MA/CSSE 474 Theory of Computation

More about Ambiguity Removal
Normal Forms (Chomsky and Greibach)

Pushdown Automata (PDA) Intro

PDA examples

Continue with Ambiguity Removal

- Remove ε-rules (done last time)
- Eliminate symmetric rules to control precedence and association
- Deal with optional suffixes, such as if ... else ...

Recap: An Example

```
\(G=\{\{\mathrm{S}, T, A, B, C, \mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, R, \mathrm{~S})\),
\(R=\{S \rightarrow \mathrm{a} T \mathrm{a}\)
        \(T \rightarrow A B C\)
        \(A \rightarrow \mathrm{a} A \mid C\)
        \(B \rightarrow B b \mid C\)
        \(C \rightarrow \mathrm{C} \mid \varepsilon\}\)
```

Recall:
After this
algorithm runs, $\left.L\left(G^{\prime}\right)=L(G)-\{\varepsilon\}\right)$
removeEps(G: cfg) =

1. Let $G^{\prime}=G$.
2. Find the set N of nullable nonterminals in G^{\prime}.
3. Repeat until G^{\prime} contains no modifiable rules that haven't been processed:
Given the rule $P \rightarrow \alpha Q \beta$, where $Q \in N$, add the rule $P \rightarrow \alpha \beta$
if it is not already present and if $\alpha \beta \neq \varepsilon$ and if $P \neq \alpha \beta$.
4. Delete from G^{\prime} all rules of the form $X \rightarrow \varepsilon$.
5. Return G^{\prime}.

What lf $\varepsilon \in L$?

atmostoneEps(G: cfg) =

1. $G^{\prime \prime}=$ removeEps(G).
2. If S_{G} is nullable then
/* i. e., $\varepsilon \in L(G)$
2.1 Create in $G^{\prime \prime}$ a new start symbol S^{*}.
2.2 Add to $R_{G^{\prime \prime}}$ the two rules:

$$
\begin{aligned}
& S^{*} \rightarrow \varepsilon \\
& S^{*} \rightarrow S_{G} .
\end{aligned}
$$

3. Return $G^{\prime \prime}$.

But There Can Still Be Ambiguity

$$
\begin{array}{ll}
S^{*} \rightarrow \varepsilon & \text { What about }()()() ? \\
S^{*} \rightarrow S & \\
S \rightarrow S S & \\
S \rightarrow(S) & \\
S \rightarrow() &
\end{array}
$$

Eliminating Symmetric Recursive Rules

$$
\begin{aligned}
& S^{*} \rightarrow \varepsilon \\
& S^{*} \rightarrow S \\
& S \rightarrow S S \\
& S \rightarrow(S) \\
& S \rightarrow()
\end{aligned}
$$

Replace $S \rightarrow S S$ with one of:

$$
\begin{array}{ll}
S \rightarrow S S_{1} & /^{*} \text { force branching to the left } \\
S \rightarrow S_{1} S & /^{*} \text { force branching to the right }
\end{array}
$$

So we get:

$$
\begin{array}{ll}
S^{*} \rightarrow \varepsilon & S \rightarrow S S_{1} \\
S^{*} \rightarrow S & S \rightarrow S_{1} \\
& S_{1} \rightarrow(S) \\
& S_{1} \rightarrow()
\end{array}
$$

Eliminating Symmetric Recursive Rules

Arithmetic Expressions

$$
\begin{aligned}
& E \rightarrow E+E \\
& E \rightarrow E * E \\
& E \rightarrow(E) \\
& E \rightarrow \text { id }
\end{aligned}
$$

Problem 1: Associativity

Arithmetic Expressions

$$
\begin{aligned}
& E \rightarrow E+E \\
& E \rightarrow E * E \\
& E \rightarrow(E) \\
& E \rightarrow \text { id }
\end{aligned}
$$

