Today's Agenda

- Roll call
- Student questions
- Introductions and Course overview
- Overview of yesterday's proof
- I placed online a "straight-line" write-up of the proof in detail, without the "here is how a proof works" commentary that was in the slides. See Session 1 resources on schedule page
- Responses to Reading Quiz 1 (0 48 12)
- Languages and Strings
- (if time) Operations on Languages

Introductions

- Roll Call
- If I mispronounce your name, or you want to be called by a nickname or different name but did not list that yesterday, let me know.
- I have had most of you in class, but for some of you it has been a long time.
- Graders: 8 of them! See schedule page, day 1
- Instructor: Claude Anderson: F-210, x8331

Random Note: I often put more in my PowerPoint slides for a day than I expect we can actually cover that day, "just in case".

Instructor Professional Background

Formal Education:

See optional
video on

- BS Caltech, Mathematics 1975
- Ph.D. Illinois, Mathematics 1981
- MS Indiana, Computer Science 1987

Moodle for
some personal
background
Teaching:

- TA at Illinois, Indiana 1975-1981, 1986-87
- Wilkes College (now Wilkes University) 1981-88
- RHIT 1988 -??

Major Consulling Gigs:

- Pennsylvania Funeral Directors Assn 1983-88
- Navistar International 1994-95
- Beckman Coulter 1996-98
- ANGEL Learning 2005-2008

Theory of Computation history

What do we Study in Theory of Computation?

Larger issues, such as

- What can be computed, and what cannot?
- What problems are tractable?
- What are reasonable mathematical models of computation?

Applications of the Theory

- Finite State Machines (FSMs) for parity checkers, vending machines, communication protocols, and building security devices.
- Interactive games as nondeterministic FSMs.
- Programming languages, compilers, and context-free grammars.
- Natural languages are mostly context-free. Speech understanding systems use probabilistic FSMs.
- Computational biology: DNA and proteins are strings.
- The undecidability of a simple security model.
- Artificial intelligence: the undecidability of first-order logic.

Some Language-related Problems

int alpha, beta;
alpha $=3$;
beta $=(2+5) / 10 ;$
(1) Lexical analysis: Scan the program and break it up into variable names, numbers, operators, punctuation, etc.
(2) Parsing: Create a tree that corresponds to the sequence of operations that should be executed, e.g.,

(3) Optimization: Realize that we can skip the first assignment since the value is never used, and that we can pre-compute the arithmetic expression, since it contains only constants.
(4) Termination: Decide whether the program is guaranteed to halt.
(5) Interpretation: Figure out what (if anything) useful it does.

A Framework for Analyzing Problems

We need a single framework in which we can analyze a very diverse set of problems.

The framework we will use is

Language Recognition

Most interesting problems can be restated as language recognition problems.

What we will focus on in 474

Definitions
Theorems
Examples
Proofs
A few applications, but mostly theory

Textbook

Thorough
Literate
Large (and larger!)
Theory and Applications
We'll focus more on theory; applications are there for you to see

- The book is online and free

Online Materials Locations

- On the Schedule page - public stuff
- Reading, HW, topics, resources,
- Suggestion: bookmark schedule page
- On Moodle - personal stuff
- surveys, solutions, grades
- On piazza.com:
- Discussion forums and announcements
- csse474-staff@rose-hulman.edu
- Many things are under construction and subject to change, especially the course schedule.

My most time-consuming courses (for students)

This is my perception, not a scientific study!

- 220 (object-oriented)
- 473 (design and analysis of algorithms)
- 280 (web programming)

The learning outcomes include a lot of difficult

- 304 (PLC)
- 404 (Compilers) material. Most of you will need a lot practice in order to understand it.
- 474 (Theory of Computation)
- 230 (Data Structures \& Algorithms)

Questions about course policies and procedures?

- From Syllabus?
- Schedule page?
- Things said in class yesterday?
- Attendance?
- Early Days? (There are no late days)
- How to find my office hours for a given day?
- Anything else?

[^0]
Inductive Step for $\mathrm{S} \subseteq \mathrm{T}$

- Let $|w|$ be ≥ 1, and assume (1) and (2) are true for all strings shorter than w.
Because w is not empty, we can write $w=u a$, where a is the last symbol of w, and u is the string that precedes that last a. Since $|\mathrm{u}|<|\mathrm{w}|$, IH (induction hypothesiş) is true for u.

Reminder:
What we are proving by induction:

1. If $\delta(q 0, w)=q 0$, then w has no consecutive 1 's and does not end in 1 .
2. If $\delta(q 0, w)=q 1$, then w has no consecutive 1 's and ends in 1 .

Inductive Step: S \subseteq T (2)

- Need to prove (1) and (2) for w = ua, assuming that they are true for u.
- (1) for w is: If $\delta(q 0, w)=q 0$, then w has no consecutive 1 's and does not end in 1 . Show it:
- Since $\delta(q 0, w)=q 0, \delta(q 0, u)$ must be $q 0$ or $q 1$, and a must be 0 (look at the DFSM).
- By the IH, u has no 11 's. The a is a 0 .
- Thus, w has no 11 's and does not end in 1 .

