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MA/CSSE 474

Theory of Computation

Decision Problems, Continued
DFSMs

Your Questions?
• Friday's class

• Reading Assignments

• HW1 solutions
• HW2 or HW3
• Anything else
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Cast multiplication as language recognition:

• Problem: Given two nonnegative integers, 
compute their product.

• Encode the problem: Transform computing into verification.

• The language to be decided:

INTEGERPROD = {w of the form:
<int1>x<int2>=<int3>, where each <intn> is an 

encoding (decimal in this case) of an integer, and
int3 = int1  int2}

12x9=108  INTEGERPROD
12=12  INTEGERPROD
12x8=108  INTEGERPROD

Recap: Turning Problems into 
Language Recognition Problems

Consider the multiplication language example:
INTEGERPROD =  {w of the form:

<int1>x<int2>=<int3>, where each <intn> is an 
encoding (decimalin this case) of an integer, and

int3 = int1  int2}

Given a multiplication function for integers, we can build a 
procedure that recognizes the INTEGERPROD language:  
(easy, we did it last time)

Given a function R(w) that recognizes  INTEGERPROD, 
we can build a procedure Mult(m,n)  that computes the 
product of two integers:  (you were supposed to figure 
this out during the weekend)

Recap: Show the 
Equivalence 
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Regular Languages (formally)

More on Finite State Machines

Recap - Definition of a DFSM

M = (K, , , s, A), where:

K is a finite set of states

 is a (finite) alphabet

s  K is the initial state (a.k.a. start state)

A  K is the set of accepting states

: (K  )  K is the transition function

Sometimes we will put an M subscript on K, , , s, or 
A (for example, sM), to indicate that this component is 
part of machine M.

The D is for 
Deterministic
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Acceptance by a DFSM
M = (K, , , s, A) 

Informally, M accepts a string w iff M winds up in some 
element of A after it has finished reading w.

The language accepted by M, denoted L(M), is the 
set of all strings accepted by M.

But we need more formal notations if we want to prove 
things about machines and languages.

Today we examine the book's notation, ⊢.  Unicode 
22A2. That symbol is commonly called turnstile or tee.  
It is often read as "derives" or "yields"

Configurations of a DFSM

A configuration of a DFSM M is an element of:

K  *  

It captures the two things that affect M’s future 
behavior:

• its current state
• the remaining input to be read.

The initial configuration of a DFSM M, on input w, is:

(sM, w)

Where sM is the start state of M.
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The "Yields" Relations

The yields-in-one-step relation: ⊦M  :

(q, w) ⊦M (q', w') iff

• w = a w' for some symbol a  , and
•  (q, a) = q'

The yields-in-zero-or-more-steps relation: ⊦M* 

⊦M* is the reflexive, transitive closure of ⊦M .

Note that this accomplishes the same thing as the 
"extended delta function" that we considered on 
Day 1.  Two notations for the same concept.

Computations Using FSMs

A computation by M is a finite sequence of 
configurations C0, C1, …, Cn for some n  0 
such that:

• C0 is an initial configuration,

• Cn is of the form (q, ), 
for some state q  KM,

• i{0, 1, …, n-1} (Ci ⊦M Ci+1)
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An Example Computation
A FSM M that accepts decimal representations of odd 

integers:

even                            odd     

even

q0 q1

odd

On input 235, the configurations are:

(q0, 235) ⊦M (q0, 35)
⊦M (q1, 5)
⊦M (q1, )

Thus (q0, 235) ⊦M * (q1, )

Accepting and Rejecting
A DFSM M accepts a string w iff:

(sM, w) ⊦M* (q, ), for some q  AM 

A DFSM M rejects a string w iff:

(sM, w) ⊦M* (q, ), for some q  AM

The language accepted by M, denoted L(M), is the set of 
all strings accepted by M.

Theorem: Every DFSM M, in configuration (q, w), 
halts after |w| steps.

Thus every string  is either accepted or rejected by a DFSM.
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Proof of Theorem

Theorem: Every DFSM M, in configuration (q, w), 
halts after |w| steps.

Proof: by induction on |w|

Base case:  n = 0, so w is , it halts after 0 steps.

Induction step: Assume true for strings of length n and 
show for strings of length n+1.

Let w  *, w  .  Then  |w| = n+1 for some n  .

So w must be au for some a , u*, |u| = n.

Let q' be (q, a).  By definition of ⊦,  (q,w) ⊦ M (q', u)

By the induction hypothesis, starting from configuration 
(q', u), M halts after n steps. 

Thus, starting from the original configuration, M halts 
after n+1 steps.

Regular Language Formal Definition

Definition:
A language L is regular

iff 
L = L(M) for some DFSM M  
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Example

L = {w  {a, b}* : 

every a is immediately followed by a b}. 

state  input  a b

q0 q1 q0

q1 q2 q0

q2 q2 q2

 can also be 
represented as a 
transition table:

q2 is a dead state.

Exercises: Construct DFSMs for

L = {w  {0, 1}* : w has odd parity}.  
I.e. an odd number of 1's.

L = {w  {a, b}* : 

no two consecutive characters are the same}.

L = {w  {a, b}* :  #a(w) >= #b(w) }

L = {w  {a, b}* :  ∀x,y{a, b}* (w=xy → | #a(x) - #b(x)| <= 2 ) }
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MORE DFSM EXAMPLES

Examples: Programming FSMs

Cluster strings that share a “future”.

L = {w  {a, b}* : w contains an even 
number of a’s and an odd number of b’s}
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Vowels in Alphabetical Order

L = {w  {a - z}* : all five vowels, a, e, i, o, and u, 

occur in w in alphabetical order}. 

u

THIS EXAMPLE MAY BE facetious!

O

Negate the condition, then …

L = {w  {a, b}* : w does not contain the substring aab}.

Start with a machine for the complement of L:

How must it be changed?
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The Missing Letter Language

Let  = {a, b, c, d}.  

Let LMissing = 
{w  * : there is a symbol ai   that does not 
appear in w}.

Try to make a DFSM for LMissing:

Expressed in first-order logic, 
LMissing =    {w* : ∃a (∀x,y*(w ≠ xay))}

NONDETERMINISM
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Nondeterminism

• A nondeterministic machine in a given 
state, looking at a given symbol (and with 
a given symbol on top of the stack if it is a 
PDA), may have a choice of several 
possible moves that it can make.

• If there is a move that leads toward 
acceptance, it makes that move.

• As you saw in the homework, a PDA is a FSM 
plus a stack.

• Given a string in {a, b}*, is it in 
PalEven = {wwR : w {a,b}*}}?

• PDA

• Choice: Continue pushing, or start popping?

• This language can be accepted by a 
nondeterministic PDA but not by any 
deterministic one.

Necessary Nondeterminism?
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Nondeterministic value-added?

• Ability to recognize additional languages?
– FSM:   no

– PDA :  yes

– TM:      no

• Ease of designing a machine for a 
particular language
– Yes in all cases

We will prove 
these later

1. choose (action 1;;
action 2;
…
action n )

2. choose(x from S: P(x))

A Way to Think About 
Nondeterministic Computation

First case:  Each action will return True, 
return False, or run forever.

If any of the actions returns TRUE, choose
returns TRUE.
If all of the actions return FALSE, choose
returns FALSE.
If none of the actions return TRUE, and 
some do not halt, choose does not halt.

Second case:  S may be finite, or infinite with 
a generator (enumerator).

If P returns TRUE on some x, so does choose
If it can be determined that P(x) is FALSE for all x in P, 
choose returns FALSE.
Otherwise, choose fails to halt.


