CSSE 304 Days 27 - 29

Receivers

Escape procedures
Introto call/cc
cal 1/cc examples

Receivers

Escape procedures

cal l/cc involves both receivers and escape
procedures, so we look at both of those first.

WARM-UP FOR CALL/CC

What we’ll do today and next time
IS loosely based the book Scheme
and the Art of Programming by
George Springer and Daniel
Friedman.

Review of Continuations

Consider the evaluation of the expression:

(let (IXx (+y.2)D
(f (<« x4) 5 (- x 6))

What is the continuation of

(+y 2) ? 6 ?

(- X 6) ? (< x 4)

Recelvers

e Areceiver is an argument (which also happens to also be a
procedure) passed to a procedure, with the intention that the
procedure will eventually pass values to that receiver.

e Example: The continuations that we pass to CPS procedures
(with Scheme procedure continuations) are receivers.

e Sometimes receivers are called "callbacks"

Old Receiver Example: call-with-
values

e > (call-with-values

(lambda () (values 3 4))
list)
G 4)

e l1stis areceiver
(we previously called it the consumer)

(define call-with-output-file

new receiver example

From TSPL: The following shows the use of
call-with-output-file to write alist of
objects (the value of l1st-to-be-printed),
separated by newlines, to the file named by
"myfile.ss."
(call-with-output-file "myfile.ss"
(lambda (p) ; this is the "receiver"
(let T ([Is list-to-be-printed])
(f (not (null? 1s))
(begin
(write (car Is) p)
(newline p)

(f (cdr 1s)))))))

(lambda (filename proc)
(let ((p (open-output-file Tilename)))

(let ((v (proc p)))
(close-output-port p)

v))))

An escape procedure

 Pretend that we have a procedure
escape-+ that adds its arguments and
returns this sum as the final answer, no
matter what the context.
(* (escape-+ 56) 3) =
(escape-+ (escape-+ 2 4) 5) =>

An escape procedure

 Pretend that we have a procedure
escape-+ that adds its arguments and
returns this sum as the final answer, no
matter what the context.
(* (escape-+ 5 6) 3) =11
(escape-+ (escape-+ 2 4) 5)=2> 6

Escaper (a mostly fictitious
procedure)

e More generally, suppose that we have a procedure
escaper that takes a procedure as an argument and
returns an equivalent escape procedure.

e (escaper +) creates a procedure that is equivalent
to escape-+

e (+ 3 ((escaper +) 4 5)) >

e (+ ((escaper (lambda (x)
5y - & x3) 7))

1) >

Escaper (a mostly fictitious
procedure)

e More generally, suppose that we have a procedure
escaper that takes a procedure as an argument and
returns an equivalent escape procedure.

e (escaper +) creates a procedure that is equivalent
to escape-+

e (+ 3 ((escaper +) 4 5)) = 9
e (+ ((escaper (lambda (x)
5y - & x3) 7))

4) 58

You can experiment with
escaper

ou can define escaper by loading escaper.ss
in the following way:

escaper.ss is linked from the schedule page

sliderule 1:12pm > petite escaper.ss

Petite Chez Scheme Version 6.7

Copyright (c) 1985-2001 Cadence Research Systems
> ((call/cc receiver-4))

""escaper 1s defined”

> (cdr ((escaper cdr) "(4 5 6)))

(S 6)

Escape Procedures

e Let p be a procedure. If an application of p
abandons the current continuation and does
something else instead, we call p an escape
procedure.

e An example of a Scheme escape procedure that
we have already used:

e |s escaper an escape procedure?

"call-with" procedures

e (call-with-values producer consumer)

— The receiver is the

— It receives the values returned by a call to the producer.
e (call-with-input-file filename proc)

— The receiver is

— It receives the input port obtained by opening the input file
whose name is T1 lename.

e (call-with-current-continuation receiver)

— The receiver receives the current continuation.

dining out example

from Springer and Friedman, Part 5 intro

(deTine dine-out
(lambda (restaurant)

(enter restaurant)

(read-menu)

(let ([food-Il-ordered

(order-some-food)])

(eat food-Il-ordered)
(pay-for food-l1-ordered restaurant)
(exi1t restaurant))))

Read excerpt from the book

CALL/CC DEFINITION AND EXAMPLES

call/cc

call/cc is an abbreviation for
call-with-current-continuation.

call/cc is a procedure that takes one argument; the argument is a receiver.
this recelver is a procedure that takes one argument; that argument
(in this case) is a continuation.

A continuation is a procedure (that takes one argument); that
continuation embodies the context of the application of call/cc.
The continuation is an escape procedure.

