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MA/CSSE 474
Theory of Computation

DFSM to RE,  Part 2
Closures

Pumping Theorem Intro

Your Questions?
• Previous class days' 

material

• Reading Assignments

• HW 6 or 7 problems
• Exam 1 questions
• Anything else
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Recap: Kleene’s Theorem
Finite state machines and regular expressions define 
the same class of languages.  

To prove this, we showed:

Theorem: Any language that can be defined by a
regular expression can be accepted by some FSM
and so is regular. Done Day 11.

Theorem: Every regular language (i.e., every language
that can be accepted by some DFSM) can be
defined with a regular expression. Done Day 12

Recap: DFSMReg. Exp. 
• Rijk is the set of all strings that take M from qi to qj without 

passing through any intermediate states numbered higher 
than k. 

It can be computed recursively:

• Base cases (k = 0):
– If i  j, Rij0 = {a : (qi, a) = qj}

– If i = j, Rii0 = {a : (qi, a) = qi}  {}

• Recursive case (k > 0):
Rijk is Rij(k-1)  Rik(k-1)(Rkk(k-1))*Rkj(k-1)

• We showed by induction that each Rijk is 
defined by some regular expression rijk.
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DFAReg. Exp. Proof pt. 3
• We showed by induction that each Rijk is 

defined by some regular expression rijk.

• In particular, for all qjA, there is a regular 
expression r1jn that defines R1jn.

• Then L(M) = L(r1j1n … r1jpn ), 

where A = {qj1
, …, qjp

}

An Example (rijk is rij(k-1)  rik(k-1)(rkk(k-1))*rkj(k-1))

Start            q1 q2 q3

0

0
1

1

0,1

k=0 k=1 k=2
r11k   (00)*

r12k 0 0 0(00)*

r13k 1 1 0*1

r21k 0 0 0(00)*

r22k    00 (00)*

r23k 1 1  01 0*1

r31k   (0  1)(00)*0

r32k 0  1 0  1 (0  1)(00)*

r33k    (0  1)0*1
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Aside: Regular Expressions in Perl
Syntax Name Description

abc Concatenation Matches a, then b, then c, where a, b, and c are any regexs

a | b | c Union (Or) Matches a or b or c, where a, b, and c are any regexs

a* Kleene star Matches 0 or more a’s, where a is any regex

a+ At least one Matches 1 or more a’s, where a is any regex

a? Matches 0 or 1 a’s, where a is any regex

a{n, m} Replication Matches at least n but no more than m a’s, where a is any regex

a*? Parsimonious Turns off greedy matching so the shortest match is selected

a+?  

. Wild card Matches any character except newline

^ Left anchor Anchors the match to the beginning of a line or string

$ Right anchor Anchors the match to the end of a line or string

[a-z] Assuming a collating sequence, matches any single character in range

[^a-z] Assuming a collating sequence, matches any single character not in range

\d Digit Matches any single digit, i.e., string in [0-9]

\D Nondigit Matches any single nondigit character, i.e., [^0-9]

\w Alphanumeric Matches any single “word” character, i.e., [a-zA-Z0-9]

\W Nonalphanumeric Matches any character in [^a-zA-Z0-9]

\s White space Matches any character in [space, tab, newline, etc.]

Syntax Name Description

\S Nonwhite space Matches any character not matched by \s

\n Newline Matches newline

\r Return Matches return

\t Tab Matches tab

\f Formfeed Matches formfeed

\b Backspace Matches backspace inside []

\b Word boundary Matches a word boundary outside []

\B Nonword boundary Matches a non-word boundary

\0 Null Matches a null character

\nnn Octal Matches an ASCII character with octal value nnn

\xnn Hexadecimal Matches an ASCII character with hexadecimal value nn

\cX Control Matches an ASCII control character

\char Quote Matches char; used to quote symbols such as . and \

(a) Store Matches a, where a is any regex, and stores the matched string in the next variable

\1 Variable Matches whatever the first parenthesized expression matched

\2 Matches whatever the second parenthesized expression matched

… For all remaining variables

Regular Expressions in Perl
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Examples
Email addresses

\b[A-Za-z0-9_%-]+@[A-Za-z0-9_%-]+(\.[A-Za-z]+){1,4}\b

WW
^([ab]*)\1$ 

Duplicate words
Find them

\b([A-Za-z]+)\s+\1\b 
Delete them

$text =~ s/\b([A-Za-z]+)\s+\1\b/\1/g; 

How Many Regular Languages? 

• Given an alphabet, Σ, how many different languages 
over Σ?    How many of those languages are regular?

• Background: since 
- Σ is finite, 
- each string in Σ* is finite, and
- there is no limit to the length of the strings in Σ*,

the number of different strings in Σ* is countably infinite 
(think about how to enumerate them).

• Is the set of subsets of Σ* countable?  

• It suffices to work with Σ = {a}, a single-symbol alphabet.
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How Many Regular Languages? 

