Name: $\qquad$ Grade: $\qquad$ <-- instructor use

1. When is a (propositional) wff a tautology? When it is true for all values of its variables
2. When we say a set of inference rules is sound, what do we mean? If we apply the rules to a set of axioms, we only end up with things entailed by those axioms
3. What is a predicate? A function whose value is Boolean

Give an example of a predicate application with no free variables Example: contains(3, \{4, 5, 6\})
with one or more free variables Example: contains( $n,\{4,5,6\}$ )
4. When is a first-order wff a sentence (statement)? When it has no free variables
5. Give an example of a model for $\exists x(\forall y(x y=0))$ Integers, with standard definitions of 0 and <
6. From $\{\forall t(p(t) \rightarrow q(t)), \forall t(q(t) \rightarrow r(t)), \neg r(C)\}$, prove $\neg p(C)$. Give reasons for your steps. (Continue on back)

1. $\forall \mathrm{t}(\mathrm{p}(\mathrm{t}) \rightarrow \mathrm{q}(\mathrm{t})) \quad$ given
2. $p(C) \rightarrow q(C)) \quad$ 1, universal instantiation
3. $\forall \mathrm{t}(\mathrm{q}(\mathrm{t}) \rightarrow \mathrm{r}(\mathrm{t})) \quad$ given
4. $q(C) \rightarrow r(C)) \quad$ 1, universal instantiation
5. $\mathrm{p}(\mathrm{C}) \rightarrow \mathrm{r}(\mathrm{C})$ ) 2, 4, syllogism
6. $\neg \mathrm{r}(\mathrm{C})\}$
premise
7. $\neg \mathrm{p}(\mathrm{C})\} \quad$ modus tollens
8. Consider the set of ordered pairs of non-negative integers. Working with another student, define a relation on this set that is a total ordering.

Call the relation \#. Use lexicographic order.
( $\mathrm{a}, \mathrm{b}$ ) \# ( c d ) iff either $\mathrm{a} \leq \mathrm{c}$ or ( $\mathrm{a}=\mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$ )
A student suggested ( $\mathrm{a}, \mathrm{b}$ ) \# ( c d) iff $\left.\operatorname{sqrt}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \leq \operatorname{sqrt}\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)\right)$
8. Working with another student, define a relation on the positive rational numbers that is a total ordering. Note that the ordering is on numbers, not just on representations of the numbers.

This one turned out to be trivial. The standard $\leq$ works fine.
9. Working with another student, define a well-ordered relation on the rational numbers r with $0<\mathrm{r}<1$. Hint: Think diagonal.

Given a positive rational number r , let $\mathrm{f}(\mathrm{r})$ be the reduced fraction that represents r . Let $\mathrm{n}(\mathrm{r})$ be the numerator of $f(r)$, and $d(r)$, be the denominator of $f(r)$. Then the ordering can again be lexicographic: $r$ \# $s$ if either $d(r)<d(s)$ or $(d(r)=d(s))$ and $n(r)<n(s))$.

Note that without the restriction to representations by reduced fractions, this is not even a partial ordering. If we say that a fraction is simply a numerator and a denominator with no restrictions, we get $1 / 2$ \# $2 / 3$ and $2 / 3 \# 2 / 4$. But $1 / 2$ and $2 / 4$, while they are different "fractions", represent the same rational number.

This order is a well-order, which begins
$1 / 2,1 / 3,2 / 3,1 / 4,3 / 4,1 / 5,2 / 5,3 / 5,4 / 5,1 / 6,5 / 6,1 / 7, \ldots$
10. Working with another student, use (strong) induction to prove by that for any natural number n , $n(n+1)(n+2)$ is divisible by 6 .

Base case: $\mathrm{n}=0$ : $(0)(1)(2)=0(6)$.
Induction step: Show $\forall \mathrm{j}>2((\forall \mathrm{k}(0 \leq \mathrm{k}<\mathrm{j} \rightarrow \mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)$ divisible by 6$) \rightarrow \mathrm{j}(\mathrm{j}+1)(\mathrm{j}+2)$ divisible by 6$)$
So the induction hypothesis is $(\forall k(0 \leq k<j \rightarrow k(k+1)(k+2)$ divisible by 6$)$ and what we need to deduce from it is $j(j+1)(j+2)$ divisible by 6 .