The application (call/cc receiver) has the same effect
as (receiver continuation), where the continuation is

— an escape procedure that embodies the execution context of the entire
cal 1/cc expression.

call/cc definition summary

e (call/cc receiver) = (receiver continuation),

e Hence the name:
call-with-current-continuation.

e Rephrasing it: What is that continuation?

If C is a procedure that represents the execution
context of this application of call/cc, then the
continuation is equivalent to (escaper c).

call/cc example

(call/cc receiver) = (receiver continuation)

(+ 3 (call/cc (lambda (k) (* 2 (k 5)))))

» Consider
— The recei

— The context is

— The continuation is

— Thus (+ 3 (call/cc (lambda (k) (* 2 (k 5))))) isequivalentto

-

~call Xxample

(call/cc receiver) = (receiver continuation)
» Consider

'\ _ﬂ
. (+ 3 (call/cc(lambda (k) (* 2 (k 5)))))
— The recei

‘\”L\Q Qv Q\QQQU‘Q 't"l/\u\ i? (V“Ec‘w \ul\g WP %\ID\\\;C’&Q (W\\

— The contlsz(‘{t IS(\):;\LQJ\-‘\’Q ~ {k\(\/) <+ } \/))
— The continuationis (?S{ e~ C\)

— Thus (+ 3 (call/cc (lambda (k) (* 2 (k 5))))) isequivalentto

=3 GIRTAN SN fﬁ“k(\ Y
205 bl e)) A Pracesare apsbedioy

006 5) K e bk P gae

:’)(ﬁ\;'w) (P35)= %

More call/cc examples

(call/cc receiver) = (receiver continuation)

(+ 3 (call/cc (lambda (k) (* 2 (k 5)))))

a) (+ 3 (cali/cc (lambda (k) (* 2 5))))

b) (+ 3 (call/cc (lambda (k) (k (* 2 5)))))

More call/cc examples

(call/cc receiver) = (receiver continuation)

c) (define xxx #¥T)
(+ 5 (call/cc (lambda (k)

(set! xxx k)
2))) ; xxxisequivalentto?

(7 (xxx 4))

More call/cc examples

(call/cc receiver) = (receiver continuation)

c) (define xxx #¥F)
(+ 5 (call/cc (lambda (k) take the photograph

(set! xxX K) save the photograph
2))) ; xxxisequivalentto?

(7 (xxx 4)) rub the photograph

| A simple call/cc example

“23(call/cc receiver) = (receiver continuation)

d)(call/cc procedure?)

List-index

But "standard
recursion' seems so
much more natural!

e Standard approach:
(define (list-index item L)
(cond Can we use call/cc
(null? L) -1] to escape with the -1
(eq? (car L) item) @] |answer?
(else (+ 1 (list-index item

(cdr 1)))]))

What is the problem with this?

One solution: accumulator approach

e) (define list-i1ndex
(lambda (sym L)
(call/cc
(lambda (answer)
(let loop (L LD
(cond [(null? L) (answer -1)]
[(eqv? sym (car L)) O]
[else (+ 1
(loop (cdr L)))>1))))))
> (list-index "a "(b a c))
1
> (list-1ndex "a "(b d c))
-1

f) ((car (call/cc list)) (list cdr 1 2 3))

e) (define list-i1ndex
(lambda (sym L)
(call/cc
(lambda (answer)
(let loop (L LD
(cond [(null? L) (answer -1)]
[(eqv? sym (car L)) O]
[else (+ 1
(loop (cdr L)))>1))))))
> (list-index "a "(b a c))
1
> (list-1ndex "a "(b d c))
-1

(call/cc receiver) = (receiver continuation)

f) ((car (call/cc list))
(list cdr 1 2 3))

Interlude: quotes

remature optimization is the root of all evil in
programming. - C.A.R. Hoare
Do you know what he is famous for?

e There is no code so big, twisted, or complex that
maintenance can't make it worse. - Gerald Weinberg

e Computer Science is the only discipline in which we view

adding a new wing to a building as being maintenance. —
Jim Horning

All this from that short code?

(call/cc receiver) = (receiver continuation)

g) (let ([f 0] [1 O
(call/cc (lambda (k) (set! T k)))
(printf "~a~-n" 1)
(set! 1 (+ 1 1))
(if (<1 10) (f "ignore')))

defi '
") (define strangel Strange indeed!

(display 1)
(call/cc x)

(display 2)))

(strangel
(call/cc

QEENCINI)))

i)~
(define strange?2
(lambda (x)
(display 1)
(call/cc x)
IS EVAVS)
(call/cc x)

CLEJEVAR))).

(strange2 (call/cc (lambda (k) k)))

“mondo bizarro” example

We probably will not
do this one in class;
good practice for
you.