Problem 2: Precedence

Arithmetic Expressions - A Better Way

$$
\begin{aligned}
& E \rightarrow E+T \\
& E \rightarrow T \\
& T \rightarrow T^{*} F \\
& T \rightarrow F \\
& F \rightarrow(E) \\
& F \rightarrow \text { id }
\end{aligned}
$$

Ambiguous Attachment

The dangling else problem:
<stmt> ::= if <cond> then <stmt>
<stmt> ::= if <cond> then <stmt> else <stmt>
Consider:
if cond $_{1}$ then if cond ${ }_{2}$ then st $_{1}$ else st $_{2}$

The Java Fix

$\begin{aligned} & \text { <Statement> }::=\text { <IfThenStatement> | <IfThenEIseStatement> | } \\ & \text { <|fThenElseStatementNoShort|f> }\end{aligned}$
<StatementNoShortlf> ::= <block> |
<IfThenElseStatementNoShortlf> | ...
<IfThenStatement> ::= if (<Expression>) <Statement>
<IfThenElseStatement> ::= if (<Expression>)
<StatementNoShortlf> else <Statement>
<IfThenElseStatementNoShortlf> ::=
if (<Expression>) <StatementNoShortlf> else <StatementNoShortfi>
<Statement>
<IfThenElseStatement>

Going Too Far (removing Ambiguity)

```
S }->NP V
NP }->\mathrm{ the Nominal | Nominal | ProperNoun | NP PP
Nominal }->\mathrm{ N|Adjs N
N->cat |girl|dogs|ball|chocolate|
        bat
ProperNoun }->\mathrm{ Chris|Fluffy
Adjs }->\mathrm{ Adj Adjs | Adj
Adj }->\mathrm{ young | older | smart
VP->V|VNP|VPPP
V like|likes|thinks|hits
PP }->\mathrm{ Prep NP
Prep }->\mathrm{ with
- Chris likes the girl with the cat.
- Chris shot the bear with a rifle.
```


Going Too Far

- Chris likes the girl with the cat.
- Chris shot the bear with a rifle.

- Chris shot the bear $\underbrace{\text { with a rifle. }}$

Normal Forms

A normal form F for a set C of data objects is a form, i.e., a set of syntactically valid objects, with the following two properties:

- For every element c of C, except possibly a finite set of special cases, there exists some element f of F such that f is equivalent to c with respect to some set of tasks.
- F is simpler than the original form in which the elements of C are written. By "simpler" we mean that at least some tasks are easier to perform on elements of F than they would be on elements of C.

Normal Form Examples

- Disjunctive normal form for database queries so that they can be entered in a query-byexample grid.
- Jordan normal form for a square matrix, in which the matrix is almost diagonal in the sense that its only non-zero entries lie on the diagonal and the superdiagonal.
- Various normal forms for grammars to support specific parsing techniques.

Normal Forms for Grammars

Greibach Normal Form, in which all rules are of the following form:

- $X \rightarrow a \beta$, where $a \in \Sigma$ and $\beta \in(V-\Sigma)^{*}$.

Advantages:

- Bounds on length of derivations (what are they?)
- Greibach normal form grammars can easily be converted to pushdown automata with no ε transitions. This is useful because such PDAs are guaranteed to halt.

Theorems: Normal Forms Exist

Theorem: Given a CFG G, there exists an equivalent Chomsky normal form grammar G_{C} such that:

$$
L\left(G_{C}\right)=L(G)-\{\varepsilon\} .
$$

Proof: The proof is by construction.

Details of Chomsky
conversion are complex but
straightforward; I I leave
them for you to read in
Chapter 11 and/or in the last
18 slides from today.

Theorem: Given a CFG G, there exists an equivalent
Greibach normal form grammar G_{G} such that:

$$
L\left(G_{G}\right)=L(G)-\{\varepsilon\} .
$$

Proof: The proof is also by construction.