So here we go! Let j>3. The particular k we want to use is $\mathrm{j}-1$ (so it turns out that ordinary induction would have worked). By the induction hypothesis, we have $(k)(k+1)(k+2)=6 \mathrm{~m}$ for some m . We want to show that $(k+1)(k+2)(k+3)$ is a multiple of 6 . We can write this as this as $k(k+1)(k+2)+3(k+1)(k+2)=6 m+3(k+1)(k+2)$. One of $k+1$ and $k+2$ must be odd, and the other must be even, so their product must be even. Thus $3(k+1)(k+2)$ is divisible by 6 , and 6 m is divisible by 6 , so their sum is divisible by 6 .
11. Tell your instructor about anything from today's session (or from the course so far) that you found confusing or still have a question about. If none, please write "None". Continue on the back if needed. Must have some answer

Additional material: Detailed proof of in-class example.

- From Weiss, Data Structures and Problem Solving with Java, Section 7.3.4
- Consider this function to recursively calculate Fibonacci numbers:

```
F
    - def fib(n):
    if n <= 1:
            return n
    return fib(n-1) + fib(n-2)
```

- Let $\mathrm{C}_{\mathrm{N}}$ be the number of calls to fib during the computation of fib( N ).
- It's easy to see that $\mathrm{C}_{0}=\mathrm{C}_{1}=1$, and if $\mathrm{N} \geq 2, \mathrm{C}_{\mathrm{N}}=\mathrm{C}_{\mathrm{N}-1}+\mathrm{C}_{\mathrm{N}-2}+1$.
- Prove that for $\mathrm{N} \geq 3, \mathrm{C}_{\mathrm{N}}=\mathrm{F}_{\mathrm{N}+2}+\mathrm{F}_{\mathrm{N}-1}-1$.

Base cases:
If $\mathrm{N}=3$, then $\mathrm{C}_{\mathrm{N}}=5 . \quad \mathrm{F}_{5}+\mathrm{F}_{2}-1=5+1-1=5$.
If $N=4$, then $C_{N}=9 . \quad F_{6}+F_{3}-1=8+2-1=9$.
Induction step: Show $\forall j>4\left(\left(\forall k\left(3 \leq k<j \rightarrow C_{k}=F_{k+2}+F_{k-1}-1\right) \rightarrow C_{j}=F_{j+2}+F_{j-1}-1\right)\right.$
The two particular values for k that we use are $\mathrm{j}-1$ and $\mathrm{j}-2$.
Thus $\mathrm{C}_{\mathrm{j}-2}=\mathrm{F}_{\mathrm{j}}+\mathrm{F}_{\mathrm{j}-3}-1$ and $\mathrm{C}_{\mathrm{j}-\mathrm{j}}=\mathrm{F}_{\mathrm{j}+1}+\mathrm{F}_{\mathrm{j}-2-1}$
Now we can prove the conclusion:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{j}} & =\mathrm{C}_{\mathrm{j}-1}+\mathrm{C}_{\mathrm{j}-2}+1 \quad \text { (from the next-to-last bullet in the statement of the problem) } \\
& =\left(\mathrm{F}_{\mathrm{j}+1}+\mathrm{F}_{\mathrm{j}-2}-1\right)+\left(\mathrm{F}_{\mathrm{j}}+\mathrm{F}_{\mathrm{j}-3}-1\right)+1 \text { (induction assumption) } \\
& =\left(\mathrm{F}_{\mathrm{j}+1}+\mathrm{F}_{\mathrm{j}}\right)+\left(\mathrm{F}_{\mathrm{j}-2}+\mathrm{F}_{\mathrm{j}-3}\right)+1-1-1 \text { (commutative and associative laws) } \\
& =\mathrm{F}_{\mathrm{j}+2}+\mathrm{F}_{\mathrm{j}-1}-1 \quad \text { (def of Fibonacci numbers) }
\end{aligned}
$$

