   		474 HW 15 problems   (highlighted problems are the ones to turn in)
		
			18.1a
(#1)  9


18.1b
(#2)  9










19.1   
(#4)  6
          

19.2
(#5)  12



[image: ]				
			
			

[image: ]


[bookmark: _GoBack][image: ][image: ]Problem #3 A TM M has tape alphabet { , a, b} (this is the order used in the encoding <M>).  
<M> = (q00,a00,q00,a00, →), (q00,a10,q01,a10,→), (q00,a01,y10,a10, ←), (q01,a01,q00,a10,→), (q01,a10,n11,a01, ←)
(a) (6) Provide a transition diagram or a transition table for the TM M.
(b) (3) For each of the following outcomes of running M, provide a short string of a's and b's that is
accepted by M,
rejected by M,
neither.


image1.png
Church’s Thesis makes the claim that all reasonable formal models of computa-
tion are equivalent. And we showed in. Section 17.4, a construction that proved
that a simple accumulator/register machine can be implemented as a Turing ma-
chine. By extending that construction, we can show that any computer can be im-
plemented as a Turing machine. So the existence of a decision procedure (stated
in any notation that makes the algorithm clear) to answer a question means that
the question is decidable by a Turing machine.

Now suppose that we take an arbitrary question for which a decision proce-
dure exists. If the question can be reformulated as a language, then the language
will be in D iff there exists a decision procedure to answer the question. For cach
of the following problems, your answers should be a precise description of an al-
gorithm. It need not be the description of a Turing Machine:

a Let L = {<M>: M isa DFSM that doesn’t accept any string containing an

odd number of 1's}. Show that L is in D.





image2.png
b. Let L = {< E>: Eis a regular expression that describes a language that con-
tains at least one string w that contains 111 as a substring}. Show that L is in D.





image3.png
2. Consider the language L = : Turing machine M accepts the binary
encodings of the first three prime numbers}.
a. Describe in clear English a Turing machine M that semidecides L.
b. Suppose (contrary to fact, as established by Theorem 19.2) that there were a
Turing machine Oracle that decided H. Using it describe in clear English a
Turing machine M that decides L.





image4.png
1. Consider the language L = {<M> : Turing machine M accepts at least two
strings}.
. Describe in clear English a Turing machine M that semidecides L.
b. Now change the definition of Z just a bit. Consider:
L' = {=M> : Turing machine M accepts exactly 2 strings>.
Can you tweak the Turing machine you described in part a to semidecide L'?




