MA/CSSE 474

Theory of Computation

Proofs of several things

(as much as we have time for)

Your Questions?

“ « Previous class days' * HWS5 problems
< material * Tuesday's Exam
.« Reading Assignments * Anything else

)
| & | Thave to complain | [Zhe'd have To cpen
Yo Gianni about . (locked deor.

K" There is a
£ progrommins

-E|a uage named
i rr;\g(-'fege‘fhem

You're Kidding.

F that new nei?lhbor’s i
¥, 2 PY " é
By But, then I'd have To ||
g the door, and |73 I dont knows

go
it might | it
N Sy

3/19/2018

3/19/2018

My life these days

Luke Thomas
= Agapie
Born 3/18/2018

Example (continued)

L = { we{a, b}* : no two adjacent characters are the same }

W TERIR =50 e e

Equivalence classes of =, :
d [1] [l

5 [2] [a, aba, ababa,

b [3] [b, ab, bab, abab, ...]
[4] [aa, abaa, ababb...]

Lower bound on number of states

Theorem: Let M be a DFSM that accepts the regular
language L. The number of states in M is greater than
or equal to the number of equivalence classes of ~,.

Proof:
1. Suppose that the number of states in M were less
than the number of equivalence classes of .

2. Then, by the pigeonhole principle, there must be at
least one state g that "contains" strings from more
than one equivalence classes of %, .

3. But then M's future behavior on those strings will be
identical, which is not consistent with the fact that they
are in different equivalence classes of ~,.

The Myhill-Nerode Theorem

Theorem: A language is regular iff the number of
equivalence classes of ~ is finite.

Proof: Show the two directions of the implication:

L regular - the number of equivalence
classes of & is finite: If L is regular, then

The number of equivalence classes of & is
finite - L regular: If the cardinality of ~, is finite,
then

3/19/2018

NDFSMtoDFSM Correctness

We will probably not have time
to finish this in class;
we will do as much as we can.
Details are in the textbook
(Appendix C)

The Algorithm ndfsmtodfsm

ndfsmtodfsm(M: NDFSM) =
1. For each state q in K, do:
1.1 Compute eps(q).
2.s'=eps(s)
3. Compute &'
3.1 active-states = {s'}.
3.2%8'=0.
3.3 While there exists some element Q of active-states for
which &' has not yet been computed do:
For each character c in £,, do:
new-state = &.
For each state g in Q do:

For each state p such that (g, c, p) € A do:

new-state = new-state U eps(p).
Add the transition (g, ¢, new-state) to &'.
If new-state ¢ active-states then insert it.
4. K' = active-states.
5A={QeK:QnA=J}

3/19/2018

Correctness Proof of ndfsmtodfsm

To prove:

From any NDFSM M = (K, Z, A, s, A), ndfsmtodfsm
constructs a DFSM M'= (K', £, &', ', A"), which is
equivalent to M.

N -

K'c 9(K) (a.k.a.2€)

s' = eps(s)

A={QcK: QA=%D Union

3'(Q, a) =u {eps(p): p € Kand
(9, a, p)eA for some qeQ}

Correctness Proof of ndfsmtodfsm

From any NDFSM M, ndfsmtodfsm constructs a DFSM
M', which is:

(1)Deterministic: By the definition in step 3 of &', we
are guaranteed that &' is defined for all reachable
elements of K' and all possible input characters.
Further, step 3 inserts a single value into &' for each
state-input pair, so M' is deterministic.

(2) Equivalent to M: We constructed &' so that M’
mimics an “all paths” simulation of M. We must now
prove that that simulation returns the same result that
M would.

3/19/2018

A Useful Lemma

Lemma: Letw be any string in *, let p and q be any states
in K, and let P be any state in K'. Then:

(@, w) |-u* (p, €) Iff ((eps(@), w) |-w' * (P, e) and p € P) .