[^0]
The Price of Normal Forms

$$
\begin{aligned}
& E \rightarrow E+E \\
& E \rightarrow(E) \\
& E \rightarrow i d
\end{aligned}
$$

Converting to Chomsky normal form:

$$
\begin{aligned}
& E \rightarrow E E^{\prime} \\
& E^{\prime} \rightarrow P E \\
& E \rightarrow L E^{\prime \prime} \\
& E^{\prime \prime} \rightarrow E R \\
& E \rightarrow i d \\
& L \rightarrow(\\
& R \rightarrow) \\
& P \rightarrow+
\end{aligned}
$$

Conversion doesn't change weak generative capacity but it may change strong generative capacity.

Pushdown Automata

Comparing Regular and Context-Free Languages

Regular Languages Context-Free Languages

- regular exprs.
or
- regular grammars - context-free grammars
- recognize
- parse (use a PDA)

Definition of a Pushdown Automaton

$M=(K, \Sigma, \Gamma, \Delta, s, A)$, where:
K is a finite set of states
Σ is the input alphabet
Γ is the stack alphabet
Σ and Γ are not necessarily disjoint
$s \in K$ is the initial state
$A \subseteq K$ is the set of accepting states, and
Δ is the transition relation. It is a finite subset of

${ }^{(} \times \times$	$(\Sigma \cup\{\varepsilon\})$	Γ^{*})	K	Γ^{*})
state	input symbol or ε	string of	state	string of
		symbols		symbols
		to pop		to push
		from top		on stack

Definition of a Pushdown Automaton

A configuration of M is an element of $K \times \Sigma^{*} \times \Gamma^{*}$.

The initial configuration of M is
(s, w, ε), where w is the input string.

Manipulating the Stack

If $c_{1} c_{2} \ldots c_{n}$ is pushed onto the stack:

$c_{1} c_{2} \ldots c_{n} \mathrm{cab}$

Yields

Let c be any element of $\Sigma \cup\{\varepsilon\}$,
Let γ_{1}, γ_{2} and γ be any elements of Γ^{*}, and Let w be any element of Σ^{*}.

Then:
$\left(q_{1}, c w, \gamma_{1} \gamma\right) \vdash_{M}\left(q_{2}, w, \gamma_{2} \gamma\right)$ iff $\left(\left(q_{1}, c, \gamma_{1}\right),\left(q_{2}, \gamma_{2}\right)\right) \in \Delta$.
Let \vdash_{M} * be the reflexive, transitive closure of \vdash_{M}.
C_{1} yields configuration C_{2} iff $C_{1} \vdash_{M}{ }^{*} C_{2}$

Computations

A computation by M is a finite sequence of configurations C_{0}, C_{1}, \ldots, C_{n} for some $n \geq 0$ such that:

- C_{0} is an initial configuration,
- C_{n} is of the form (q, ε, γ), for some state $q \in K_{M}$ and some string γ in Γ^{*}, and
- $C_{0} r_{M} C_{1} r_{M} C_{2} r_{M} \ldots r_{M} C_{n}$.

Nondeterminism

If M is in some configuration $\left(q_{1}, s, \gamma\right)$ it is possible that:

- Δ contains exactly one transition that matches.
- Δ contains more than one transition that matches.
- Δ contains no transition that matches.

Accepting

A computation C of M is an accepting computation iff:

- $C=(s, w, \varepsilon) \vdash_{M}{ }^{*}(q, \varepsilon, \varepsilon)$, and
- $q \in A$.
M accepts a string w iff at least one of its computations accepts.
Other paths may:
- Read all the input and halt in a nonaccepting state,
- Read all the input and halt in an accepting state with the stack not empty,
- Loop forever and never finish reading the input, or
- Reach a dead end where no more input can be read.

The language accepted by M, denoted $L(M)$, is the set of all strings accepted by M.

Rejecting

A computation C of M is a rejecting computation iff:

- $C=(s, w, \varepsilon) \mid \vdash_{M}{ }^{*}(q, \varepsilon, \alpha)$,
- C is not an accepting computation, and
- M has no moves that it can make from (q, ε, α).
M rejects a string w iff all of its computations reject.

Note that it is possible that, on input w, M neither accepts nor rejects.

