
MA/CSSE 474   Day 30 Announcements and Summary   

Announcements: 

1) Exam 3 is a week from today. 

Main ideas from today        

1) Review of Macro language; look at some example machines. 

 

2) Exercise:  Initial input on the tape is an integer written in binary, most significant bit first (110 represents 6). 

Using Elaine Rich's macro language notation, design a TM that replaces the binary representation of n by the binary 

representation of n+1. 

 

 

 

 

 

 

 

 

 

 

 

3) TMs as language recognizers.   Let M = (K, , , , s, {y, n}).  

a) M accepts a string w iff (s, qw) |-M*  (y, w) for some string w. 

b) M rejects a string w iff   (s, qw) |-M*  (n, w) for some string w. 

c) M decides a language L  * iff for any string w  * it is true that: 

i)         if w  L then M accepts w, and 

ii)         if w  L then M rejects w. 
d) A language L is decidable iff ________________________________________.   
e) We define the set D to be the set of all decidable languages. 

f) M semidecides L iff, for any string w  M*: 

i) w  L  M accepts w 

ii) w  L  M does not accept w.  M may either ________________ or  _____________________. 
g) A language L is semidecidable iff there is a Turing machine that semidecides it.   
h) We define the set SD to be the set of all semidecidable languages.   
i) Another term that means the same thing as semidecidable: recursively enumerable. 
j) Regular languages ⊂ CFLs ⊂ D ⊆ SD ⊆ all languages. [The last two ⊆s are realy ⊂s, but we still need to show it]. 

4) TMs can compute functions.   Let M = (K, , , , s, {h}).  

a) M(w) = z iff (s, ☐w) |-M*  (h, ☐z).   

b) Let    be M’s output alphabet, and let f be any function from * to *.   

i) M computes f iff, for all w  *: 
(1) if w is an input on which f is defined, then M(w) = f(w). 
(2) otherwise M(w) does not halt. 

c) A function f is recursive or computable iff there is a Turing machine M that computes it and that always halts. 
d) Computing numeric functions:  

i) For any positive integer k, valuek(n) returns the nonnegative integer that is encoded, base k, by the string n.   
ii) TM M computes a function f from ℕm to ℕ iff, for some k, valuek(M(n1;n2;…nm)) = f(valuek(n1), … valuek(nm)). 

  

Notice that the TM's  
function computes with 

strings (* ↦ *),  not 

directly with numbers. 



5) TM extensions.  For each extension, we can show that every extended machine has an equivalent basic machine. 

a) Multiple-tape TM 
i) The transition function for a k-tape Turing machine: 

 
ii) Theorem (adding tapes adds no computing power): Let M = (K, , , , s, H}  be a k-tape Turing machine for 

some k > 1.  Then there is a standard TM M' where   ', and: 
(1)  On input x, M halts with output z on the first tape iff M' halts in the same state with z on its tape.  
(2) On input x, if M halts in n steps, M' halts in O(n2) steps. 

iii) Proof by construction: 
(1) Treat the single tape as if it were multi-track.  This gives M' a large number of tape symbols: 

(a) Alphabet ( ') of M' =   (  {0, 1})k   "The Representation" slide contains an example. 
 

b) Non-deterministic TM  (later …) 
 

 
 
 
 


