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MA/CSSE 474
Theory of Computation

How many regular/non-regular 
languages are there?

Closure properties of Regular 
Languages

(if there is time) Pumping Theorem

Your Questions?
• Previous class days' 

material

• Reading Assignments

• HW 7 problems
• Anything else
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474 Difficulty Timeline
(my opinion, ymmv)

How Many Regular Languages? 

Theorem: The number of regular languages over any 
nonempty alphabet  is countably infinite .

Proof:
● Upper bound on number of regular languages: 

number of DFSMs (or regular expressions).

● Lower bound on number of regular languages: 

{a},{aa},{aaa},{aaaa},{aaaaa},{aaaaaa},… 

are all regular.  That set is countably infinite.  
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Are Regular or Nonregular 
Languages More Common? 

There is a countably infinite number of regular languages.

There is an uncountably infinite number of different 
languages over any nonempty alphabet .  

So there are many more nonregular languages than there 
are regular ones. 

Languages: Regular or Not?

Recall our intuition: 
a*b* is regular.       AnBn = {anbn: n  0} is not.

{w  {a, b}* : every a is immediately followed by b} 
is regular.  

{w  {a, b}* : every a has a matching b somewhere} 
is not.

How do we 
● show that a language is regular?

● show that a language is not regular?

List some ways 
for each
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Showing that a Language is Regular

Theorem: Every finite language L is regular.

Proof: If L is the empty set, then it is defined by the 
regular expression  and so is regular.  

If L is a nonempty finite language, composed of the 
strings  s1, s2, … sn for some positive integer n, 

then it is defined by the regular expression:
s1  s2  …  sn

So L is regular.  

Finiteness - Theoretical vs. Practical

Any finite language is regular.  The size of the language doesn't 
matter.

Parity Soc. Sec. #
Checking Checking

But, from an implementation point of view, it very well may.

When is an FSM a good way to encode the facts about a 
language?

FSM’s are good at looking for repeating patterns.  They don't 
bring much to the table when the language is just a set of 
unrelated strings.
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Regular Does Not Always Mean Tractable

Let  = {12, 13, 21, 23, 31, 32}.

Let L be the language of strings that correspond to 
successful move sequences.  The shortest string in L
has length 264 -1  *

There is an FSM that accepts L:

*See http://en.wikipedia.org/wiki/Tower_of_Hanoi, 
especially the recursive solution, which (as you can 
see by means of a simple recurrence relation) requires 
2n -1 moves if there are n disks

To Show that a Language L is 
Regular

We can do any of the following:

Construct a DFSM that accepts L.

Construct a NDFSM that accepts L.

Construct a regular expression that defines L.

Construct a regular grammar that generates L.

Show that there are finitely many equivalence classes 
under L.

Show that L is finite.

Use one or more closure properties.
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Closure Properties of Regular Languages

● Union

● Concatenation

● Kleene star

● Complement

● Intersection

● Difference

● Reverse

● Letter substitution 

The first three are easy:
definition of regular 
expressions.

We have done, 
complement, 
intersection, reverse.
Difference?

Read about Letter 
Substitution.

Closure of the Regular Languages  Under Intersection

Write this in terms of operations for which we have already 
proved regular language closure:

● Union
● Concatenation
● Kleene star
● Complementation 

L1  L2 =          

L1 L2

In HW5, you showed this 
directly using a DFSM 
construction.   Now we 
derive it form other 
closure properties 
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Closure of Regular Languages 
Under Difference

L1 - L2 = L1  L2

Don’t Try to Use Closure Backwards

One Closure Theorem:

If L1 and L2 are regular, then so is L =     L1  L2

But if L1  L2 is regular, what can we say about L1 and L2?

L = L1  L2

{ab} = {ab}  {a  b}*  (L1 and L2 are regular)

{ab} = {ab}  {anbn, n  0}  (they may not be regular)
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Don’t Try to Use Closure Backwards

Another Closure Theorem:

If L1 and L2 are regular, then so is L = L1 L2

But if L2 is not regular, what can we say about L?

L =    L1 L2

{abanbn : n  0} = {ab} {anbn : n  0} 

L(aaa*) = {a}* {ap: p is prime}

How to Show that a Language is Not Regular

Every regular language can be accepted by some FSM.

It can only use a finite amount of memory to record 
essential properties.

Example:
AnBn = {anbn, n  0}  is not regular
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Show that a Language is Not Regular

The only way to generate/accept an infinite language with 
a finite description is to use: 
• Kleene star (in regular expressions), or 
• cycles (in automata).  

This forces some kind of simple repetitive cycle within the 
strings.

Example:
ab*a generates aba, abba, abbba, abbbba, 
etc.

Example:
{an : n  1 is a prime number} is not regular. 

Exploiting the Repetitive Property

If an FSM with n states accepts at least one string of 
length  n, how many different strings does it accept?

