

Al a moon of	Example: $\{a^n b^n : n \ge 0\}$ is not Regular <i>k</i> is the number from the Pumping Theorem. We don't get to choose it.		
	Choose <i>w</i> to be $a^{\lceil k/2 \rceil} b^{\lceil k/2 \rceil}$ ("long enough").		
	1 2 aaaaaaaaaabbbbbbbbbb x y z		
	Adversary chooses x , y , z with the required properties:		
	$ xy ≤ \kappa,$ <i>y</i> ≠ ε, We must show ∃ <i>q</i> ≥ 0 (<i>xy</i> ^q <i>z</i> ∉ <i>L</i>).	For each case, we must find at least one value of a that takes xy^{qz}	
	Three cases to consider:<i>y</i> entirely in region 1:	outside the language L. The most common g	
	• <i>y</i> partly in region 1, partly in 2:	values to use are q=0	
	• y entirely in region 2:	and q=2.	

- Bal = { $w \in \{$), (}* : the parens are balanced}
- PalEven = $\{ww^{R} : w \in \{a, b\}^{*}\}$

NY.

- $\{w \in \{a, b\}^* : \#_a(w) = \#_b(w)\}$ Hint: Use closure
- { $aba^nb^n : n \ge 0$ } Hint: Use closure

Emptiness and Finiteness

- Given an FSM M, is L(M) empty?
- Given an FSM *M*, is $L(M) = \Sigma_M^*$?

XXV.

- Given an FSM *M*, is *L*(*M*) finite?
- Given an FSM *M*, is *L*(*M*) infinite?
- Given two FSMs M_1 and M_2 , are they equivalent?