INFORMAL RESTATEMENT OF LEMMA: In other words,
the original NDFSM M starts in state q and, after reading
the string w, can land in state p (along at least one of its
paths)

iff
the new DFSM M' must behave as follows:

Furthermore, the only-if part implies:

A Useful Lemma

Lemma: Letw be any string in Z*, let p and g be any
states in K, and let P be any state in K'. Then:

(@ W) |-y* (p, &) Iff ((eps(a), w) |-y * (P, &) and p € P)

Recall: NDFSM M = (K, £, A, s, A), DFSM M'= (K', =, &', s', A),

It turns out that we will only need this lemma for the case
where g = s, but the more general form is easier to prove
by induction. This is common in induction proofs.

Proof: We must show that &' has been defined so that the
individual steps of M', when taken together, do the right
thing for an input string w of any length. Since the
definitions describe one step at a time, we will prove the
lemma by induction on |w|.

3/19/2018

: Base Case: |w|=0,so0w =¢
« if part: Prove:
5 (eps(a). &) Iy *(P.e)Ap e P = (q, &) (P)

: Base Case
» only if part: We need to show:

(@, &) |-w* (P, &) — [(eps(a), &) [-y™ (P, e)and p € P]

3/19/2018

Induction Step

Let w have length k + 1. Then w = zc where zeX* has
length k, and ceX.

Induction assumption. The lemma is true for z.

So we show that, assuming that M and M' behave
identically for the first k characters, they behave
identically for the last character also and thus for the
entire string of length k + 1.

The Definition of &’
3'(Q, a) = Uleps(p) : 3g€Q ((a, a, p) € A)}

What We Need to Prove

The relationship between:
* The computation of the NDFSM M:

@, w) |-w* (p, €)
and
* The computation of the DFSM M":

(eps(a), w) |-w* (P, e)andp € P

3/19/2018

3/19/2018

What We Need to Prove

Rewriting w as zc:
* The computation of the NDFSM M:

(@, z¢) |-w* (p. &)
and
* The computation of the DFSM M":

(eps(q), zc) |-y* (P,e)and p € P

What We Need to Prove

Breaking w into two pieces:
* The computation of the NDFSM M:

(a, zC) |-w* (si ©) [-m* (P, €)
and

* The computation of the DFSM M":
(eps(a), zc) |-y* (Q, ¢) |- (P, e)and p € P

In other words, after processing z, M will be in some set of
states S, whose elements we write as s;. M" will be in
some "set" state that we call Q. Again, well split the
proof into two parts:

In the M derivation above, the second |-, has a * due to the possibility of
epsilon moves. In the M' derivation there is no * because of no epsilon
moves in a deterministic machine.

3/19/2018

If Part

We must prove:

(eps(q), z¢) |-w* (Q,) |-w (P,e)andp e P —
(@, z€) |-w* (si: ©) |-u™ (P. €)

Only If Part

We must prove:

(@, z€) [-w* (Si ©) I-u* (P, &) =
(eps(a), z¢) |-w* (Q. ¢) |-w (P, &) and p € P

10

Back to the Theorem
~ Ifw e L(M) then:

* The original machine M, when started in its start
state, can consume w and end up in an accepting
state.

* (eps(s), w) |-u* (Q, €) for some Q containing some
stater € A.
- In the statement of the lemma, let g equal s and p = r for
somer € A
— Then M', when started in its start state, eps(s), will consume
w and end in a state that contains r.

- But if M" does that, then it has ended up in one of its
accepting states (by the definition of A" in step 5 of the
algorithm).

- So M'" accepts w (by the definition of what it means for a
machine to accept a string).

Back to the Theorem 2
Slfw e L(M) (i.e. the original NDFSM does not accept w):

e The original machine M, when started in its start
state, will not be able to end up in an accepting state
after reading w.

o If (eps(s), W) |-y* (Q, €), then Q contains no state
r € A. This follows directly from the lemma.

The two cases, taken together, show that M' accepts
exactly the same strings that M accepts.

3/19/2018

11