L = bab*ab

b a b b b b a b
x y z

xy*z must be in L.

So L includes: baab, babab, babbab, babbbbbbbbbbab
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Theorem – Long Strings

Theorem: Let M = (K, , , s, A) be any DFSM.  If M
accepts any string of length |K| or greater, then that 
string will force M to visit some state more than once 
(thus traversing at least one loop).  

Proof: M must start in one of its states.  
Each time it reads an input character, it visits some 
state.  So, in processing a string of length n, M does a 
total of n + 1 state visits.  

If n+1 > |K|, then, by the pigeonhole principle, some 
state must get more than one visit.  

So, if n  |K|, then M must visit at least one state more 
than once.  

The Pumping Theorem* for Regular Languages

If L is regular, then every long string in L is "pumpable".  
Formally, if L is a language over Σ,
(L is regular) →
(k  1 such that

( strings w  L, 
(|w|  k  →

( x, y, z (w = xyz,
|xy|  k,
y  , and
q  0 (xyqz is in L))))))

• * a.k.a. "the pumping lemma".  
We will use the terms interchangeably.

• What if L has no strings whose lengths are greater 
than k?

Write this in 
contrapositive 
form.  Don't look 
ahead to the next 
slide yet.



1/7/2016

11

Using The Pumping Theorem to show that 
L is not Regular:

We use the contrapositive of the theorem: 
If some long enough string in L is not "pumpable", 
then L is not regular. 

What we need to show in order to show L non-regular:
(k  1 

( a string w  L
(|w|  k and 

( x, y, z ((w = xyz ∧ |xy|  k ∧ y  ) → 
 q  0 (xyqz ∉ L))))))

→ (L is not regular) .

Before our next class meeting:  
Be sure that you are convinced that this 
really is the contrapositive of the 
pumping theorem.  

Using The Pumping Theorem to show that 
L is not Regular:

We use the contrapositive of the theorem: 
If some long enough string in L is not "pumpable", 
then L is not regular. 

What we need to show in order to show L non-regular:
(k  1 

( a string w  L
(|w|  k and 

( x, y, z ((w = xyz ∧ |xy|  k ∧ y  ) → 
 q  0 (xyqz ∉ L))))))

→ L is not regular .
Before our next class meeting:  
Be sure that you are convinced that this 
really is the contrapositive of the 
pumping theorem.  
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A way to think of it: adversary argument
(following J.E. Hopcroft and J.D.Ullman) 

Given the language L you want to prove non-regular:
1. The "adversary" picks k, the constant mentioned in the 

theorem.  We must be prepared for any positive integer 
to be picked, but once it is chosen, the adversary cannot 
change it.

2. We select a string wL (whose length is at least k) that 
cannot be "pumped".

3. The adversary breaks w into w=xyz, subject to the 
constraints |xy|  k and y  .  Our choice of w must take 
into account that any such x and y can be chosen.

4. We must (for possible each way w can be broken up into xyz) 
produce a single number q0 such that xyqz L.

Note carefully what we get to choose and 
what we do not get to choose.

Example: {anbn: n  0} is not Regular
k is the number from the Pumping Theorem.
We don't get to choose it.

Choose w to be ak/2bk/2 (“long enough”).

1 2
a a a a a … a a a a a b b b b … b b b b b b

x y z

Adversary chooses  x, y, z with the required properties:
|xy|  k, 
y  ,

We must show ∃ q  0 (xyqz ∉ L).

Three cases to consider:
● y entirely in region 1:

● y partly in region 1, partly in 2:

● y entirely in region 2: 

For each case, we must find at 
least one value of q that takes 
xyqz outside the language L. 

The most common q values to 
use are q=0 and q=2.
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A Complete Proof
We prove that L = {anbn: n  0} is not regular

If L were regular, then there would exist some k such that any string w where 
|w|  k must satisfy the conditions of the theorem.  Let w = ak/2bk/2.  
Since |w|  k, w must satisfy the conditions of the pumping theorem.  So, 
for some x, y, and z, w = xyz, |xy|  k, y  , and q  0, xyqz is in L.  We 
show that no such x, y, and z exist.  There are 3 cases for where y could 
occur:  We divide w into two regions:

aaaaa…..aaaaaa | bbbbb…..bbbbbb
1            |              2                

So y can fall in:
● (1):  y = ap for some p.  Since y  , p must be greater than 0.  Let q = 2.  

The resulting string is ak+pbk.   But this string is not in L, since it has 
more a’s than b’s.    

● (2):  y = bp for some p.  Since y  , p must be greater than 0.  Let q = 2.  
The resulting string is akbk+p.   But this string is not in L, since it has 
more b’s than a’s.  

● (1, 2):  y = apbr for some non-zero p and r.  Let q = 2.  The resulting 
string will have interleaved a’s and b’s, and so is not in L.