1. If $\delta(q 0, w)=q 0$, then w has no consecutive 1's and does not end in 1.
2. If $\delta(q 0, w)=q 1$, then w has no consecutive 1 's and ends in 1.

Inductive Step : S $\subseteq T$ (3)

- Now, prove (2) for w = ua: If $\delta(q 0, w)=$ $q 1$, then w has no 11 's and ends in 1.
- Since $\delta(q 0, w)=q 1, \delta(q 0, u)$ must be $q 0$, and a must be 1 (look at the DFSM).
- By the IH, u has no 11's and does not end in 1.
- Thus, w has no 11 's and ends in 1.

1. If $\delta(q 0, w)=q 0$, then w has no consecutive 1's and does not end in 1.
2. If $\delta(q 0, w)=q 1$, then w has no consecutive 1 's and ends in 1.

Part B: T \subseteq S

Using the Contrapositive

- Contrapositive : If w is not accepted by M then w has 11 as a substring.
Base case is again vacuously true.
- Because there is a unique transition from every state on every input symbol, each w gets the DFSM to exactly one state.
- The only way w can not be accepted is if it takes the DFSM M to q2. How can this happen?

Using the Contrapositive - (2)

Looking at the DFSM, there are two possibilities: (recall that w=ua)

1. $\delta(q 0, u)=q 1$ and a is 1 . We proved earlier that if $\delta(q 0, u)=q 1$, then u ends in 1 . Thus w ends in 11.
2. $\delta(q 0, u)=q 2$. In this case, the IH says that u contains 11 as a substring. So does w=ua.

Your 474 HW induction proofs

- Can be slightly less detailed
- Many of the details above were about how the proof process works in general, rather than about the proof itself.
- You can assume that the reader knows the proof techniques.
- You must always make it clear what the IH is, and where you apply it.
- When in doubt about whether to include a detail, include it!
- Well-constructed proofs often contain more words than symbols.

This Proof as a 474 HW Problem

- An example of how I would write up this proof if it was a 474 HW problem will be linked from the schedule page this afternoon.
- You do not need to copy it exactly in your proofs, but it gives an idea of the kinds of things to include or not include.
- Also, I will post another version of the slides that includes the parts that I wrote on the board today.

Responses to Reading Quiz 1

- From \#4: $\wp(\varnothing)=\{\varnothing\}($ not $\wp(\varnothing)=\varnothing)$ What is $\wp(\wp(\emptyset))$?
- From \#4: $\{a, b\} \times\{1,2,3\} \times \varnothing=\varnothing$
- \#10: (representing $\{1,4,9,16,25,36, \ldots\}$
in the form: $\{x \in A: P(x)\}$
$\left\{x \in \mathbb{N}: x>0 \wedge \exists y \in \mathbb{N}\left(y^{*} y=x\right)\right\}$
Why not $\{x \in \mathbb{N}: x>0 \wedge \operatorname{sqrt}(x) \in \mathbb{N}\}$?
- From \#15: $\forall x \in \mathbb{N}(\exists y \in \mathbb{N}(y<x))$.

Why is this not satisfiable? (e. g. by $x=3, y=2$)

Responses to Reading Quiz 1

\#16: Let \mathbb{N} be the set of nonnegative integers. Let A be the set of nonnegative integers x such that $x \equiv_{3} 0$.
Show that $|\mathbb{N}|=|A|$.
Define a function $f: \mathbb{N} \rightarrow A$ by $f(n)=3 n$.
f is one-to-one: if $\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{m})$, then $3 \mathrm{n}=3 \mathrm{~m}$, so m=n.
f is onto: Let $\mathrm{k} \in \mathrm{A}$. Then $\mathrm{k}=3 \mathrm{~m}$ for some $m \in \mathbb{N}$. So $k=f(m)$.

Responses to Reading Quiz 1

\#19: Prove by induction: $\forall n>0\left(n!\geq 2^{n-1}\right)$. Why is the following "proof" of the induction step shaky at best, perhaps wrong?

$$
\begin{array}{ll}
(n+1)!\geq 2^{n} & \text { what we're trying to show } \\
(n+1) n!\geq 2\left(2^{n-1}\right) & \text { definitions of ! And exponents } \\
(n+1) \geq 2 & \text { induction hypothesis }\left(n!\geq 2^{n-1}\right) \\
\text { Since } n \text { is at least } 1, \text { this statement is true, } \\
\text { therefore }(n+1)!\geq 2^{n} \text { is true. }
\end{array}
$$

[^0]: Prove $\mathrm{S} \subseteq \mathrm{T}$ by induction on $|\mathrm{w}|$: More general statement that we will prove: Both of the following statements are true:

 1. If $\delta(q 0, w)=q 0$, then w does not end in 1 and w has no pair of consecutive 1's.
 2. If $\delta(q 0, w)=q 1, w$ ends in 1 and w has no pair of consecutive 1's.
 Base case: $|w|=0 ;$ i.e., $w=\varepsilon$.

 - (1) holds since ϵ has no 1 's at all.
 - (2) holds vacuously, since $\delta(q 0, \epsilon)$ is not $q 1$.

 Important logic rule:
 If the "if" part of any "if..then" statement is false, the whole statement is true.

