
MA/CSSE 474 Day 30 Announcements and Summary

Announcements:

1) Exam 3 is a week from today.

Main ideas from today

1) Review of Macro language; look at some example machines.

2) Exercise: Initial input on the tape is an integer written in binary, most significant bit first (110 represents 6).

Using Elaine Rich's macro language notation, design a TM that replaces the binary representation of n by the binary

representation of n+1.

3) TMs as language recognizers. Let M = (K, , , , s, {y, n}).

a) M accepts a string w iff (s, qw) |-M* (y, w) for some string w.

b) M rejects a string w iff (s, qw) |-M* (n, w) for some string w.

c) M decides a language L  * iff for any string w  * it is true that:

i) if w  L then M accepts w, and

ii) if w  L then M rejects w.
d) A language L is decidable iff __.
e) We define the set D to be the set of all decidable languages.

f) M semidecides L iff, for any string w  M*:

i) w  L  M accepts w

ii) w  L  M does not accept w. M may either ________________ or _____________________.
g) A language L is semidecidable iff there is a Turing machine that semidecides it.
h) We define the set SD to be the set of all semidecidable languages.
i) Another term that means the same thing as semidecidable: recursively enumerable.
j) Regular languages ⊂ CFLs ⊂ D ⊆ SD ⊆ all languages. [The last two ⊆s are realy ⊂s, but we still need to show it].

4) TMs can compute functions. Let M = (K, , , , s, {h}).

a) M(w) = z iff (s, ☐w) |-M* (h, ☐z).

b) Let    be M’s output alphabet, and let f be any function from * to *.

i) M computes f iff, for all w  *:
(1) if w is an input on which f is defined, then M(w) = f(w).
(2) otherwise M(w) does not halt.

c) A function f is recursive or computable iff there is a Turing machine M that computes it and that always halts.
d) Computing numeric functions:

i) For any positive integer k, valuek(n) returns the nonnegative integer that is encoded, base k, by the string n.
ii) TM M computes a function f from ℕm to ℕ iff, for some k, valuek(M(n1;n2;…nm)) = f(valuek(n1), … valuek(nm)).

Notice that the TM's
function computes with

strings (* ↦ *), not

directly with numbers.

5) TM extensions. For each extension, we can show that every extended machine has an equivalent basic machine.

a) Multiple-tape TM
i) The transition function for a k-tape Turing machine:

ii) Theorem (adding tapes adds no computing power): Let M = (K, , , , s, H} be a k-tape Turing machine for

some k > 1. Then there is a standard TM M' where   ', and:
(1) On input x, M halts with output z on the first tape iff M' halts in the same state with z on its tape.
(2) On input x, if M halts in n steps, M' halts in O(n2) steps.

iii) Proof by construction:
(1) Treat the single tape as if it were multi-track. This gives M' a large number of tape symbols:

(a) Alphabet ( ') of M' =   (  {0, 1})k "The Representation" slide contains an example.

b) Non-deterministic TM (later …)

