
5/3/2018

1

TM Variations
Encoding a TM

(Universal Turing Machine)

MA/CSSE 474
Theory of Computation

Your Questions?
• Previous class days'

material

• Reading Assignments

• HW 14b problems
• Tuesday's exam
• Anything else

5/3/2018

2

Two Flavors of TMs

1. Recognize a language

2. Compute a function

Turing Machines as Language Recognizers

Let M = (K, , , , s, {y, n}).

● M accepts a string w iff (s, � w) |-M* (y, w) for some
string w (that includes an underlined character).

● M rejects a string w iff (s, � w) |-M* (n, w) for some
string w.

M decides a language L  * iff:
For any string w  * it is true that:

if w  L then M accepts w, and
if w  L then M rejects w.

A language L is decidable iff there is a Turing machine M
that decides it. In this case, we will say that L is in D.

5/3/2018

3

A Deciding Example
AnBnCn = {anbncn : n  0}

Example: � aabbcc� � � � � � � � �

Example: � aaccb� � � � � � � � �

Semideciding a Language

Let M be the input alphabet to a TM M. Let L  M*.

M semidecides L iff, for any string w  M*:

● w  L  M accepts w
● w  L  M does not accept w. M may either:

reject or
fail to halt.

A language L is semidecidable iff there is a Turing
machine that semidecides it. We define the set SD to
be the set of all semidecidable languages.

5/3/2018

4

Example of Semideciding
Let L = b*a(a  b)*

We can build M to semidecide L:

1. Loop
1.1 Move one square to the right. If the character under

the read head is an a, halt and accept.

In our macro language, M is:

Example of Deciding the same Language

L = b*a(a  b)*. We can also decide L:

Loop:
1.1 Move one square to the right.
1.2 If the character under the read/write head is

an a, halt and accept.
1.3 If it is � , halt and reject.

In our macro language, M is:

5/3/2018

5

TM that Computes a Function

Let M = (K, , , , s, {h}).

Define M(w) = z iff (s, � w) |-M* (h, � z).

Let    be M’s output alphabet.
Let f be any function from * to *.

M computes function f iff, for all w  *:

● If w is an input on which f is defined: M(w) = f(w).

● Otherwise M(w) does not halt.

A function f is recursive or computable iff there is a Turing
machine M that computes it and that always halts.

Note that this is different than our common use of recursive.

Notice that the
TM's function
computes with
strings (* to
*), not directly
with numbers.

Example of Computing a Function
Let  = {a, b}. Let f(w) = ww.

Input: � w� � � � � � Output: � ww�

Define the copy machine C:
� w� � � � � �  � w� w�

Also use the S machine:
� u� w�  � uw�

Then the machine to compute f is >C S L�

More details next slide

5/3/2018

6

Example of Computing a Function
Let  = {a, b}. Let f(w) = ww.

Input: � w� � � � � � Output: � ww�

Define the copy machine C:
� w� � � � � �  � w� w�

Then use the S machine:
� u� w�  � uw�

Then the machine to compute f is >C S L�

Computing Numeric Functions
For any positive integer k, the function valuek(n) returns the

nonnegative integer that is encoded, base k, by the string n.

For example:

● value2(101) = 5.

● value8(101) = 65.

TM M computes a function f from m to iff, for some k:

valuek(M(n1;n2;…nm)) = f(valuek(n1), … valuek(nm))

Note that the semicolon serves to
separate the representations of the
arguments

5/3/2018

7

Why Are We Working with Our Hands
Tied Behind Our Backs?

Turing machines Are more powerful than any of
the other formalisms we have
studied so far.


Turing machines Are a lot harder to work with than

all the real computers that are
available to us.


Why bother?

The very simplicity that makes it hard to program Turing machines
makes it possible to reason formally about what they can do. If we
can, once, show that everything a real computer can do can be
done (albeit clumsily) on a Turing machine, then we have a way to
reason about what real computers can do.

TURING MACHINE VARIATIONS

Multiple tracks

Multiple tapes

Non-deterministic

5/3/2018

8

Turing Machine Variations

There are many extensions we might like to make to our
basic Turing machine model. We can do this because:

We can show that every extended machine
has an equivalent* basic machine.

We can also place a bound on any change in the
complexity of a solution when we go from an extended
machine to a basic machine.

Some possible extensions:

● Multi-track tape.
● Multi-tape TM
● Nondeterministic TM

Recall that equivalent
means "accepts the same
language," or "computes
the same function."

Multiple-track tape

We would like to be able to have TM with a multiple-track
tape. On an n-track tape, Track i has input alphabet Σi

and tape alphabet Γi.

5/3/2018

9

Multiple-track tape

We would like to be able to have a TM with a multiple-
track tape. On an n-track tape, Track i has input
alphabet Σi and tape alphabet Γi.

We can simulate this with an ordinary TM.

A transition is based on the current state and the
combination of all of the symbols on all of the tracks of
the current "column".

