

To Show that a Language L is Regular

We can do any of the following:

SX SX

Construct a DFSM that accepts L. Construct a NDFSM that accepts L. Construct a regular expression that defines L. Construct a regular grammar that generates L. Show that there are finitely many equivalence classes for \approx_{L} . Show that L is finite.

Use one or more of the closure properties.

Don't Try to Use Closure BackwardsAnother Closure Theorem:If L_1 and L_2 are regular, then so is $L = L_1 \ L_2$ But if L_2 is not regular, what can we say about L? $L = \ L_1 \ L_2$ $\{aba^nb^n : n \ge 0\} = \{ab\} \{a^nb^n : n \ge 0\}$ $L(aaa^*) = \{a\}^* \{a^p: p \text{ is prime}\}$

NA 1999 19	Example: $\{a^n b^n : n \ge 0\}$ is not Regular <i>k</i> is the number from the Pumping Theorem. We don't get to choose it.		
	Choose <i>w</i> to be $a^{\lceil k/2 \rceil} b^{\lceil k/2 \rceil}$ ("long enough").		
	1 2 aaaaa aaaaabbbb bbbbbb		
	x y	Z	
	Adversary chooses x, y, z with the required properties:		
	$y \neq \varepsilon$, $y \neq \varepsilon$, We must show $\exists q \ge 0$ ($xy^q z \notin L$).	For each case, we must find at least one value	
	Three cases to consider:<i>y</i> entirely in region 1:	outside the language L. The most common q	
	• <i>y</i> partly in region 1, partly in 2:	values to use are q=0	
	• y entirely in region 2:	and q=2.	