Details of CNF conversion

- The remainder of the slides give an overview.
- More details are in Chapter 11.
- We will not cover these details in class.

Converting to a Normal Form

1. Apply some transformation to G to get rid of undesirable property 1 . Show that the language generated by G is unchanged.
2. Apply another transformation to G to get rid of undesirable property 2. Show that the language generated by G is unchanged and that undesirable property 1 has not been reintroduced.
3. Continue until the grammar is in the desired form.

Rule Substitution

$$
\begin{aligned}
& X \rightarrow a Y c \\
& Y \rightarrow b \\
& Y \rightarrow Z Z
\end{aligned}
$$

We can replace the X rule with the rules:

$$
\begin{aligned}
& X \rightarrow \mathrm{abc} \\
& X \rightarrow \mathrm{aZZc}
\end{aligned}
$$

$$
X \Rightarrow \mathrm{a} Y \mathrm{c} \Rightarrow \mathrm{aZZc}
$$

\qquad

Rule Substitution

Theorem: Let G contain the rules:

$$
X \rightarrow \alpha Y \beta \quad \text { and } \quad Y \rightarrow \gamma_{1}\left|\gamma_{2}\right| \ldots \mid \gamma_{n}
$$

Replace $X \rightarrow \alpha Y \beta$ by:

$$
X \rightarrow \alpha \gamma_{1} \beta, \quad X \rightarrow \alpha \gamma_{2} \beta, \quad \ldots, \quad X \rightarrow \alpha \gamma_{n} \beta
$$

The new grammar G^{\prime} will be equivalent to G.

Details of Conversion to CNF

- The rest of these slides summarize the CNF conversion
- More detail is given in Chapter 11 of the textbook
- We will not discuss this conversion process in class.

Rule Substitution

Replace $X \rightarrow \alpha Y \beta$ by:

$$
X \rightarrow \alpha \gamma_{1} \beta, \quad X \rightarrow \alpha \gamma_{2} \beta, \quad \ldots, X \rightarrow \alpha \gamma_{n} \beta
$$

Proof:

- Every string in $L(G)$ is also in $L\left(G^{\prime}\right)$:

If $X \rightarrow \alpha Y \beta$ is not used, then use same derivation.
If it is used, then one derivation is:
$S \Rightarrow \ldots \Rightarrow \delta X \phi \Rightarrow \delta \alpha Y \beta \phi \Rightarrow \delta \alpha \gamma_{k} \beta \phi \Rightarrow \ldots \Rightarrow w$
Use this one instead:

$$
S \Rightarrow \ldots \Rightarrow \delta X \phi \Rightarrow \quad \delta \alpha \gamma_{k} \beta \phi \Rightarrow \ldots \Rightarrow w
$$

- Every string in $L\left(G^{\prime}\right)$ is also in $L(G)$: Every new rule can be simulated by old rules.

Convert to Chomsky Normal Form

1. Remove all ε-rules, using the algorithm removeEps.
2. Remove all unit productions (rules of the form $A \rightarrow B$).
3. Remove all rules whose right hand sides have length greater than 1 and include a terminal:
(e.g., $A \rightarrow \mathrm{aB}$ or $A \rightarrow B a C$)
4. Remove all rules whose right hand sides have length greater than 2:
(e.g., $A \rightarrow B C D E$)

Recap: Removing ε-Productions

Remove all ε productions:
(1) If there is a rule $P \rightarrow \alpha Q \beta$ and Q is nullable,

Then: \quad Add the rule $P \rightarrow \alpha \beta$.
(2) Delete all rules $Q \rightarrow \varepsilon$.

Removing ε-Productions

Example:

$$
\begin{aligned}
& S \rightarrow \mathrm{aA} \\
& A \rightarrow B \mid C D C \\
& B \rightarrow \varepsilon \\
& B \rightarrow \mathrm{a} \\
& C \rightarrow B D \\
& D \rightarrow \mathrm{~b} \\
& D \rightarrow \varepsilon
\end{aligned}
$$

Unit Productions

A unit production is a rule whose right-hand side consists of a single nonterminal symbol.

