

```
Recap: Turning Problems into
Language Recognition Problems
```


Cast multiplication as language recognition:

```
- Problem: Given two nonnegative integers, compute their product.
- Encode the problem: Transform computing into verification.
- The language to be decided:
INTEGERPROD \(=\{\mathrm{w}\) of the form:
<int \({ }_{1}>x<\) int \(_{2}>=<\) int \(_{3}>\), where each \(<\) int \(_{n}>\) is an encoding (decimal in this case) of an integer, and int \(_{3}=\) int \(_{1} *\) int \(\left._{2}\right\}\)
12x9=108 \(\in\) INTEGERPROD
12=12 \(\&\) INTEGERPROD
12×8=108 \(\notin\) INTEGERPROD
```


Recap: Show the

Equivalence

Consider the multiplication language example:
INTEGERPROD = $\{\mathrm{w}$ of the form:
<int $>$ > $<$ int $_{2}>=<$ int $_{3}>$, where each <int $>$ > is an encoding (decimalin this case) of an integer, and

$$
\left.i n t_{3}=i n t_{1} * i n t_{2}\right\}
$$

Given a multiplication function for integers, we can build a procedure that recognizes the INTEGERPROD language: (easy, we did it last time)

Given a function $R(w)$ that recognizes INTEGERPROD, we can build a procedure $\operatorname{Mult}(m, n)$ that computes the product of two integers: (you were supposed to figure this out during the weekend)

Regular Languages (formally)

More on Finite State Machines

Recap - Definition of a DFSM

$M=(K, \Sigma, \delta, s, A)$, where:
K is a finite set of states
The D is for Deterministic
Σ is a (finite) alphabet
$s \in K$ is the initial state (a.k.a. start state)
$A \subseteq K$ is the set of accepting states
$\delta:(K \times \Sigma) \rightarrow K$ is the transition function

Sometimes we will put an M subscript on K, Σ, δ, s, or A (for example, s_{M}), to indicate that this component is part of machine M.

Acceptance by a DFSM

$M=(K, \Sigma, \delta, s, A)$
Informally, M accepts a string w iff M winds up in some element of A after it has finished reading w.

The language accepted by M, denoted $L(M)$, is the set of all strings accepted by M.

But we need more formal notations if we want to prove things about machines and languages.

Today we examine the book's notation, \vdash. Unicode 22A2. That symbol is commonly called turnstile or tee. It is often read as "derives" or "yields"

Configurations of a DFSM

A configuration of a DFSM M is an element of:

$$
K \times \Sigma^{*}
$$

It captures the two things that affect M's future behavior:

- its current state
- the remaining input to be read.

The initial configuration of a DFSM M, on input w, is:

$$
\left(s_{M}, w\right)
$$

Where s_{M} is the start state of M.

The "Yields" Relations

The yields-in-one-step relation: \vdash_{M} :
$(q, w) \vdash_{M}\left(q^{\prime}, w^{\prime}\right)$ iff

- $w=a$ w' for some symbol $a \in \Sigma$, and
- $\delta(q, a)=q^{\prime}$

The yields-in-zero-or-more-steps relation: $\vdash_{M}{ }^{*}$
$\vdash_{M}{ }^{*}$ is the reflexive, transitive closure of \vdash_{M}.
Note that this accomplishes the same thing as the "extended delta function" that we considered on
Day 1. Two notations for the same concept.

Computations Using FSMs

A computation by M is a finite sequence of configurations $C_{0}, C_{1}, \ldots, C_{n}$ for some $n \geq 0$ such that:

- C_{0} is an initial configuration,
- C_{n} is of the form (q, ε),
for some state $q \in K_{M}$,
- $\forall \mathrm{i} \in\{0,1, \ldots, \mathrm{n}-1\}\left(C_{\mathrm{i}} \vdash_{M} C_{\mathrm{i}+1}\right)$

On input 235, the configurations are:
$\left(q_{0}, 235\right) \quad \vdash_{M} \quad\left(q_{0}, 35\right)$
$\vdash_{M} \quad\left(q_{1}, 5\right)$
$\vdash_{M} \quad\left(q_{1}, \varepsilon\right)$
Thus $\left(q_{0}, 235\right) \vdash_{M}{ }^{*}\left(q_{1}, \varepsilon\right)$

Accepting and Rejecting

A DFSM M accepts a string w iff:
$\left(s_{M}, w\right) \vdash_{M}{ }^{*}(q, \varepsilon)$, for some $q \in A_{M}$
A DFSM M rejects a string w iff:
$\left(s_{M}, w\right) \vdash_{M}{ }^{*}(q, \varepsilon)$, for some $q \notin A_{M}$
The language accepted by M, denoted $L(M)$, is the set of all strings accepted by M.