Theorem: The number of regular languages over any 
nonempty alphabet  is countably infinite .

Proof:
● Upper bound on number of regular languages: 

number of DFSMs (or regular expressions).

● Lower bound on number of regular languages: 

{a},{aa},{aaa},{aaaa},{aaaaa},{aaaaaa},… 

are all regular.  That set is countably infinite.  

Are Regular or Nonregular 
Languages More Common? 

There is a countably infinite number of regular 
languages.

There is an uncountably infinite number of 
languages over any nonempty alphabet .  

So there are many more nonregular languages than 
regular ones. 
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Languages: Regular or Not?
Recall our intuition: 
a*b* is regular.       AnBn = {anbn: n  0} is not.

{w  {a, b}* : every a is immediately followed by b} 
is regular.  

{w  {a, b}* : every a has a matching b somewhere} 
is not regular.

How do we 
● show that a language is regular?
● show that a language is not regular?

Showing that a Language is Regular

Theorem: Every finite language L is regular.

Proof: If L is the empty set, then it is defined by the 
regular expression  and so is regular.  

If L is a nonempty finite language, composed of the 
strings  s1, s2, … sn for some positive integer n, 
then it is defined by the regular expression:

s1  s2  …  sn
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Finiteness - Theoretical vs. Practical

Every finite language is regular.  
The size of the language doesn't matter.

Parity                                                                 Soc. Sec. #
Checking Checking

But, from an implementation point of view, it matters!.

When is an FSM a good way to encode the facts about a 
language?

FSM’s are good at looking for repeating patterns.  They 
don't help much when the language is just a set of 
unrelated strings.

To Show that a Language L is Regular

We can do any of the following:

Construct a DFSM that accepts L.

Construct a NDFSM that accepts L.

Construct a regular expression that defines L.

Construct a regular grammar that generates L.

Show that there are finitely many equivalence classes 
under L.

Show that L is finite.

Use one or more of the closure properties.
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Closure Properties of 
Regular Languages

● Union

● Concatenation

● Kleene Star

● Complement

● Intersection

● Difference

● Reverse

● Letter Substitution

The first three are easy:
definition of regular 
expressions.

We will give the ideas of how 
to do Complement and 
Reverse.

Intersection:  HW5, or ...

You should read about Letter 
Substitution.

Don’t Try to Use Closure Backwards

One Closure Theorem:

If L1 and L2 are regular, then so is 

L =     L1  L2

But if L1  L2 is regular, what can we say about L1 and L2?

L = L1  L2

ab = ab  (a  b)* (L1 and L2 are regular)

ab = ab  {anbn, n  0}     (may not be regular)
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Don’t Try to Use Closure Backwards

Another Closure Theorem:

If L1 and L2 are regular, then so is 

L = L1 L2

But if L2 is not regular, what can we say about L?

L =    L1 L2

{abanbn : n  0} = {ab} {anbn : n  0} 

L(aaa*) = {a}* {ap: p is prime}

Showing that a Language is Not Regular

Every regular language can be accepted 
by some FSM M.

M can only use a finite amount of memory 
to record essential properties.

Example:
AnBn = {anbn, n  0}  is not regular
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Showing that a Language is Not 
Regular

The only way to generate/accept an infinite language with a 
finite description is to use: 
• Kleene star (in regular expressions), or 
• cycles (in automata).  

This forces a simple repetitive cycle within the strings.

Example:
ab*a generates aba, abba, abbba, abbbba, etc.

Example:
{an : n  1 is a prime number} is not regular. 

Exploiting the Repetitive Property

If an FSM with n states accepts at least one string of 
length  n, how many strings does it accept?

L = bab*ab

b a b b b b a b
x y z

xy*z must be in L.

So L includes: baab, babab, babbab, 
babbbbbbbbbbab
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Theorem – Long Strings

Theorem: Let M = (K, , , s, A) be any DFSM.  If M accepts any 
string of length |K| or greater, then that string will force M to 
visit some state more than once (thus traversing at least one 
loop).  

Proof: M must start in one of its states.  
Each time it reads an input character, it visits some state.  So, 
in processing a string of length n, M does a total of 
n + 1 state visits.  

If n+1 > |K|, then, by the pigeonhole principle, some state 
must get more than one visit.  

So, if n  |K|, then M must visit at least one state more than 
once.  

The Pumping Theorem* for Regular Languages

If L is regular, then every long string in L is "pumpable".  
Formally, if L is regular, then 

k  1 such that
( strings w  L, 

(|w|  k  →
( x, y, z (w = xyz,

|xy|  k,
y  , and
q  0 (xyqz is in L)))))

• a.k.a. "the pumping lemma".  
We will use the terms interchangeably.

• What if L has no strings whose lengths are greater 
than k?

Write this 
in 
contraposi
tive form
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Use The Pumping Theorem to show that 
L is not Regular:

We use the contrapositive of the theorem: 
If some long enough string in L is not "pumpable", then L is 
not regular. 