Example:

$$
\begin{aligned}
& S \rightarrow X Y \\
& X \rightarrow A \\
& A \rightarrow B \mid \mathrm{a} \\
& B \rightarrow \mathrm{~b} \\
& Y \rightarrow T \\
& T \rightarrow Y \mid \mathrm{c}
\end{aligned}
$$

Removing Unit Productions

removeUnits $(G)=$

1. Let $G^{\prime}=G$.
2. Until no unit productions remain in G^{\prime} do:
2.1 Choose some unit production $X \rightarrow Y$.
2.2 Remove it from G^{\prime}.
2.3 Consider only rules that still remain. For every rule $Y \rightarrow \beta$, where $\beta \in V^{*}$, do:

Add to G ' the rule $X \rightarrow \beta$ unless it is a rule that has already been removed once.
3. Return G^{\prime}.

After removing epsilon productions and unit productions, all rules whose right hand sides have length 1 are in Chomsky Normal Form.

Removing Unit Productions

removeUnits $(G)=$

1. Let $G^{\prime}=G$.
2. Until no unit productions remain in G^{\prime} do:
2.1 Choose some unit production $X \rightarrow Y$.
2.2 Remove it from G'.
2.3 Consider only rules that still remain. For every rule $Y \rightarrow \beta$, where $\beta \in V^{*}$, do:

Add to G ' the rule $X \rightarrow \beta$ unless it is a rule that has already been removed once.
3. Return G^{\prime}.

Example: $\quad S \rightarrow X Y$
$X \rightarrow A$
$A \rightarrow B \mid \mathrm{a}$
$B \rightarrow \mathrm{~b}$
$Y \rightarrow T$
$T \rightarrow Y \mid \mathrm{C}$

Mixed Rules

removeMixed(G) =

1. Let $G^{\prime}=G$.
2. Create a new nonterminal T_{a} for each terminal a in Σ.
3. Modify each rule whose right-hand side has length greater than 1 and that contains a terminal symbol by substituting T_{a} for each occurrence of the terminal a.
4. Add to G, for each T_{a}, the rule $T_{a} \rightarrow a$.
5. Return G^{\prime}.

Example:
$A \rightarrow \mathrm{a}$
$A \rightarrow a B$
$A \rightarrow B a C$
$A \rightarrow B b C$

Long Rules

removeLong(G) =

1. Let $G^{\prime}=G$.
2. For each rule r of the form:

$$
A \rightarrow N_{1} N_{2} N_{3} N_{4} \ldots N_{n}, n>2
$$

create new nonterminals $M_{2}, M_{3}, \ldots M_{n-1}$.
3. Replace r with the rule $A \rightarrow N_{1} M_{2}$.
4. Add the rules:

$$
\begin{aligned}
& M_{2} \rightarrow N_{2} M_{3}, \\
& M_{3} \rightarrow N_{3} M_{4}, \ldots \\
& M_{n-1} \rightarrow N_{n-1} N_{n} .
\end{aligned}
$$

5. Return G '.

Example:
$A \rightarrow B C D E F$

An Example

$$
\begin{aligned}
& S \rightarrow \mathrm{aACa} \\
& A \rightarrow B \mid \mathrm{a} \\
& B \rightarrow C \mid \mathrm{c} \\
& C \rightarrow \mathrm{C} \mid \varepsilon
\end{aligned}
$$

removeEps returns:

$$
\begin{aligned}
& S \rightarrow a A C a|a A a| \mathrm{aCa} \mid \mathrm{aa} \\
& A \rightarrow B \mid \mathrm{a} \\
& B \rightarrow C \mid \mathrm{c} \\
& C \rightarrow \mathrm{c} \mid \mathrm{c}
\end{aligned}
$$

