MA/CSSE 474 Day 36 Summary

1)

2)

3)

4)
5)
6)

7)

8)

Summary of results from last session:

a) The language H = {<M, w>: TM M halts on input string w} is in SD but not in D.
b) If Hwerein D, then SD would equal D

c) Every CF language is in D.

d) Dis closed under complement

e) SDis not closed under complement.

f) Alanguage Lis in D iff both L and its complement are in SD.

g) The language —H = {<M, w>: TM M does not halt on input string w} is not in SD.

Dovetailing: Run an infinite number of computations "in parallel". S[i, j] represents step j of computation i.
a) S[1,1]

b) S[2,1] S[1,2]

c) S[3,1] S[2,2] S[1,3]

d) S[4,1] S[3,2] S[2,3] S[1,4]

e) Foreveryiandj,S[i, j] will eventually happen.

A language is Turing-enumerable iff there is a Turing machine that enumerates it.

.-’W|: M:

~PaR >pPaPC0RaRaRaPrOP

a) Alanguage is SD iff it is Turing-enumerable (TE).
i) TE->SD. Given M that enumerates L, construct M' that semidecides L.
(1) Save w. Use M to enumerate L. As each string is enumerated, compare to w. If they match, accept.
ii) SD—>TE. Given M that semidecides L, construct M' that enumerates L.
(1) Enumerate all w € Z* lexicographically. As each is enumerated, use M to check it.
(2) The problem with this approach?
(3) Solution:

M lexicographically enumerates L iff M enumerates the elements of L in lexicographic order.
L is lexicographically Turing-enumerable iff there is a Turing machine that lexicographically enumerates it.
A language is in D iff it is lexicographically Turing-enumerable.
a) D—>LTE. Given M that decides L, construct M' that lexicographically enumerates L
i) M'lexicographically generates the strings in X* and tests each using M (M halts and accepts or rejects each).
ii) It outputs those that are accepted by M.
b) LTE->D. Given M that lexicographically enumerates L, construct M' that decides L.
i) Save w. Use M to start enumerating L. As each string is enumerated, compare to w. If they match, accept.
ii) If M ever generates a string that comes after w in lexicographic order, reject.
Problem P; is reducible to problem P, (written P, < P,) if there is a Turing-computable function f that finds, for an
arbitrary instance | of P4, an instance f(l) of P2, and
a) fis defined such that for every instance | of P;,
b) |is ayes-instance of Py if and only if f(l) is a yes-instance of P,.
c) So P;<P;means "if we have a TM that decides P,, then there is a TM that decides P.
Special case: Language L; (over alphabet X,) is reducible to language L, (over alphabet X,) and we write L; < Ly if
there is a Turing-computable function f: X;* — Z,* such that Vx € Z:*, x € Ly ifand only if f(x) € L,
a) If Pyis reducible to P,, then
i) If P,is decidable, so is Pi.
ii) If P1is not decidable, neither is P-.
b) The second part is the one that we will use most.

In some sense, < means "is no harder
than" or "is at least as decidable as"




9) Another way to say it:

a)
b)
c)

A reduction R from language L; to language L, is one or more Turing machines such that:
If there exists a Turing machine Oracle that decides (or semidecides) L,
then the TMs in R can be composed with Oracle to build a deciding (or semideciding) TM for L.

10) Using Reduction for Undecidability

a)
b)

c)

(R is a reduction from L; to L) A (L2 isin D) — (L1 isin D)

Contrapositive: If (L1 is in D) is false, then at least one of the two antecedents of that implication must be false.
So: If (Ris a reduction from L; to L,) is true and (L1 is in D) is false, then (L2 is in D) must be false.
Application: If L2 is a language that is known to not be in D, and we can find a reduction from L2 to L1, then L1
is also not in D.

11) A framework for using reduction to show undecidability. To show language L, undecidable:

a)
b)
c)
d)

Choose a language L; that is already known not to be in D, and show that L; can be reduced to L..
Define the reduction R and show that it can be implemented by a TM.

Describe the composition C of R with Oracle (the purported TM that decides L;).

Show that C does correctly decide L, iff Oracle exists. We do this by showing that Cis correct. l.e.,
i) If x € Ly, then C(x) accepts, and

i) If x g L1, then C(x) rejects.

12) Example: H: = {<M>:TM M halts on &}. Show that it is not in D by showing H < H..

a)

b)

He is in SD.
Language Summary
IN ouT
Semideciding TM Reduction
. . Enumerable
H: is not in D. Unrestricted grammar
Deciding TM Diagonalize
Lexic. enum Reduction
L and —L in SD
Context-Free
CF grammar AnBn Pumping
PDA Closure
Closure
Regular
Regular Expression a'b* Pumping
FSM Closure