There exists one long string in L for which no pumpable  x, y, z exist.  So L is 
not regular.

What You Should Write (read these details later)
We prove that L = {anbn: n  0} is not regular

Let w = ak/2bk/2.  (If not completely obvious, as in this case, show that w is in fact 
in L.)

aaaaa…..aaaaaa| bbbbb…..bbbbbb
1 |              2

There are three possibilities for y:
● (1):  y = ap for some p.  Since y  , p must be greater than 0.  Let q = 2.  

The resulting string is ak+pbk.   But this string is not in L, since it has 
more a’s than b’s.  .  

● (2):  y = bp for some p.  Since y  , p must be greater than 0.  Let q = 2.  
The resulting string is akbk+p.   But this string is not in L, since it has 
more b’s than a’s.  

● (1, 2):  y = apbr for some non-zero p and r.  Let q = 2.  The resulting 
string will have interleaved a’s and b’s, and so is not in L.

Thus L is not regular.
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Example: {anbn: n  0} is not Regular
k is the number from the Pumping Theorem.
We don't get to choose it.

Choose w to be ak/2bk/2 (“long enough”).

1 2
a a a a a … a a a a a b b b b … b b b b b b

x y z

Adversary chooses  x, y, z with the required properties:
|xy|  k, 
y  ,

We must show ∃ q  0 (xyqz ∉ L).

Three cases to consider:
● y entirely in region 1:

● y partly in region 1, partly in 2:

● y entirely in region 2: 

For each case, we must 
find at least one value 
of q that takes xyqz
outside the language L. 

The most common q 
values to use are q=0 
and q=2.

A Complete Proof
We prove that L = {anbn: n  0} is not regular

If L were regular, then there would exist some k such that any string w where |w|  k must satisfy 
the conditions of the theorem.  Let w = ak/2bk/2.  Since |w|  k, w must satisfy the conditions 
of the pumping theorem.  So, for some x, y, and z, w = xyz, |xy|  k, y  , and q  0, xyqz is 
in L.  We show that no such x, y, and z exist.  There are 3 cases for where y could occur:  We 
divide w into two regions:

aaaaa…..aaaaaa| bbbbb…..bbbbbb
1      |              2                

So y can fall in:
● (1):  y = ap for some p.  Since y  , p must be greater than 0.  Let q = 2.  

The resulting string is ak+pbk.   But this string is not in L, since it has 
more a’s than b’s.    

● (2):  y = bp for some p.  Since y  , p must be greater than 0.  Let q = 2.  
The resulting string is akbk+p.   But this string is not in L, since it has 
more b’s than a’s.  

● (1, 2):  y = apbr for some non-zero p and r.  Let q = 2.  The resulting 
string will have interleaved a’s and b’s, and so is not in L.

There exists one long string in L for which no pumpable x, y, z exist.  So L is not regular.
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What You Should Write 
(read these details later)

We prove that L = {anbn: n  0} is not regular

Let w = ak/2bk/2.  (If not completely obvious, as in this case, show that w is in fact in L.)

aaaaa…..aaaaaa| bbbbb…..bbbbbb
1 |              2

There are three possibilities for y:
● (1):  y = ap for some p.  Since y  , p must be greater than 0.  Let q = 2.  

The resulting string is ak+pbk.   But this string is not in L, since it has 
more a’s than b’s.  .  

● (2):  y = bp for some p.  Since y  , p must be greater than 0.  Let q = 2.  
The resulting string is akbk+p.   But this string is not in L, since it has 
more b’s than a’s.  

● (1, 2):  y = apbr for some non-zero p and r.  Let q = 2.  The resulting 
string will have interleaved a’s and b’s, and so is not in L.

Thus L is not regular.

A better choice for w 

Second try.  A choice of w that makes it easier:

Choose w to be akbk

(We get to choose any w whose length is at least k).

1                               2
a a a a a … a a a a a | b b b b … b b b b b b

x y z
We show that there is no x, y, z with the required properties:

|xy|  k, 
y  ,
 q  0 (xyqz is in L).

Since |xy|  k, y must be in region 1.  So y = ap for some p  1.  
Let q = 2, producing:

ak+pbk

which  L, since it has more a’s than b’s.

We only have to find 
one q that takes us 
outside of L.
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Recap: Using the Pumping Theorem

If L is regular, then every “long” string in L is pumpable.

To show that L is not regular, we find one long string that 
isn’t.

I.e., to use the Pumping Theorem to show that a 
language L is not regular, we must:

1. Choose a string w where |w|  k. Since we do not 
know what k is, we must describe w in terms of k.

2. Divide the possibilities for y into a set of equivalence 
classes that can be considered together. 

3. For each such class of possible y values where |xy|  k
and y  :

Choose a value for q such that xyqz is not in L. 