What we need to show in order to show L non-regular:
(k  1 

( a string w  L
(|w|  k and 

( x, y, z ((w = xyz ∧ |xy|  k ∧ y  ) → 
 q  0 (xyqz ∉ L))))))

→ L is not regular .

Before our next class meeting:  
Be sure that you are convinced that this really is the contrapositive of the pumping 
theorem.  

1. Choose the language L you want to prove non-regular.

2. The "adversary" picks  k, the constant mentioned in the 
theorem.  We must be prepared for any positive 
integer to be picked, but once it is chosen, the 
adversary cannot change it.

3. We select a string wL (whose length is at least k) that 
cannot be "pumped".

4. The adversary breaks w into w=xyz, subject to the 
constraints |xy|  k and y  .  Our choice of w must 
take into account that any such x and y can be chosen.

5. All we must do is  produce a single number q  0 such 
that xyqz  L.

Note carefully what we get to choose and 
what we do not get to choose.

A way to think of it: adversary argument
(following J.E. Hopcroft and J.D.Ullman) 
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Example: {anbn: n  0} is not Regular
k is the number from the Pumping Theorem.
We don't get to choose it.

Choose w to be ak/2bk/2 (“long enough”).

1 2
a a a a a … a a a a a b b b b … b b b b b b

x y z

Adversary chooses  x, y, z with the required properties:
|xy|  k, 
y  ,

We must show ∃ q  0 (xyqz ∉ L).

Three cases to consider:
● y entirely in region 1:

● y partly in region 1, partly in 2:

● y entirely in region 2: 

For each case, we must 
find at least one value 
of q that takes xyqz
outside the language L. 

The most common q 
values to use are q=0 
and q=2.

A Complete Proof
We prove that L = {anbn: n  0} is not regular

If L were regular, then there would exist some k such that any string w where |w| 
 k must satisfy the conditions of the theorem.  Let w = ak/2bk/2.  Since |w| 
 k, w must satisfy the conditions of the pumping theorem.  So, for some x, 
y, and z, w = xyz, |xy|  k, y  , and q  0, xyqz is in L.  We show that no 
such x, y, and z exist.  There are 3 cases for where y could occur:  We divide 
w into two regions:

aaaaa…..aaaaaa | bbbbb…..bbbbbb
1            |              2                

So y can fall in:
● (1):  y = ap for some p.  Since y  , p must be greater than 0.  Let q = 2.  

The resulting string is ak+pbk.   But this string is not in L, since it has 
more a’s than b’s.    

● (2):  y = bp for some p.  Since y  , p must be greater than 0.  Let q = 2.  
The resulting string is akbk+p.   But this string is not in L, since it has 
more b’s than a’s.  

● (1, 2):  y = apbr for some non-zero p and r.  Let q = 2.  The resulting 
string will have interleaved a’s and b’s, and so is not in L.

There exists one long string in L for which no pumpable x, y, z exist.  So L is 
not regular.
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What You Should Write 
(read these details later)

We prove that L = {anbn: n  0} is not regular

Let w = ak/2bk/2.  (If not completely obvious, as in this case, show that w is in 
fact in L.)

aaaaa…..aaaaaa| bbbbb…..bbbbbb
1 |              2

There are three possibilities for y:
● (1):  y = ap for some p.  Since y  , p must be greater than 0.  Let q = 2.  

The resulting string is ak+pbk.   But this string is not in L, since it has 
more a’s than b’s.  .  

● (2):  y = bp for some p.  Since y  , p must be greater than 0.  Let q = 2.  
The resulting string is akbk+p.   But this string is not in L, since it has 
more b’s than a’s.  

● (1, 2):  y = apbr for some non-zero p and r.  Let q = 2.  The resulting 
string will have interleaved a’s and b’s, and so is not in L.

Thus L is not regular.

A better choice for w 
Second try.  A choice of w that makes it easier:

Choose w to be akbk

(We get to choose any w whose length is at least k).

1                               2
a a a a a … a a a a a b b b b  … b b b b b b

x y z
We show that there is no x, y, z with the required properties:

|xy|  k, 
y  ,
 q  0 (xyqz is in L).

Since |xy|  k, y must be in region 1.  So y = ap for some p  1.  Let q
= 2, producing:

ak+pbk

which  L, since it has more a’s than b’s.

We only have 
to find one q 
that takes us 
outside of L.
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Recap: Using the Pumping Theorem

If L is regular, then every “long” string in L is pumpable.

To show that L is not regular, we find one string  that isn’t.

To use the Pumping Theorem to show that a language L is 
not regular, we must:

1. Choose a string w where |w|  k. Since we do not know 
what k is, we must describe w in terms of k.

2. Divide the possibilities for y into a set of equivalence 
classes that can be considered together. 

3. For each such class of possible y values where |xy|  k
and y  :

Choose a value for q such that xyqz is not in L. 


