MA/CSSE 474 Day 27 Summary

Main ideas from today:

1)

2)

3)

4)
5)
6)

7)

8)
9)

If L is a context-free language, then
Jk>1 (V stringsw € L, where |w| >k
(Fu, v, x, ¥,z (w=uvxyz,vy ¢, |vxy| <k,
and
Vq 20 (uvixy%zis in L)))).

{xcy : x,y € {0, 1}* and x # y}

Variations on PDA: Acceptance by accepting state only, replace stack with queue, two stacks.

CFL closure:
a) Union. New start symbol: add productionsS—S;,S— S,
b) Concatenation. New start symbol: add production S — $:5;
c) Kleene Star. New start symbol: add productionsS—>¢,S—>SS;
d) Reverse. Transform grammar to Chomsky Normal form. Replace each production A—BC by A—CB
e) Not closed under complement: Consider A"B"C". (done a few days ago)
f) Not closed under intersection: L; ={a"b"c”:n,m>0} L,={a"b"c": n, m >0}
g) Intersection of a CFL and a regular language is CF (same for difference of a regular lang. and a CF lang.)
h) Don't try to use closure backwards! Sam principle as for regular languages.
A PDA may never halt or never finish reading its input.
Nondeterminism can lead to exponential running time.
Deterministic PDA M:
a) Aw contains no pairs of transitions that compete with each other, and
b) whenever M is in an accepting configuration it has no available moves.
A language L is deterministic context-free (DCFL) iff LS can be accepted by some deterministic PDA.
a) L=a*u{a"b":n>0} demonstrates the need for the $ “end-of-input” symbol (details on slides).
b) DCFLs are closed under complement, but not under union or intersection (we will not show these)
Every CFL over a single-letter alphabet must be regular.
Algorithms and decision problems for CFLs
a) Membership: Givena CFL L and a string w, iswin L?
i) How nottodoit (examples are on the slides)
(1) thereisa CFG G that generates L. Try derivations in G and see whether any of them generates w.
(2) thereis a PDA M that accepts L. Run M on w.
ii) But, if grammarisin CNF (€ is handled as a special case).
(1) Works but not very efficient
(2) There is an O(N3) dynamic programming algorithm (CKY, a.k.a. CYK)
iii) Or, can build a PDA with no e-transitions from a GNF grammar.
b) Emptiness. Remove unproductive nonterminals form grammar. L empty iff S is not removed.
c) Finiteness. Let b be the branching factor of CFG. If language is infinite, some string of length between b" and
b" + b will be accepted. Enumerate and try them all.
d) Undecidable questions about CFLs:
i) IsL=X*?
ii) Isthe complement of L context-free?
iii) Is L regular?
iv) Isly=1L5?
V) Is L1 c Lz?
vi) IsLlin Ly =7
vii) Is L inherently ambiguous?
viii) Is G ambiguous?

10) Turing machine (TM) intro (if there is time, which will be amazing if it happens!)
a) Tape alphabet, blank symbol, two-way-infinite tape, read/write head.
b) Based on current state and tape symbol, the TM
i) Changes to next state
ii) Writes a symbol on current tape square
iii) Moves left or right (
(1) In some other authors' equivalent TM models, staying on same square is option. Not here.
c) Formal TM definition. A deterministic TM Mis (K, %, T, 9, s, H):
i) Kis a finite set of states;
ii) X isthe input alphabet, which does not contain [J;
iii) T is the tape alphabet, which must contain [and have X as a subset.
iv) s € Kis the initial state;
v) Hc Kisthe set of halting states;
vi) dis the transition function: (for a nondeterministic TM, we will need a more general relation A)
(1) (K-H xT to K x ' x (-, <}
non-halting x tape — state x tape x direction to move
state char char (RorlL)

d) ATMis not guaranteed to halt. And there is no algorithm to take a TM M and find an equivalent TM that is
guaranteed to halt.
11) Example: M takes as input a string in the language: {a't/, 0 <j </}, and adds b’s as required to make the number of b’s
equal the number of a’s.
\>/__

12) Trace its action on aab: ([)
N a/a/— e
a/a/— S_-"_‘Ii.-'_“l, I| 7 a/y/ > - NS
: s ¥ \1\
,/— , ™ a/8/— ,.)/— N b/ e— ,_."/— g)
L) \‘}K >-/
- !
Napgns e / a/a/—
0/~ B
£ Sl
(s Y
1 _-/Z'——-______
0/0/<— =
\x 5 T(/;\\II

