pre>	<pre>max = 100000 maxCount = 0 for i in range(1, max+1): current = i count = 0 while current != 1: count += 1 if current % 2 == 0: current /= 2 else: current = 3 * current + 1 print "%7d %7d" % (i, count) if count > maxCount: maxCount = count print "maxCount = ", maxCount</pre>

Collatz function example

27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, **9232**, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1

のためのため

Dovetailing	
We have an infinite number of calculations C1, C2, C3,, each of which may or may not halt. We want to enumerate the results of those that halt. A naive approach would be to run C1, then C2, The problem with this is that C1 may not halt, so we may never get to try C2.	
Solution: Run them in this order. Step 1 of C1 Step 2 of C1 Step 1 of C2 Step 3 of C1 Step 2 of C2 Step 1 of C3 Step 4 of C1 Step 3 of C2 Step 2 of C3 Step 1 of C4 Then if Ci halts after j steps, we are guaranteed to eventually get to that step.	

