MA/CSSE 474 Day 30 Announcements and Summary
Announcements:

1)

Exam 3 is a week from today.

Main ideas from today
Review of Macro language; look at some example machines.

1)

2)

Exercise: Initial input on the tape is an integer written in binary, most significant bit first (110 represents 6).

Using Elaine Rich's macro language notation, design a TM that replaces the binary representation of n by the binary
representation of n+1.

3) TMs as language recognizers. Let M= (K, X, T, 5, s, {y, n}).

4)

a)
b)
c)

j)

M accepts a string w iff (s, gw) |-v* (y, ') for some string w'.

M rejects a string wiff (s, qw) |-»* (n, w') for some string w'.

M decides a language L — Z* iff for any string w € Z* it is true that:
i) if w € L then M accepts w, and

i) if w ¢ L then M rejects w.

A language L is decidable iff
We define the set D to be the set of all decidable languages.

M semidecides L iff, for any string w € Zp*:

i) wel— Macceptsw

ii) we¢L— M does notaccept w. M may either or

A language L is semidecidable iff there is a Turing machine that semidecides it.

We define the set SD to be the set of all semidecidable languages.

Another term that means the same thing as semidecidable: recursively enumerable.

Regular languages c CFLs € D € SD < all languages. [The last two Cs are realy Cs, but we still need to show it].

TMs can compute functions. Let M= (K, %, T, 9, s, {h}).

a)
b)

d)

M(w) = ziff (s, Ow) [-v* (h, O2). Notice that the TM's

Let X' < X be M’s output alphabet, and let f be any function from £* to X'*. function computes with

i) M computes fiff, for all w € X*: strings (* = Z'*), not
(1) if wis aninput on which fis defined, then M(w) = fiw). directly with numbers.

(2) otherwise M(w) does not halt.
A function f is recursive or computable iff there is a Turing machine M that computes it and that always halts.
Computing numeric functions:
i) For any positive integer k, valuei(n) returns the nonnegative integer that is encoded, base k, by the string n.
ii) TM M computes a function f from N to N iff, for some k, valuei(M(ny;n2;...nm)) = flvaluei(n), ... valuer(nm)).



5) TM extensions. For each extension, we can show that every extended machine has an equivalent basic machine.
a) Multiple-tape TM
i) The transition function for a k-tape Turing machine:
((K-H), Ty to (K.Ty {«. = T}
. I o {e. > T

) e {1

ii) Theorem (adding tapes adds no computing power): Let M = (K, 2, I, &, s, H} be a k-tape Turing machine for
some k> 1. Then there is a standard TM M' where X c X', and:
(1) Oninput x, M halts with output z on the first tape iff M' halts in the same state with z on its tape.
(2) Oninput x, if M halts in n steps, M'halts in O(n?) steps.
iii) Proof by construction:
(1) Treat the single tape as if it were multi-track. This gives M' a large number of tape symbols:
(a) Alphabet (I'')of M'=T U (" x {0, 1})* "The Representation" slide contains an example.

b) Non-deterministic TM (later ...)



