MA/CSSE 474 Day 31 Summary

1)

2)

3)

4)

5)

TMs as language recognizers. LetM = (K, %, T, 3, s, {y, n}).
a) M accepts a string w iff (s, qw) |-m* (y, W') for some string w'.
b) M rejects a string w iff (S, qw) |-m* (n, w’) for some string w'.
c) M decides alanguage L < X* iff for any string w € X* it is true that:
i) if w € L then M accepts w, and
i) if w ¢ L then M rejects w.
d) A language L is decidable iff
e) We define the set D to be the set of all decidable languages.
f) M semidecides L iff, for any stringw € Im*:
i)w e L —> M accepts w
ii)w ¢ L > M does not accept w. M may either or
g) A language L is semidecidable iff there is a Turing machine that semidecides it.
h) We define the set SD to be the set of all semidecidable languages.
i) Another term that means the same thing as semidecidable: recursively enumerable.
j) Regular languages c CFLs c D € SD C all languages. [The last two Cs are realy Cs, but we still need to show it].
TMs can compute functions. LetM = (K, X, T, §, s, {h}).
a) M(w) = z iff (s, OOw) |-m* (h, Oz).
b) Let X' < ¥ be M’s output alphabet, and let f be any function from Z* to X'*.
i) M computes fiff, for allw € Z*:
(1) if w is an input on which f is defined, then M(w) = f(w).
(2) otherwise M(w) does not halt.
c) A function f is recursive or computable iff there is a Turing machine M that computes it and that always
halts.
d) Computing numeric functions:
i) For any positive integer k, valuek(n) returns the nonnegative integer that is encoded, base k, by the
string n.
ii) TM M computes a function f from Nmto N iff, for some k, valuek(M(nz1;nz;...nm)) = f(valuek(ni), ...
valuek(nm)).

Notice that the TM's function computes with strings (Z* = X'*), not directly with numbers.

TM extensions. For each extension, we can show that every extended machine has an equivalent basic machine.
a) Multi-track TM. Input symbols are tuples of the input symbols from the tracks
b) Multiple-tape TM
i) The transition function for a k-tape Turing machine:

Theorem (adding tapes adds no computing power): Let M = (K, X, T, 8, s, H} be a k-tape Turing machine for
some k > 1. Then there is a standard TM M' where X c X', and:

(1) Oninput X, M halts with output z on the first tape iff M' halts in the same state with z on its tape.

(2) OninputX, if M halts in n steps, M' halts in O(n2) steps.

(a) Proof by construction:
(i) Treat the single tape as if it were multi-track. This gives M' a large number of tape symbols:

Example: Use two tapes to add two natural numbers (represented in binary)

6) Exercise: Use multiple tapes to multiply two natural numbers (represented in binary)

7) EncodingaTM M = (K, X, T, 5, s, H) as a string <M>:

i)

vi)

Encoding the states: Let i be [logy(|K]) |.
(1) Number the states from 0 to |K|-1 in binary (i bits for each state number):
(2) The start state, s, is numbered 0; Number the other states in any order.
(3) If t'is the binary number assigned to state t, then:
(a) If tis the halting state y, assign it the string yt'.
(b) If tis the halting state n, assign it the string nt’.
(c) If tis the halting state h, assign it the string ht'.
(a) If tis any other state, assign it the string gt'.
Encoding the tape alphabet: Let j be|log(|r])].
(1) Number the tape alphabet symbols from O to || - 1 in binary.
(2) The blank symbol is number 0.
(3) The other symbols can be numbered in any order
Encoding the transitions:
(1) (state, input, state, output, direction to move)
(2) Example: (q000,a000,q110,a000,—)
Encoding s and H (already included in the above)
A special case of TM encoding
(1) One-state machine with no transitions that accepts only € is encoded as (q0)
Encoding other TMs: It is just a list of the machine's transitions:
(1) Detailed example on slide

vii) Consider the alphabetZ ={(,), a, g, y, n, h, 0, 1, comma, —, «<}. Is the following question decidable?

(1) Given a string w in X*, is there a TM M such that w = <M> ?

8) We can enumerate all TMs, so that we have the concept of "the ith TM"
9) We can have processes (TMs?) whose input and outputs are TM encodings:

Input: a TM M, that reads its input tape and performs
some operation P on it.

Output: a TM M, that performs P on an empty input tape.

<M,>

10) Encoding multiple inputs: <x1, x3, ...xn>