Then Γ is the set of n-tuples of the form [γ1, …, γn],
where γ1  Γi. Σ is similar. The "blank" symbol is the n-
tuple [, …, ]. Each transition reads an n-tuple from
Γ, and then writes an n-tuple from Γ on the same
"square" before the head moves right or left.

Multiple Tapes

5/3/2018

10

Multiple Tapes

The transition function for a k-tape Turing machine:

((K-H) , 1 to (K , 1, {, , }
, 2 , 2, {, , }
, . , .
, . , .
, k) , k, {, , })

Input: initially all on tape 1, other tapes blank.
Output: what's left on tape 1, other tapes ignored.

Note: On each transition, any tape head is allowed to
stay where it is.

Example: Copying a String

5/3/2018

11

Example: Copying a String

Example: Copying a String

5/3/2018

12

Another Two Tape Example: Addition

Adding Tapes Does Not Add Power

Theorem: Let M = (K, , , , s, H) be a k-tape Turing
machine for some k > 1. Then there is a standard TM
M'= (K', ', ', ', s', H') where   ', and:

● On input x, M halts with output z on the first tape iff
M' halts in the same state with z on its tape.

● On input x, if M halts in n steps, M' halts in O(n2) steps.

Proof: By construction.

5/3/2018

13

The Representation

Alphabet ( ') of M' =   (  {0, 1})k:

� , a, b, (� , 1, � , 1), (a, 0, � ,0), (b, 0, � , 0), …

The Operation of M'

1. Set up the multitrack tape.
2. Simulate the computation of M until (if) M would halt:

2.1 Scan left and store in the state the k-tuple of characters
under the read heads.
Move back right.

2.2 Scan left and update each track as required by the
transitions of M. If necessary, subdivide a new (formerly
blank) square into tracks.
Move back right.

3. When M would halt, reformat the tape to throw away all but track 1,
position the head correctly, then go to M’s halt state.

5/3/2018

14

How Many Steps Does M' Take?

Let: w be the input string, and
n be the number of steps it takes M to execute.

Step 1 (initialization): O(|w|).

Step 2 (computation):
Number of passes = n.
Work at each pass: 2.1 = 2  (length of tape).

= 2  (|w| + n).
2.2 = 2  (|w| + n).

Total: O(n  (|w| + n)).

Step 3 (clean up): O(length of tape).

Total: O(n  (|w| + n)).
= O(n2). *

* assuming that n ≥ w

Universal Turing Machine

5/3/2018

15

The Universal Turing Machine

Problem: All our machines so far are hardwired.

ENIAC - 1945

The Universal Turing Machine

Problem: All our machines so far are hardwired.

Question: Can we build a programmable TM that accepts
as input:

program input string

executes the program on that input, and outputs:

output string

5/3/2018

16

The Universal Turing Machine

Yes, it’s called the Universal Turing Machine.

To define the Universal Turing Machine U we need to:

1. Define an encoding scheme for TMs.

2. Describe the operation of U when it is given input
<M, w>, the encoding of:

● a TM M, and

● an input string w.

Encoding the States

• Let i be log2(|K|).
Each state is encoded by a letter and a string of i binary
digits.

• Number the states from 0 to |K|-1 in binary:
 The start state, s, is numbered 0.
 Number the other states in any order.

• If t is the binary number assigned to state t, then:
 If t is the halting state y, assign it the string yt.
 If t is the halting state n, assign it the string nt.
 If t is the halting state h, assign it the string ht.
 If t is any other state, assign it the string qt.

5/3/2018

17

Example of Encoding the States

Suppose M has 9 states.

i = 4

s = q0000,

Remaining states (suppose that y is 3 and n is 4):

q0001 q0010 y0011 n0100
q0101 q0110 q0111 q1000

Encoding a Turing Machine M, Continued

The tape alphabet:

Let j be log2(| Γ |).
Each tape alphabet symbol is encoded as
ay for some y  {0, 1}+, |y| = j

The blank symbol gets the j-character
representation of 0

Example: Γ = { � , a, b, c }. j = 2.

� = a00
a = a01
b = a10
c = a11

5/3/2018

18

The transitions: (state, input, state, output, move)

Example: (q000, a000, q110, a000, )

Specify s as q000.

Specify H.

Encoding a Turing Machine M, Continued

We will treat this as a special case:

A Special Case

5/3/2018

19

An Encoding Example
Consider M = ({ s, q, h }, { a, b, c }, { � , a, b, c }, , s, { h }):

<M> = (q00,a00,q01,a00,), (q00,a01,q00,a10,),
(q00,a10,q01,a01,), (q00,a11,q01,a10,),
(q01,a00,q00,a01,), (q01,a01,q01,a10,),
(q01,a10,q01,a11,), (q01,a11,h10,a01,)

state symbol 

s � (q, � , )

s a (s, b, )

s b (q, a, )

s c (q, b, )

q � (s, a,)

q a (q, b, )

q b (q, b, )

q c (h, a, )

state/symbol representation

s q00

q q01

h h10

� a00

a a01

b a10

c a11

Decision
problem:
Given a string
w, is there a
TM M such
that w=<M> ?

Is this
problem
decidable?

