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MA/CSSE 474

Theory of Computation

Proofs of several things
(as much as we have time for) 

Your Questions?
• Previous class days' 

material

• Reading Assignments

• HW5 problems
• Tuesday's Exam
• Anything else
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My life these days

Luke Thomas 
Agapie
Born 3/18/2018
Grandchild #11

Example (continued)

L = { w{a, b}* : no two adjacent characters are the same }

Equivalence classes of L:
[1] []
[2] [a, aba, ababa, 
[3] [b, ab, bab, abab, …]
[4] [aa, abaa, ababb…]
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Lower bound on number of states

Theorem: Let M be a DFSM that accepts the regular 
language L. The number of states in M is greater than 
or equal to the number of equivalence classes of L.

Proof:
1. Suppose that the number of states in M were less 
than the number of equivalence classes of L.  

2. Then, by the pigeonhole principle, there must be at 
least one state q that "contains" strings from more 
than one equivalence classes of L. 

3. But then M’s future behavior on those strings will be 
identical, which is not consistent with the fact that they 
are in different equivalence classes of L.  

The Myhill-Nerode Theorem

Theorem: A language is regular iff the number of 
equivalence classes of L is finite.  

Proof: Show the two directions of the implication:

L regular  the number of equivalence 
classes of L is finite: If L is regular, then 

The number of equivalence classes of L is 
finite  L regular: If the cardinality of L is finite, 
then 
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NDFSMtoDFSM Correctness

We will probably not have time 
to finish this in class; 

we will do as much as we can.
Details are in the textbook 

(Appendix C)

The Algorithm ndfsmtodfsm
ndfsmtodfsm(M: NDFSM) =   

1. For each state q in KM do:
1.1 Compute eps(q).

2. s' = eps(s) 
3. Compute ': 

3.1 active-states = {s'}.
3.2 ' = .
3.3 While there exists some element Q of active-states for 

which ' has not yet been computed do:
For each character c in M do:

new-state = .
For each state q in Q do:

For each state p such that (q, c, p)   do:
new-state = new-state  eps(p).

Add the transition (q, c, new-state) to '.
If new-state  active-states then insert it.

4. K' = active-states.
5. A' = {Q  K' : Q  A   }.
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Correctness Proof of ndfsmtodfsm

To prove:

From any NDFSM M = (K, , , s, A), ndfsmtodfsm
constructs a DFSM M'= (K', , ', s', A'), which is 
equivalent to M.

K'  P(K)  (a.k.a. 2K)

s' = eps(s)

A' = {Q  K : Q  A  }

'(Q, a) =  {eps(p): p  K and 
(q, a, p) for some qQ}

Union

Correctness Proof of ndfsmtodfsm

From any NDFSM M, ndfsmtodfsm constructs a DFSM 
M', which is:

(1)Deterministic: By the definition in step 3 of ', we 
are guaranteed that ' is defined for all reachable 
elements of K' and all possible input characters.  
Further, step 3 inserts a single value into ' for each 
state-input pair, so M' is deterministic.

(2) Equivalent to M:  We constructed ' so that M'
mimics an “all paths” simulation of M.  We must now 
prove that that simulation returns the same result that 
M would.  
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A Useful Lemma
Lemma:  Let w be any string in *, let p and q be any states 
in K, and let P be any state in K'.  Then:

(q, w) |-M* (p, ) iff ((eps(q), w) |-M' * (P, ) and p  P)  .  

INFORMAL RESTATEMENT OF LEMMA:  In other words, 
the original NDFSM M starts in state q and, after reading 
the string w, can land in state p (along at least one of its 
paths)

iff
the new DFSM M' must behave as follows: 

Furthermore, the only-if part implies:

A Useful Lemma
Lemma:  Let w be any string in *, let p and q be any 
states in K, and let P be any state in K'.  Then:

(q, w) |-M* (p, ) iff ((eps(q), w) |-M' * (P, ) and p  P)  
.  

It turns out that we will only need this lemma for the case 
where q = s, but the more general form is easier to prove 
by induction.  This is common in induction proofs.

Proof: We must show that ' has been defined so that the 
individual steps of M', when taken together, do the right 
thing for an input string w of any length.  Since the 
definitions describe one step at a time, we will prove the 
lemma by induction on |w|.

Recall: NDFSM M = (K, , , s, A),   DFSM M'= (K', , ', s', A'), 
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Base Case:  |w| = 0, so w = 
• if part: Prove:

(eps(q), ) |-M' * (P, )  p  P  (q, ) |-M*(p, ) 

Base Case
• only if part: We need to show:

(q, ) |-M* (p, )   [ (eps(q), ) |-M'* (P, ) and p  P ]



3/19/2018

8

Induction Step

Let w have length k + 1.  Then w = zc where z* has 
length k, and c.  

Induction assumption.  The lemma is true for z.

So we show that, assuming that M and M' behave 
identically for the first k characters, they behave 
identically for the last character also and thus for the 
entire string of length k + 1. 

The Definition of 
'(Q, a) = {eps(p) : qQ ((q, a, p)  )} 

What We Need to Prove

• The computation of the NDFSM M:

(q, w) |-M* (p, )

and 

• The computation of the DFSM M':

(eps(q), w) |-M'* (P, ) and p  P

The relationship between:
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What We Need to Prove

• The computation of the NDFSM M:

(q, zc) |-M* (p, ) 

and 

• The computation of the DFSM M':

(eps(q), zc) |-M'* (P, ) and p  P

Rewriting w as zc:

What We Need to Prove

• The computation of the NDFSM M:

(q, zc) |-M* (si, c) |-M* (p, )  

and 

• The computation of the DFSM M':

(eps(q), zc) |-M'* (Q, c) |-M' (P, ) and p  P

In other words, after processing z, M will be in some set of 
states S, whose elements we write as si. M' will be in 
some "set" state that we call Q. Again, well split the 
proof into two parts:

In the M derivation above, the second |-M has a * due to the possibility of 
epsilon moves. In the M' derivation there is no * because of no epsilon 
moves in a deterministic machine.

Breaking w into two pieces:
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If Part

We must prove: 

(eps(q), zc) |-M'* (Q, c) |-M' (P, ) and p  P 
(q, zc) |-M* (si, c) |-M* (p, ) 

Only If Part
We must prove: 

(q, zc) |-M*  (si, c) |-M* (p, ) 
(eps(q), zc) |-M'* (Q, c) |-M' (P, ) and p  P
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Back to the Theorem

• The original machine M, when started in its start 
state, can consume w and end up in an accepting 
state.  

• (eps(s), w) |-M'* (Q, ) for some Q containing some 
state r  A.  

– In the statement of the lemma, let q equal s and p = r for 
some r  A.  

– Then M', when started in its start state, eps(s), will consume 
w and end in a state that contains r.  

– But if M' does that, then it has ended up in one of its 
accepting states (by the definition of A' in step 5 of the 
algorithm).  

– So M' accepts w (by the definition of what it means for a 
machine to accept a string).  

If w  L(M) then: 

Back to the Theorem 2

• The original machine M, when started in its start 
state, will not be able to end up in an accepting state 
after reading w.    

• If (eps(s), w) |-M'* (Q, ), then Q contains no state 
r  A.  This follows directly from the lemma. 

The two cases, taken together, show that M' accepts 
exactly the same strings that M accepts.  

If w  L(M) (i.e. the original NDFSM does not accept w):