Theorem: Every DFSM M, in configuration (q, w), halts after $|w|$ steps.
Thus every string is either accepted or rejected by a DFSM.

Proof of Theorem

Theorem: Every DFSM M, in configuration (q, w), halts after $|w|$ steps.
Proof: by induction on $|w|$
Base case: $\mathrm{n}=0$, so w is ε, it halts after 0 steps.
Induction step: Assume true for strings of length n and show for strings of length $n+1$.
Let $w \in \Sigma^{*}, w \neq \varepsilon$. Then $|w|=n+1$ for some $n \in \mathbb{N}$.
So w must be au for some $a \in \Sigma, u \in \Sigma^{*},|u|=n$.
Let q^{\prime} be $\delta(q, a)$. By definition of $\vdash,(q, w) \vdash_{M}(q ', u)$
By the induction hypothesis, starting from configuration (q^{\prime}, u), M halts after n steps.
Thus, starting from the original configuration, M halts after $\mathrm{n}+1$ steps.

Regular Language Formal Definition

Example

$$
L=\left\{w \in\{a, b\}^{*}:\right.
$$

every a is immediately followed by a b\}.

q_{2} is a dead state.

```
E Exercises: Construct DFSMs for
    L = {w \in{0, 1}* : w has odd parity}.
    l.e. an odd number of 1's.
    L={w \in{a,b}*:
        no two consecutive characters are the same}.
    L = {w \in{a,b}* : ##(w)>= ## (w) }
    L={w \in{a,b\mp@subsup{}}{}{*}:\forallx,y\in{a,b\mp@subsup{}}{}{*}(w=xy->|\mp@subsup{#}{a}{}(x)-\mp@subsup{#}{b}{}(x)|<=2)}
```


Examples: Programming FSMs

Cluster strings that share a "future".
$L=\left\{w \in\{a, b\}^{*}: w\right.$ contains an even
number of a's and an odd number of b's\}

Vowels in Alphabetical Order

$L=\left\{w \in\{a-z\}^{*}\right.$: all five vowels, a, e, i, o, and u, occur in w in alphabetical order\}.

THIS EXAMPLE MAY BE facetious!

Negate the condition, then ...
$L=\left\{w \in\{a, b\}^{*}: w\right.$ does not contain the substring aab $\}$.
Start with a machine for the complement of L :

How must it be changed?

The Missing Letter Language

Let $\Sigma=\{a, b, c, d\}$.
Let $L_{\text {Missing }}=$
$\left\{w \in \Sigma^{\star}\right.$: there is a symbol $a_{i} \in \Sigma$ that does not appear in $w\}$.

Try to make a DFSM for $L_{\text {Missing }}$:
Expressed in first-order logic,
$L_{\text {Missing }}=\left\{w \in \Sigma^{*}: \exists a \in \Sigma\left(\forall x, y \in \Sigma^{*}(w \neq x a y)\right)\right\}$

NONDETERMINISM

Nondeterminism

A nondeterministic machine in a given state, looking at a given symbol (and with a given symbol on top of the stack if it is a PDA), may have a choice of several possible moves that it can make.
If there is a move that leads toward acceptance, it makes that move.

Necessary Nondeterminism?

- As you saw in the homework, a PDA is a FSM plus a stack.
- Given a string in $\{a, b\}^{*}$, is it in

$$
\text { PalEven } \left.=\left\{w w^{R}: w \in\{a, b\}^{*}\right\}\right\} ?
$$

- PDA
- Choice: Continue pushing, or start popping?
- This language can be accepted by a nondeterministic PDA but not by any deterministic one.

Nondeterministic value-added?

Ability to recognize additional languages?
-FSM: no
-PDA: yes

- TM: no

Ease of designing a machine for a

 particular language- Yes in all cases

[^0]First case: Each action will return True, return False, or run forever.

If any of the actions returns TRUE, choose returns TRUE.
If all of the actions return FALSE, choose returns FALSE.
If none of the actions return TRUE, and some do not halt, choose does not halt.

[^0]: 产

 ## A Way to Think About Nondeterministic Computation

 1. choose (action 1;; action 2;
 ...
 action n)
 2. choose (x from $S: P(x)$)

 > Second case: S may be finite, or infinite with a generator (enumerator).
 > If P returns TRUE on some x, so does choose
 > If it can be determined that $P(x)$ is FALSE for all x in P, choose returns FALSE.
 > Otherwise, choose fails to halt.

