

Theorem: Every finite language L is regular.

Proof: If *L* is the empty set, then it is defined by the regular expression \emptyset and so is regular.

If L is a nonempty finite language, composed of the strings $s_1, s_2, ..., s_n$ for some positive integer *n*, then it is defined by the regular expression: $s_1 \cup s_2 \cup ... \cup s_n$

So L is regular.

XX

「「たちに

Closure of Regular Languages Under Difference

$$L_1 - L_2 = L_1 \cap \neg L_2$$

0.0

Alla	Example: {a ^{<i>n</i>} b ^{<i>n</i>} : <i>n</i> ≥ 0} is not Regular		
······································	<i>k</i> is the number from the Pumping Theorem. We don't get to choose it.		
000	Choose w to be $a^{\lceil k/2 \rceil} b^{\lceil k/2 \rceil}$ ("long enough").		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Adversary chooses x, y, z with the required properties:		
	$ xy \le k$, $y \ne \varepsilon$, We must show $\exists q \ge 0$ ($xy^q z \notin L$). For each case, we must find at least one value of q that takes $xy^q z$ outside the language L.		
	 Three cases to consider: <i>y</i> entirely in region 1: <i>y</i> entirely a region 1: <i>y</i> entirely a region 1: 		
1.1.1	 y partly in region 1, partly in 2: 		
	• y entirely in region 2:		

R	A Complete Proof
豪	We prove that $L = \{a^n b^n: n \ge 0\}$ is not regular
	If <i>L</i> were regular, then there would exist some <i>k</i> such that any string <i>w</i> where $ w \ge k$ must satisfy the conditions of the theorem. Let $w = a^{\lceil k/2 \rceil} b^{\lceil k/2 \rceil}$. Since $ w \ge k$, <i>w</i> must satisfy the conditions of the pumping theorem. So, for some <i>x</i> , <i>y</i> , and <i>z</i> , $w = xyz$, $ xy \le k$, $y \ne \varepsilon$, and $\forall q \ge 0$, xy^qz is in <i>L</i> . We show that no such <i>x</i> , <i>y</i> , and <i>z</i> exist. There are 3 cases for where <i>y</i> could occur: We divide <i>w</i> into two regions:
	aaaaaaaaaaa bbbbbbbbbbb 1 2
	 So y can fall in: (1): y = a^p for some p. Since y ≠ ε, p must be greater than 0. Let q = 2. The resulting string is a^{k+p}b^k. But this string is not in L, since it has more a's than b's. (2): y = b^p for some p. Since y ≠ ε, p must be greater than 0. Let q = 2. The resulting string is a^kb^{k+p}. But this string is not in L, since it has more b's than a's. (1, 2): y = a^pb^r for some non-zero p and r. Let q = 2. The resulting string will have interleaved a's and b's, and so is not in L.
	There exists one long string in <i>L</i> for which no pumpable <i>x</i> , <i>y</i> , <i>z</i> exist. So <i>L</i> is not regular.

	A Complete Proof
1	We prove that $L = \{a^n b^n : n \ge 0\}$ is not regular
	If <i>L</i> were regular, then there would exist some <i>k</i> such that any string <i>w</i> where $ w \ge k$ must satisfy the conditions of the theorem. Let $w = a^{\lceil k/2 \rceil} b^{\lceil k/2 \rceil}$. Since $ w \ge k$, <i>w</i> must satisfy the conditions of the pumping theorem. So, for some <i>x</i> , <i>y</i> , and <i>z</i> , $w = xyz$, $ xy \le k$, $y \ne \varepsilon$, and $\forall q \ge 0$, $xy^q z$ is in <i>L</i> . We show that no such <i>x</i> , <i>y</i> , and <i>z</i> exist. There are 3 cases for where <i>y</i> could occur: We divide <i>w</i> into two regions:
	aaaaaaaaaaa bbbbbbbbbbb
	1 2
	 So y can fall in: (1): y = a^p for some p. Since y ≠ ε, p must be greater than 0. Let q = 2. The resulting string is a^{k+p}b^k. But this string is not in L, since it has more a's than b's. (2): y = b^p for some p. Since y ≠ ε, p must be greater than 0. Let q = 2. The resulting string is a^kb^{k+p}. But this string is not in L, since it has more b's than a's. (1, 2): y = a^pb^r for some non-zero p and r. Let q = 2. The resulting string will have interleaved a's and b's, and so is not in L.
	There exists one long string in L for which no pumpable x, y, z exist. So L is not regular.
A	

A better choice for w
Second try. A choice of w that makes it easier: Choose w to be $a^{k}b^{k}$ (We get to choose any w whose length is at least k). 1 2 $a a a a a a a a a a a a b b b b b b b b b b x y zWe show that there is no x, y, z with the required properties: xy \le k,y \ne \varepsilon,\forall q \ge 0 (xy^{q}z is in L).$
Since $ xy \le k$, y must be in region 1. So $y = a^p$ for some $p \ge 1$. Let $q = 2$, producing: $a^{k+p}b^k$ which $\notin L$, since it has more a's than b's. We only have to find one q that takes us outside of L.