An Example

$$
\begin{aligned}
& S \rightarrow a A C a|a A a| a C a \mid a a \\
& A \rightarrow B \mid a \\
& B \rightarrow C \mid c \\
& C \rightarrow C \mid c
\end{aligned}
$$

Next we apply removeUnits:
Remove $A \rightarrow B$. Add $A \rightarrow C \mid c$.
Remove $B \rightarrow C$. Add $B \rightarrow c C(B \rightarrow c$, already there $)$.
Remove $A \rightarrow C$. Add $A \rightarrow c C(A \rightarrow C$, already there $)$.
So removeUnits returns:
$S \rightarrow$ aACa $|\mathrm{aAa}| \mathrm{aCa} \mid \mathrm{aa}$
$A \rightarrow \mathrm{a}|\mathrm{c}| \mathrm{c} C$
$B \rightarrow \mathrm{c} \mid \mathrm{cC}$
$C \rightarrow \mathrm{cC} \mid \mathrm{c}$

An Example

$$
\begin{aligned}
& S \rightarrow a A C a|a A a| a C a \mid a a \\
& A \rightarrow a|c| c C \\
& B \rightarrow c \mid c C \\
& C \rightarrow c C \mid c
\end{aligned}
$$

Next we apply removeMixed, which returns:

$$
\begin{aligned}
& S \rightarrow T_{\mathrm{a}} A C T_{\mathrm{a}}\left|T_{\mathrm{a}} A T_{\mathrm{a}}\right| T_{\mathrm{a}} C T_{\mathrm{a}} \mid T_{\mathrm{a}} T_{\mathrm{a}} \\
& A \rightarrow \mathrm{a}|\mathrm{C}| T_{\mathrm{c}} C \\
& B \rightarrow \mathrm{c} \mid T_{\mathrm{c}} C \\
& C \rightarrow T_{\mathrm{c}} C \mid \mathrm{C} \\
& T_{\mathrm{a}} \rightarrow \mathrm{a} \\
& T_{\mathrm{c}} \rightarrow \mathrm{c}
\end{aligned}
$$

An Example

$$
\begin{aligned}
& S \rightarrow T_{\mathrm{a}} A C T_{\mathrm{a}}\left|T_{\mathrm{a}} A T_{\mathrm{a}}\right| T_{\mathrm{a}} C T_{\mathrm{a}} \mid T_{\mathrm{a}} T_{\mathrm{a}} \\
& A \rightarrow \mathrm{a}|\mathrm{C}| T_{\mathrm{c}} C \\
& B \rightarrow \mathrm{c} \mid T_{\mathrm{c}} C \\
& C \rightarrow T_{\mathrm{c}} C \mid \mathrm{C} \\
& T_{\mathrm{a}} \rightarrow \mathrm{a} \\
& T_{\mathrm{c}} \rightarrow \mathrm{C}
\end{aligned}
$$

Finally, we apply removeLong, which returns:
$S \rightarrow T_{a} S_{1} \quad S \rightarrow T_{a} S_{3} \quad S \rightarrow T_{\mathrm{a}} \mathrm{S}_{4} \quad \mathrm{~S} \rightarrow T_{\mathrm{a}} T_{\mathrm{a}}$
$\mathrm{S}_{1} \rightarrow A \mathrm{~S}_{2} \quad \mathrm{~S}_{3} \rightarrow A T_{\mathrm{a}} \quad \mathrm{S}_{4} \rightarrow C T_{\mathrm{a}}$
$\mathrm{S}_{2} \rightarrow \mathrm{CT}_{\mathrm{a}}$
$A \rightarrow \mathrm{a}|\mathrm{c}| T_{\mathrm{c}} C$
$B \rightarrow \mathrm{c} \mid T_{\mathrm{c}} C$
$C \rightarrow T_{c} C \mid c$
$T_{\mathrm{a}} \rightarrow \mathrm{a}$
$T_{\mathrm{c}} \rightarrow \mathrm{c}$

[^0]: Details of Greibach conversion are more complex but still straightforward; I leave them for you to read in Appendix D if you wish (not req'd).

